1
|
Carotenuto P, Gradilone SA, Franco B. Cilia and Cancer: From Molecular Genetics to Therapeutic Strategies. Genes (Basel) 2023; 14:1428. [PMID: 37510333 PMCID: PMC10379587 DOI: 10.3390/genes14071428] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/07/2023] [Accepted: 07/09/2023] [Indexed: 07/30/2023] Open
Abstract
Cilia are microtubule-based organelles that project from the cell surface with motility or sensory functions. Primary cilia work as antennae to sense and transduce extracellular signals. Cilia critically control proliferation by mediating cell-extrinsic signals and by regulating cell cycle entry. Recent studies have shown that primary cilia and their associated proteins also function in autophagy and genome stability, which are important players in oncogenesis. Abnormal functions of primary cilia may contribute to oncogenesis. Indeed, defective cilia can either promote or suppress cancers, depending on the cancer-initiating mutation, and the presence or absence of primary cilia is associated with specific cancer types. Together, these findings suggest that primary cilia play important, but distinct roles in different cancer types, opening up a completely new avenue of research to understand the biology and treatment of cancers. In this review, we discuss the roles of primary cilia in promoting or inhibiting oncogenesis based on the known or predicted functions of cilia and cilia-associated proteins in several key processes and related clinical implications.
Collapse
Affiliation(s)
- Pietro Carotenuto
- Medical Genetics, Department of Translational Medical Science, University of Naples “Federico II”, 80131 Naples, Italy
- TIGEM, Telethon Institute of Genetics and Medicine, 80078 Naples, Italy
| | - Sergio A. Gradilone
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA;
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Brunella Franco
- Medical Genetics, Department of Translational Medical Science, University of Naples “Federico II”, 80131 Naples, Italy
- TIGEM, Telethon Institute of Genetics and Medicine, 80078 Naples, Italy
- School of Advanced Studies, Genomic and Experimental medicine Program (Scuola Superiore Meridionale), 80138 Naples, Italy
| |
Collapse
|
2
|
Sun C, Zhang D, Luan T, Wang Y, Zhang W, Lin L, Jiang M, Hao Z, Wang Y. Synthesis of 2-methoxybenzamide derivatives and evaluation of their hedgehog signaling pathway inhibition. RSC Adv 2021; 11:22820-22825. [PMID: 35480433 PMCID: PMC9034380 DOI: 10.1039/d1ra00732g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 06/22/2021] [Indexed: 11/21/2022] Open
Abstract
Aberrant hedgehog (Hh) signaling is implicated in the development of a variety of cancers. Smoothened (Smo) protein is a bottleneck in the Hh signal transduction. The regulation of the Hh signaling pathway to target the Smo receptor is a practical approach for development of anticancer agents. We report herein the design and synthesis of a series of 2-methoxybenzamide derivatives as Hh signaling pathway inhibitors. The pharmacological data demonstrated that compound 21 possessed potent Hh pathway inhibition with a nanomolar IC50 value, and it prevented Shh-induced Smo from entering the primary cilium. Furthermore, mutant Smo was effectively suppressed via compound 21. The in vitro antiproliferative activity of compound 21 against a drug-resistant cell line gave encouraging results. Benzamide analog (21) was identified as a potent hedgehog signaling pathway inhibitor that targeted the Smo receptor and blocked Daoy cell proliferation.![]()
Collapse
Affiliation(s)
- Chiyu Sun
- School of Pharmacy
- Shenyang Medical College
- Shenyang 110034
- China
| | - Dajun Zhang
- School of Pharmacy
- Shenyang Medical College
- Shenyang 110034
- China
| | - Tian Luan
- School of Pharmacy
- Shenyang Medical College
- Shenyang 110034
- China
| | - Youbing Wang
- School of Pharmacy
- Shenyang Medical College
- Shenyang 110034
- China
| | - Wenhu Zhang
- School of Pharmacy
- Shenyang Medical College
- Shenyang 110034
- China
| | - Lin Lin
- School of Pharmacy
- Shenyang Medical College
- Shenyang 110034
- China
| | - Meihua Jiang
- School of Pharmacy
- Shenyang Medical College
- Shenyang 110034
- China
| | - Ziqian Hao
- School of Pharmacy
- Shenyang Medical College
- Shenyang 110034
- China
| | - Ying Wang
- School of Pharmacy
- Shenyang Medical College
- Shenyang 110034
- China
| |
Collapse
|
3
|
Sun C, Zhang Y, Wang H, Yin Z, Wu L, Huang Y, Zhang W, Wang Y, Hu Q. Design and biological evaluation of phenyl imidazole analogs as hedgehog signaling pathway inhibitors. Chem Biol Drug Des 2020; 97:546-552. [PMID: 32946174 DOI: 10.1111/cbdd.13799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/27/2020] [Accepted: 09/09/2020] [Indexed: 11/30/2022]
Abstract
The hedgehog (Hh) signaling pathway is involved in diverse aspects of cellular events. Aberrant activation of Hh signaling pathway drives oncogenic transformation for a wide range of cancers, and it is therefore a promising target in cancer therapy. In the principle of association and ring-opening, we designed and synthesized a series of Hh signaling pathway inhibitors with phenyl imidazole scaffold, which were biologically evaluated in Gli-Luc reporter assay. Compound 25 was identified to possess high potency with nanomolar IC50 , and moreover, it preserved the inhibition against wild-type and drug-resistant Smo-overexpressing cells. A molecular modeling study of compound 25 expounded its binding mode to Smo receptor, providing a basis for the further structural modification of phenyl imidazole analogs.
Collapse
Affiliation(s)
- Chiyu Sun
- School of Pharmacy, Shenyang Medical College, Shenyang, China
| | - Ying Zhang
- School of Chemