1
|
Syed Mohamad SNA, Khatib A, So’ad SZM, Ahmed QU, Ibrahim Z, Nipun TS, Humaryanto H, AlAjmi MF, Khalifa SAM, El-Seedi HR. In Vitro Anti-Diabetic, Anti-Inflammatory, Antioxidant Activities and Toxicological Study of Optimized Psychotria malayana Jack Leaves Extract. Pharmaceuticals (Basel) 2023; 16:1692. [PMID: 38139818 PMCID: PMC10747829 DOI: 10.3390/ph16121692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/18/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
Psychotria malayana Jack (Family: Rubiaceae, local name: Salung) is a traditional herb used to treat diabetes. A previous study by our research group demonstrated that P. malayana methanolic and water extract exhibits significant potential as an effective agent for managing diabetes. Further research has been performed on the extraction optimization of this plant to enhance its inhibitory activity against α-glucosidase, a key enzyme associated with diabetes, and to reduce its toxicity. The objectives of this study are to evaluate the anti-diabetic, anti-inflammatory, and antioxidant properties of the optimized P. malayana leaf extract (OE), to evaluate its toxicity using a zebrafish embryo/larvae model, and to analyze its metabolites. The anti-diabetic effects were assessed by investigating α-glucosidase inhibition (AGI), while the inflammation inhibitory activity was performed using the soybean lipoxygenase inhibitory (SLOXI) test. The assessment of antioxidant activity was performed utilizing FRAP and DPPH assays. The toxicology study was conducted using the zebrafish embryo/larvae (Danio rerio) model. The metabolites present in the extracts were analyzed using GC-MS and LC-MS. OE demonstrated significant AGI and SLOXI activities, represented as 2.02 and 4.92 µg/mL for IC50 values, respectively. It exhibited potent antioxidant activities as determined by IC50 values of 13.08 µg/mL (using the DPPH assay) and 95.44 mmol TE/mg DW (using the FRAP assay), and also demonstrated an LC50 value of 224.29 µg/mL, which surpasses its therapeutic index of 111.03. OE exhibited a higher therapeutic index compared to that of the methanol extract (13.84) stated in the previous state of the art. This suggests that OE exhibits a lower level of toxicity, making it safer for use, and has the potential to be highly effective in its anti-diabetic activity. Liquid chromatography-mass spectrometry (LC-MS) and gas chromatography-mass spectrometry (GC-MS) demonstrated the presence of several constituents in this extract. Among them, several compounds, such as propanoic acid, succinic acid, D-tagatose, myo-inositol, isorhamnetin, moracin M-3'-O-β-D-glucopyranoside, procyanidin B3, and leucopelargonidin, have been reported as possessing anti-diabetic and antioxidant activities. This finding offers great potential for future research in diabetes treatment.
Collapse
Affiliation(s)
- Sharifah Nurul Akilah Syed Mohamad
- Pharmacognosy Research Group, Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan 25200, Pahang Darul Makmur, Malaysia; (S.N.A.S.M.); (S.Z.M.S.); (Q.U.A.); (Z.I.)
| | - Alfi Khatib
- Pharmacognosy Research Group, Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan 25200, Pahang Darul Makmur, Malaysia; (S.N.A.S.M.); (S.Z.M.S.); (Q.U.A.); (Z.I.)
- Central Research and Animal Facility, Kulliyyah of Science, International Islamic University Malaysia, Kuantan 25200, Pahang Darul Makmur, Malaysia
- Faculty of Pharmacy, Airlangga University, Surabaya 60155, Indonesia
| | - Siti Zaiton Mat So’ad
- Pharmacognosy Research Group, Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan 25200, Pahang Darul Makmur, Malaysia; (S.N.A.S.M.); (S.Z.M.S.); (Q.U.A.); (Z.I.)
| | - Qamar Uddin Ahmed
- Pharmacognosy Research Group, Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan 25200, Pahang Darul Makmur, Malaysia; (S.N.A.S.M.); (S.Z.M.S.); (Q.U.A.); (Z.I.)
| | - Zalikha Ibrahim
- Pharmacognosy Research Group, Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan 25200, Pahang Darul Makmur, Malaysia; (S.N.A.S.M.); (S.Z.M.S.); (Q.U.A.); (Z.I.)
| | - Tanzina Sharmin Nipun
- Department of Pharmacy, Faculty of Biological Sciences, University of Chittagong, Chittagong 4331, Bangladesh;
| | | | - Mohamed F. AlAjmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia;
| | - Shaden A. M. Khalifa
- Psychiatry and Psychology Department, Capio Saint Göran’s Hospital, Sankt Göransplan 1, 112 19 Stockholm, Sweden;
| | - Hesham R. El-Seedi
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Kom 31100107, Egypt
- International Joint Research Laboratory of Intelligent Agriculture and Agri-Products Processing, Jiangsu Education Department, Jiangsu University, Nanjing 210024, China
| |
Collapse
|
2
|
Zerangnasrabad S, Jabbari A, Khavari Moghadam E, Sadeghian H, Seyedi SM. Design, synthesis, and structure-activity relationship study of O-prenylated 3-acetylcoumarins as potent inhibitors of soybean 15-lipoxygenase. Drug Dev Res 2021; 82:826-834. [PMID: 33416204 DOI: 10.1002/ddr.21787] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 02/01/2023]
Abstract
In this work, the design, synthesis, and structure-activity relationships of a novel array of geranyloxy and farnesyloxy 3-acetylcoumarins were reported as potent soybean 15-lipoxygenase inhibitors. Among the prepared coumarins, 7-farnesyloxy-3-acetylcoumarin (12b) was found to be the most potent inhibitor by IC50 = 0.68 μM while O-geranyl substituents at positions 5 and 6 of 3-acetylcoumarin (10a and 11a) were not inhibitors. Using docking studies, the binding affinity and the preferred pose of synthetic compounds were considered. It was found that lipoxygenase inhibitory activity and prenyl length chain were directly related. The hydrophobic cavity of the enzyme was more effectively occupied by the farnesyl moiety of the potent inhibitor 12b rather than other derivatives. Also, with this pose of farnesyl chain in 7-farnesyloxy-3-acetylcoumarins, the acetyl group could be directed to the hydrophilic pocket in the active site.
Collapse
Affiliation(s)
- Sara Zerangnasrabad
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Atena Jabbari
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Elahe Khavari Moghadam
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Hamid Sadeghian
- Department of Laboratory Sciences, School of Paramedical Sciences, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mohammad Seyedi
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
3
|
Mousavian M, Alavi SJ, Rahbarian R, Rajabian M, M Orafai H, Sadeghian H. Design, synthesis, and SAR study of isopropoxy allylbenzene derivatives as 15-lipoxygenase inhibitors. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2020; 23:984-989. [PMID: 32952943 PMCID: PMC7478253 DOI: 10.22038/ijbms.2020.36793.8763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Objective(s): Allylbenzenes have been recently developed as inhibitors of lipoxygenases. They decrease peroxidation activity via mimicking 1,4-unsaturated bonds of fatty acids by their allyl portion. We designed and synthesized new derivatives of allyl benzenes (6a-f) with isopropoxy and amide substituents at ortho and meta positions towards allyl group, respectively. The inhibitory potency of the synthetized allylbenzenes against soybean 15-lipoxygenase (SLO) and subsequently structure-activity relationships was assessed. Materials and Methods: 3-allyl-4-isopropoxybenzenamine (5) as starting material was synthesized by coupling of 4-nitropheol with allyl bromide, performing Claisen rearrangement and finally reduction of the nitro moiety. Final products 6a-f were prepared via amidation of 5 with the desired acyl chloride. Results: Among the compounds, N-(3-allyl-4-isopropoxyphenyl)adamantan carboxamide (6f) potentially showed best inhibition (IC50 = 1.35 µM) while 6a with cyclopropyl carboxamide moiety was the weakest inhibitor and 6e with phenyl carboxamide moiety showed no effect. Energy minimized 3D structures of the compounds were docked into the active site pocket of SLO. For the aliphatic amides, docking results showed compatibility between inhibitory potency and average Ki of the cluster conformers, in which their allyl moiety oriented towards SLO iron core. For the aliphatic analogs, by enlargement of the amide moiety size the inhibitory potency was increased. Conclusion: Docking results showed that orientation of the amide and allyl moieties of the inhibitors in the active site pocket is the major factor in inhibitory potency variation. Based on the mentioned orientation, for cycloaliphatic amides, by enlargement of the amide moiety both inhibition potency and calculated binding energy increases.
Collapse
Affiliation(s)
- Mina Mousavian
- Department of Biology, Faculty of Science, Payame Noor University, Mashhad, Iran
| | - Seyed Jamal Alavi
- Department of Laboratory Sciences, School of Paramedical Sciences, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Raheleh Rahbarian
- Department of Biology, Faculty of Science, Payame Noor University, Mashhad, Iran
| | - Majid Rajabian
- Department of Biology, Faculty of Science, Payame Noor University, Mashhad, Iran
| | - Hossein M Orafai
- Department of Pharmaceutics, Faculty of Pharmacy, University of Al-Zahraa for Women, Karbala, Ira
| | - Hamid Sadeghian
- Department of Laboratory Sciences, School of Paramedical Sciences, Mashhad University of Medical Sciences, Mashhad, Iran.,Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
4
|
Unelius CR, Bohman B, Nordlander G. Comparison of Phenylacetates with Benzoates and Phenylpropanoates as Antifeedants for the Pine Weevil, Hylobius abietis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:11797-11805. [PMID: 30350979 DOI: 10.1021/acs.jafc.8b03830] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
This study concludes an extensive investigation of antifeedants for the pine weevil, Hylobius abietis (Coleoptera: Curculionidae), an economically important pest of planted conifer seedlings. Building on the previously reported antifeedant effects of benzoates and phenylpropanoids (aromatic compounds with one- or three-carbon-atom substituents on the benzene ring), we here report the antifeedant effects of compounds with two-carbon-atom side chains (i.e., phenylacetates). We also present new results; the best antifeedants from the benzoate class were tested at 10-fold lower concentrations in order to find the optimal antifeedants. Generally, for all three compound classes, efficient antifeedants were found to have one or two methyl, chloro, or methoxy substituents on the aromatic ring. For monosubstituted phenylpropanoids, the substituent preferably should be in the para-position. In the search for synergistic antifeedant effects among the three compound classes, combinations of compounds from the three classes were tested in binary and ternary mixtures.
Collapse
Affiliation(s)
- C Rikard Unelius
- Department of Chemistry and Biomedical Sciences , Linnaeus University , 392 34 Kalmar , Sweden
| | - Björn Bohman
- Department of Chemistry and Biomedical Sciences , Linnaeus University , 392 34 Kalmar , Sweden
| | - Göran Nordlander
- Department of Ecology , Swedish University of Agricultural Sciences (SLU) , 750 07 Uppsala , Sweden
| |
Collapse
|
5
|
Phenylpropionamides, Piperidine, and Phenolic Derivatives from the Fruit of Ailanthus altissima. Molecules 2017; 22:molecules22122107. [PMID: 29207525 PMCID: PMC6149757 DOI: 10.3390/molecules22122107] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 11/21/2017] [Accepted: 11/29/2017] [Indexed: 11/17/2022] Open
Abstract
Four novel compounds—two phenylpropionamides, one piperidine, and one phenolic derivatives—were isolated and identified from the fruit of a medicinal plant, Ailanthus altissima (Mill.) Swingle (Simaroubaceae), together with one known phenylpropionamide, 13 known phenols, and 10 flavonoids. The structures of the new compounds were elucidated as 2-hydroxy-N-[(2-O-β-d-glucopyranosyl)phenyl]propionamide (1), 2-hydroxy-N-[(2-O-β-d-glucopyranosyl-(1→6)-β-d-glucopyranosyl)phenyl]propionamide (2), 2β-carboxyl-piperidine-4β-acetic acid methyl ester (4), and 4-hydroxyphenyl-1-O-[6-(hydrogen-3-hydroxy-3-methylpentanedioate)]-β-d-glucopyranoside (5) based on spectroscopic analysis. All the isolated compounds were evaluated for their inhibitory activity against Tobacco mosaic virus (TMV) using the leaf-disc method. Among the compounds isolated, arbutin (6), β-d-glucopyranosyl-(1→6)-arbutin (7), 4-methoxyphenylacetic acid (10), and corilagin (18) showed moderate inhibition against TMV with IC50 values of 0.49, 0.51, 0.27, and 0.45 mM, respectively.
Collapse
|
6
|
Yuan LZ, Zhao G, Hamze A, Alami M, Provot O. Chlorotrimethylsilane and Sodium Iodide: A Useful Combination for the Regioselective Deoxygenation of Arylalkyl-α-Diketones. Adv Synth Catal 2017. [DOI: 10.1002/adsc.201700276] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ling-Zhi Yuan
- BioCIS, Univ. Paris-Sud, CNRS; Equipe Labellisée Ligue Contre le Cancer; Université Paris-Saclay; Châtenay-Malabry France
| | - Guangkuan Zhao
- BioCIS, Univ. Paris-Sud, CNRS; Equipe Labellisée Ligue Contre le Cancer; Université Paris-Saclay; Châtenay-Malabry France
| | - Abdallah Hamze
- BioCIS, Univ. Paris-Sud, CNRS; Equipe Labellisée Ligue Contre le Cancer; Université Paris-Saclay; Châtenay-Malabry France
| | - Mouad Alami
- BioCIS, Univ. Paris-Sud, CNRS; Equipe Labellisée Ligue Contre le Cancer; Université Paris-Saclay; Châtenay-Malabry France
| | - Olivier Provot
- BioCIS, Univ. Paris-Sud, CNRS; Equipe Labellisée Ligue Contre le Cancer; Université Paris-Saclay; Châtenay-Malabry France
| |
Collapse
|
7
|
O-prenylated 3-carboxycoumarins as a novel class of 15-LOX-1 inhibitors. PLoS One 2017; 12:e0171789. [PMID: 28182779 PMCID: PMC5300203 DOI: 10.1371/journal.pone.0171789] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 01/25/2017] [Indexed: 12/17/2022] Open
Abstract
Allyloxy, Isopentenyloxy, geranyloxy and farnesyloxy derivatives of 3-carboxycoumarin, at position 5, 6, 7, and 8, were synthesized and their inhibitory potency against human 15-lipoxygenase-1 (human 15-LOX-1) were determined. Among the synthetic coumarins, O-allyl and O-isopentenyl derivatives demonstrated no considerable lipoxygenase inhibition while O-geranyl and O-farnesyl derivatives demonstrated potent inhibitory activity. 5-farnesyloxy-3-carboxycoumarin demonstrated the most potent inhibitory activity by IC50 = 0.74 μM while 6-farnesyloxy-3-carboxycoumarin was the weakest inhibitor among farnesyl analogs (IC50 = 10.4 μM). Bonding affinity of the designed molecular structures toward 15-LOX-1 3D structure complexed with RS75091, as potent 15-LOX-1 inhibitor, was studied by utilizing docking analysis. There was a direct relationship between lipoxygenase inhibitory potency and prenyl length chain. The ability of the prenyl portion to fill the lipophilic pocket which is formed by Ile663, Ala404, Arg403, Ile400, Ile173 and Phe167 side chains can explain the observed relationship. Similarity rate between the docked models and complexed form of RS75091, from point of view of configuration and conformation, could explain inhibitory potency variation between each prenyloxy substitution of 3-carboxycoumarins.
Collapse
|
8
|
|
9
|
Mohammadi-Farani A, Haqiqi A, Navid SJ, Aliabadi A. Synthesis and evaluation of LOX inhibitory activity of 2-(1,3-Dioxo-1H-benzo[de]isoquinolin-2(3H)-yl)-N-phenylacetamide derivatives. Res Pharm Sci 2016; 11:265-73. [PMID: 27651806 PMCID: PMC5022374 DOI: 10.4103/1735-5362.189283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
A family of structurally related LOX enzymes present in human cells which catalyse the metabolism of released arachidonic acid from phospholipids by inflammatory stimuli, to biologically active mediators. Mainly, expression of three types of LOXs occurs in cells, which catalyse the insertion of molecular oxygen into the molecule of arachidonic acid at carbon 5, 12, and 15. According to this chemical reaction, the LOXs are named 5-, 12-, and 15-LOX, amongst which, 15-LOX with isoforms 15-LOX-1 and 15-LOX-2 have critical role in neoplastic diseases. 15-LOX-1 is overexpressed in some neoplastic conditions. Hence, in this research, we focused on the synthesis of naphthalimide analogs as potential 15-LOX-1 inhibitors. Fortunately, the most of synthesized compounds demonstrated remarkable inhibitory potency towards 15-LOX-1 in nanomolar ranges. Naphthalimide derivatives could be suggested as potential LOX inhibitors with likely applications of anticancer activity.
Collapse
Affiliation(s)
- Ahmad Mohammadi-Farani
- Pharmaceutical Sciences Research Center, School of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, I.R. Iran; Department of Pharmacology, Toxicology and Medical Services, School of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, I.R. Iran
| | - Arash Haqiqi
- Students Research Committee, Kermanshah University of Medical Sciences, Kermanshah, I.R. Iran; Department of Medicinal Chemistry, School of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, I.R. Iran
| | - Sahar Jamshidy Navid
- Pharmaceutical Sciences Research Center, School of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, I.R. Iran; Department of Pharmacology, Toxicology and Medical Services, School of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, I.R. Iran
| | - Alireza Aliabadi
- Pharmaceutical Sciences Research Center, School of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, I.R. Iran; Department of Medicinal Chemistry, School of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, I.R. Iran
| |
Collapse
|
10
|
Jabbari A, Sadeghian H, Salimi A, Mousavian M, Seyedi SM, Bakavoli M. 2-Prenylatedm-dimethoxybenzenes as potent inhibitors of 15-lipo-oxygenase: inhibitory mechanism and SAR studies. Chem Biol Drug Des 2016; 88:460-9. [DOI: 10.1111/cbdd.12779] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 04/06/2016] [Accepted: 04/13/2016] [Indexed: 11/30/2022]
Affiliation(s)
- Atena Jabbari
- Department of Chemistry; Faculty of Science; Ferdowsi University of Mashhad; Mashhad Iran
| | - Hamid Sadeghian
- Neurogenic Inflammation Research Center; Mashhad University of Medical Sciences; Mashhad Iran
- Department of Laboratory Sciences; School of Paramedical Sciences; Mashhad University of Medical Sciences; Mashhad Iran
| | - Alireza Salimi
- Department of Chemistry; Faculty of Science; Ferdowsi University of Mashhad; Mashhad Iran
| | - Mina Mousavian
- Department of Biology; Mashhad Branch; Islamic Azad University; Mashhad Iran
| | - Seyed M. Seyedi
- Department of Chemistry; Faculty of Science; Ferdowsi University of Mashhad; Mashhad Iran
| | - Mehdi Bakavoli
- Department of Chemistry; Faculty of Science; Ferdowsi University of Mashhad; Mashhad Iran
| |
Collapse
|
11
|
|
12
|
Mutahir S, Yar M, Khan MA, Ullah N, Shahzad SA, Khan IU, Mehmood RA, Ashraf M, Nasar R, Pontiki E. Synthesis, characterization, lipoxygenase inhibitory activity and in silico molecular docking of biaryl bis(benzenesulfonamide) and indol-3-yl-hydrazide derivatives. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2014. [DOI: 10.1007/s13738-014-0573-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
13
|
Pham AT, Malterud KE, Paulsen BS, Diallo D, Wangensteen H. α-Glucosidase inhibition, 15-lipoxygenase inhibition, and brine shrimp toxicity of extracts and isolated compounds from Terminalia macroptera leaves. PHARMACEUTICAL BIOLOGY 2014; 52:1166-1169. [PMID: 24635511 DOI: 10.3109/13880209.2014.880486] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
CONTEXT Terminalia macroptera Guill. & Perr. (Combretaceae), a tree that grows in West Africa, has been used in traditional medicine against a variety of diseases such as hepatitis, gonorrhea, skin diseases, and diabetes. OBJECTIVE To investigate enzyme inhibitory activity against α-glucosidase and 15-lipoxygenase (15-LO) and toxicity against brine shrimp of extracts and compounds from T. macroptera leaves. MATERIALS AND METHODS Methanol extract, ethyl acetate, and butanol extracts obtained from the methanol extract, six isolated polyphenols (chebulagic acid, chebulic acid trimethyl ester, corilagin, methyl gallate, narcissin, and rutin), and shikimic acid were evaluated for enzyme inhibition and toxicity. RESULTS In enzyme inhibition assays, all extracts showed high or very high activity. Chebulagic acid showed an IC50 value of 0.05 µM towards α-glucosidase and 24.9 ± 0.4 µM towards 15-LO, in contrast to positive controls (acarbose: IC50 201 ± 28 µM towards α-glucosidase, quercetin: 93 ± 3 µM towards 15-LO). Corilagin and narcissin were good 15-LO and α-glucosidase inhibitors, as well, while shikimic acid, methyl gallate, and chebulic acid trimethyl ester were less active or inactive. Rutin was a good α-glucosidase inhibitor (IC50 ca. 3 µM), but less active towards 15-LO. None of the extracts or the isolated compounds seemed to be very toxic in the brine shrimp assay compared with the positive control podophyllotoxin. CONCLUSION Inhibition of α-glucosidase in the gastrointestinal tract may be a rationale for the medicinal use of T. macroptera leaves against diabetes in traditional medicine in Mali. The plant extracts and its constituents show strong inhibition of the peroxidative enzyme 15-LO.
Collapse
Affiliation(s)
- Anh Thu Pham
- Section of Pharmaceutical Chemistry, School of Pharmacy, University of Oslo , Blindern, Oslo , Norway and
| | | | | | | | | |
Collapse
|
14
|
Mascayano C, Espinosa V, Sepúlveda-Boza S, Hoobler EK, Perry S. In VitroStudy of Isoflavones and Isoflavans as Potent Inhibitors of Human 12- and 15-Lipoxygenases. Chem Biol Drug Des 2013; 82:317-25. [DOI: 10.1111/cbdd.12157] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 04/10/2013] [Accepted: 04/23/2013] [Indexed: 11/29/2022]
Affiliation(s)
- Carolina Mascayano
- Departamento de Ciencias del Ambiente; Facultad de Química y Biología; Universidad de Santiago de Chile; Santiago Chile
| | - Victoria Espinosa
- Laboratorio de Investigación Científica Emory Black; Escuela de Medicina; Facultad de Ciencias Médicas; Universidad de Santiago; Casilla 442, Correo 2 Santiago Chile
| | - Silvia Sepúlveda-Boza
- Laboratorio de Investigación Científica Emory Black; Escuela de Medicina; Facultad de Ciencias Médicas; Universidad de Santiago; Casilla 442, Correo 2 Santiago Chile
| | - Eric K. Hoobler
- Department of Chemistry and Biochemistry; University of California; Santa Cruz CA 95064 USA
| | - Steve Perry
- Department of Chemistry and Biochemistry; University of California; Santa Cruz CA 95064 USA
| |
Collapse
|
15
|
Papadopoulou AA, Katsoura MH, Chatzikonstantinou A, Kyriakou E, Polydera AC, Tzakos AG, Stamatis H. Enzymatic hybridization of α-lipoic acid with bioactive compounds in ionic solvents. BIORESOURCE TECHNOLOGY 2013; 136:41-8. [PMID: 23567667 DOI: 10.1016/j.biortech.2013.02.067] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 02/17/2013] [Accepted: 02/20/2013] [Indexed: 06/02/2023]
Abstract
The lipase-catalyzed molecular hybridization of α-lipoic acid (LA) with bioactive compounds pyridoxine, tyrosol and tyramine was performed in ionic solvents and deep eutectic solvents. The biocatalytic reactions were catalyzed by Candida antarctica lipase B immobilized onto various functionalized multi-walled carbon nanotubes (f-CNTs-CaLB), as well as by commercial Novozym 435. The use of f-CNTs-CaLB leads, in most cases, to higher conversion yields as compared to Novozym 435. The nature and ion composition of ionic solvents affect the performance of the biocatalytic process. The highest conversion yield was observed in (mtoa)NTf2. The high enzyme stability and the relatively low solubility of substrates in specific media account for the improved biocatalytic synthesis of molecular hybrids of LA. Principal component analysis was used to screen for potential lipoxygenase inhibitors. In vitro studies showed that the synthesized compounds exhibit up to 10-fold increased inhibitory activity on lipoxygenase mediated lipid peroxidation as compared to parent molecules.
Collapse
Affiliation(s)
- Athena A Papadopoulou
- Laboratory of Biotechnology, Department of Biological Applications and Technologies, University of Ioannina, University Campus, 45110 Ioannina, Greece
| | | | | | | | | | | | | |
Collapse
|
16
|
Synthesis of new series of pyrimido[4,5-b][1,4] benzothiazines as 15-lipoxygenase inhibitors and study of their inhibitory mechanism. Med Chem Res 2013. [DOI: 10.1007/s00044-013-0506-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
17
|
Iranshahi M, Jabbari A, Orafaie A, Mehri R, Zeraatkar S, Ahmadi T, Alimardani M, Sadeghian H. Synthesis and SAR studies of mono O-prenylated coumarins as potent 15-lipoxygenase inhibitors. Eur J Med Chem 2012; 57:134-42. [PMID: 23047230 DOI: 10.1016/j.ejmech.2012.09.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 07/23/2012] [Accepted: 09/04/2012] [Indexed: 01/18/2023]
Abstract
All of the mono isopentenyloxy, -geranyloxy and -farnesyloxy derivatives of coumarin were synthesized and their inhibitory potency against soybean 15-lipoxygenase (SLO) and human 15-lipoxygenase-1 (HLO-1) were determined. Amongst the synthetic analogs, 5-farnesyloxycoumarin showed the most potent inhibitory activity against SLO (IC(50) = 0.8 μM) while 6-farnesyloxycoumarin was the strongest HLO-1 inhibitor (IC(50) = 1.3 μM). The IC(50) variations of the farnesyl derivatives for HLO-1 (1.3 to ∼75 μM) were much higher than that observed for SLO (0.8-5.8 μM). SAR studies showed that hydrogen bonding, CH/π, anion-π and S-OC interactions with Fe(III)-OH, Leu408, Glu357 and Met419 were the distinct intermolecular interactions which can lead to important role of the coumarin substitution site in HLO-1 inhibitory potency, respectively.
Collapse
Affiliation(s)
- Mehrdad Iranshahi
- Biotechnology Research Center and School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Assadieskandar A, Amini M, Salehi M, Sadeghian H, Alimardani M, Sakhteman A, Nadri H, Shafiee A. Synthesis and SAR study of 4,5-diaryl-1H-imidazole-2(3H)-thione derivatives, as potent 15-lipoxygenase inhibitors. Bioorg Med Chem 2012; 20:7160-6. [PMID: 23117172 DOI: 10.1016/j.bmc.2012.09.050] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 09/24/2012] [Accepted: 09/25/2012] [Indexed: 01/27/2023]
Abstract
A series of 4,5-diaryl-1H-imidazole-2(3H)-thione was synthesized and their inhibitory potency against soybean 15-lipoxygenase and free radical scavenging activities were determined. Compound 11 showed the best IC(50) for 15-LOX inhibition (IC(50) = 4.7 μM) and free radical scavenging activity (IC(50) = 14 μM). Methylation of SH at C(2) position of imidazole has dramatically decreased the 15-LOX inhibition and radical scavenging activity as it can be observed in the inactive compound 14 (IC(50) >250 μM). Structure activity similarity (SAS) showed that the most important chemical modification in this series was methylation of SH group and Docking studies revealed a proper orientation for SH group towards Fe core of the 15-LOX active site. Therefore it was concluded that iron chelating could be a possible mechanism for enzyme inhibition in this series of compounds.
Collapse
Affiliation(s)
- Amir Assadieskandar
- Department of Medicinal Chemistry, Faculty of Pharmacy and Drug Design & Development Research Center, Tehran University of Medical Sciences, Tehran 14176, Iran
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Jabbari A, Davoodnejad M, Alimardani M, Assadieskandar A, Sadeghian A, Safdari H, Movaffagh J, Sadeghian H. Synthesis and SAR studies of 3-allyl-4-prenyloxyaniline amides as potent 15-lipoxygenase inhibitors. Bioorg Med Chem 2012; 20:5518-26. [PMID: 22917856 DOI: 10.1016/j.bmc.2012.07.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2012] [Revised: 07/14/2012] [Accepted: 07/16/2012] [Indexed: 01/18/2023]
Abstract
15-Lipoxygenases are one of the nonheme iron-containing proteins with ability of unsaturated lipid peroxidation in animals and plants. The critical role of the enzymes in formation of inflammations, sensitivities and some of cancers has been demonstrated in mammalians. Importance of the 15-lipoxygenases leads to development of mechanistic studies, products analysis and synthesis of their inhibitors. In this work new series of the 3-allyl-4-allyoxyaniline amides and 3-allyl-4-prenyloxyaniline amides were designed, synthesized and their inhibitory potency against soybean 15-lipoxygenase were determined. Among the synthetic amides, 3-allyl-4-(farnesyloxy)-adamantanilide showed the most potent inhibitory activity by IC(50) value of 0.69 μM. SAR studies showed that in spite of prenyl length increases, the effects of the amide size and its electronic properties on the inhibitory potency became predominant. The SAR studies was also showed that the orientation of allyl and prenyloxy moieties toward Fe core of the SLO active site pocket is the most suitable location for enzyme inhibition.
Collapse
Affiliation(s)
- Atena Jabbari
- Department of Chemistry, School of Sciences, Ferdowsi University of Mashhad, Mashhad, Iran
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Lu W, Zhao X, Zou S, Huang J. A fluorimetric assay for human reticulocyte 15-lipoxygenase-1 activity. Anal Biochem 2012; 426:66-8. [PMID: 22497768 DOI: 10.1016/j.ab.2012.04.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Accepted: 04/03/2012] [Indexed: 01/18/2023]
Abstract
A rapid and sensitive fluorescence-based assay for the determination of human 15-lipoxygenase-1 (15-LOX-1) activity is described in this article. The assay utilizes the ability of 15-LOX-1-generated lipid hydroperoxides to oxidize nonfluorescent dihydrorhodamine 123, producing the highly fluorescent dye rhodamine 123. Formation of rhodamine 123 can be monitored through fluorescence spectroscopy using Ex/Em of 500 nm/536 nm. The IC(50) values of three well-known 15-LOX-1 inhibitors, nordihydroguaiaretic acid, quercetin, and fisetin, were evaluated in 96- and 384-well formats, and they conform to previously reported data. We believe this assay can be broadly used for the discovery of novel lipoxygenase inhibitors.
Collapse
Affiliation(s)
- Weiqiang Lu
- Shanghai Key Laboratory of New Drug Design, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | | | | | | |
Collapse
|
21
|
Pd-catalyzed decarboxylative cross-couplings of potassium malonate monoesters with aryl halides. Tetrahedron 2012. [DOI: 10.1016/j.tet.2012.01.032] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
22
|
Pyrazole-based sulfonamide and sulfamides as potent inhibitors of mammalian 15-lipoxygenase. Bioorg Med Chem Lett 2011; 21:4141-5. [PMID: 21696952 DOI: 10.1016/j.bmcl.2011.05.107] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Revised: 05/25/2011] [Accepted: 05/26/2011] [Indexed: 11/22/2022]
Abstract
A series of inhibitors of mammalian 15-lipoxygenase (15-LO) based on a 3,4,5-tri-substituted pyrazole scaffold is described. Replacement of a sulfonamide functionality in the lead series with a sulfamide group resulted in improved physicochemical properties generating analogs with enhanced inhibition in cell-based and whole blood assays.
Collapse
|
23
|
Sadeghian H, Seyedi SM, Attaran N, Jabbari A, Jafari Z. Synthesis and SAR comparative studies of 2-allyl-4-methoxy-1-alkoxybenzenes as 15-lipoxygenase inhibitors. J Enzyme Inhib Med Chem 2011; 26:238-44. [PMID: 20939767 DOI: 10.3109/14756366.2010.495717] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A group of 2-alkoxy-5-methoxyallylbenzene were designed, synthesised and evaluated as potential inhibitors of the soybean 15-lipoxygenase (SLO) on the basis of the eugenol and esteragol structures. Compound 4d showed the best half maximal inhibitory concentration (IC₅₀) for SLO inhibition (IC₅₀ = 5.9 ± 0.6 µM). All the compounds were docked in the SLO active site retrieved from the Research Collaboratory for Structural Bioinformatics (RCSB) Protein Data Bank (PDB entry: 1IK3) and showed that the allyl group of the synthetic compounds similar to the linoleic acid double bond, were oriented toward the Fe³+-OH moiety in the active site of the enzyme and this conformation was especially fixed by the hydrophobic interaction of the 2-alkoxy group with Leu⁵¹⁵, Trp⁵¹⁹, Val⁵⁶⁶ and Ile⁵⁷². It was concluded that the molecular volume and shape of the alkoxy moiety was a major factor in the inhibitory potency variation of the synthetic compounds.
Collapse
Affiliation(s)
- Hamid Sadeghian
- Department of Laboratory Sciences, School of Paramedical Sciences, Mashhad University of Medical Sciences, Mashhad, IR Iran
| | | | | | | | | |
Collapse
|
24
|
Zhou L, Liu-Kreyche P, Iyer RA. Metabolism of [2-14C]p-hydroxyphenyl acetic acid in rat, monkey and human hepatocytes and in bile-duct cannulated rats. Xenobiotica 2010; 41:312-9. [PMID: 21143006 DOI: 10.3109/00498254.2010.540681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We determined the metabolism of [2-(14)C]p-hydroxyphenyl acetic acid (p-HPA) in rat (male, Sprague-Dawley), monkey (male, Cynomolgus), and human (male, Caucasian) hepatocytes, and in bile-duct cannulated (BDC) rats (male, Sprague-Dawley). Unchanged p-HPA ranged from 87.0 to 92.6% of the total radioactivity (TRA) in the extracts of rat, monkey, and human hepatocytes. Metabolites M1 (a glucuronide conjugate of p-HPA) and M2 (a glycine conjugate of p-HPA) were detected, accounting for 1-4% of TRA. After an oral dose of [2-(14)C]p-HPA to BDC rats, p-HPA-related components was predominantly excreted in urine, accounting for 83% of the dose. Bile excretion was limited, accounting for only 1.5% of the dose. Unchanged p-HPA was the predominant radioactivity in plasma (84.6% of the TRA in 1-h pooled plasma) and urine (69.6% of the dose). Metabolites M1, M2, and M3 (a glucuronide of p-HPA) were all detected in plasma, urine, and bile as minor components. In summary, p-HPA was not metabolized extensively in rat, monkey, and human hepatocytes. In rats, absorption and elimination of p-HPA were nearly complete with urinary excretion of the unchanged p-HPA as the predominant route of elimination after oral dosing. No oxidative metabolites were detected, suggesting a minimal role for P450 enzymes in its overall metabolic clearance. Therefore, p-HPA has a low potential for drug-drug interactions mediated by the concomitant inhibitors and inducers of P450 enzymes.
Collapse
Affiliation(s)
- Lian Zhou
- Department of Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Co., Princeton, New Jersey 08543, USA.
| | | | | |
Collapse
|
25
|
Rai G, Kenyon V, Jadhav A, Schultz L, Armstrong M, Jameson JB, Hoobler E, Leister W, Simeonov A, Holman TR, Maloney DJ. Discovery of potent and selective inhibitors of human reticulocyte 15-lipoxygenase-1. J Med Chem 2010; 53:7392-404. [PMID: 20866075 DOI: 10.1021/jm1008852] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
There are a variety of lipoxygenases in the human body (hLO), each having a distinct role in cellular biology. Human reticulocyte 15-lipoxygenase-1 (15-hLO-1), which catalyzes the dioxygenation of 1,4-cis,cis-pentadiene-containing polyunsaturated fatty acids, is implicated in a number of diseases including cancer, atherosclerosis, and neurodegenerative conditions. Despite the potential therapeutic relevance of this target, few inhibitors have been reported that are both potent and selective. To this end, we have employed a quantitative high-throughput (qHTS) screen against ∼74000 small molecules in search of reticulocyte 15-hLO-1 selective inhibitors. This screen led to the discovery of a novel chemotype for 15-hLO-1 inhibition, which displays nM potency and is >7500-fold selective against the related isozymes, 5-hLO, platelet 12-hLO, epithelial 15-hLO-2, ovine cyclooxygenase-1, and human cyclooxygenase-2. In addition, kinetic experiments were performed which indicate that this class of inhibitor is tight binding, reversible, and appears not to reduce the active-site ferric ion.
Collapse
Affiliation(s)
- Ganesha Rai
- NIH Chemical Genomics Center, National Human Genome Research Institute, National Institutes of Health, 9800 Medical Center Drive, MSC 3370, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Design and synthesis of a new series of amphiphilic peptide-β-cyclodextrins as phase transfer carriers for glucosamine. Tetrahedron 2010. [DOI: 10.1016/j.tet.2010.06.075] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
27
|
Dahlström M, Forsström D, Johannesson M, Huque-Andersson Y, Björk M, Silfverplatz E, Sanin A, Schaal W, Pelcman B, Forsell PKA. Development of a fluorescent intensity assay amenable for high-throughput screening for determining 15-lipoxygenase activity. ACTA ACUST UNITED AC 2010; 15:671-9. [PMID: 20581078 DOI: 10.1177/1087057110373383] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
15-Lipoxygenase-1 catalyzes the introduction of molecular oxygen into polyunsaturated fatty acids to form a lipid hydroperoxide. The authors have developed an assay for the detection of lipid hydroperoxides formed by human 15-lipoxygenase (15-LO) in enzyme or cellular assays using either a 96-well or a 384-well format. The assays described take advantage of the ability of lipid hydroperoxides to oxidize nonfluorescent diphenyl-1-pyrenylphosphine (DPPP) to a fluorescent phosphine oxide. Oxidation of DPPP yields a fluorescent compound, which is not sensitive to temperature and is stable for more than 2 h. The assay is sensitive toward inhibition and robust with a Z' value of 0.79 and 0.4 in a 96- and 384-well format, respectively, and thus amenable for high-throughput screening. The utility of DPPP as a marker for 15-lipoxygenase activity was demonstrated with both enzyme- and cell-based assays for the identification of hits and to determine potency by IC(50) determinations.
Collapse
|
28
|
Nikpour M, Sadeghian H, Saberi MR, Nick RS, Seyedi SM, Hosseini A, Parsaee H, Bozorg ATD. Design, synthesis and biological evaluation of 6-(benzyloxy)-4-methylquinolin-2(1H)-one derivatives as PDE3 inhibitors. Bioorg Med Chem 2010; 18:855-62. [DOI: 10.1016/j.bmc.2009.11.044] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Revised: 11/19/2009] [Accepted: 11/20/2009] [Indexed: 11/28/2022]
|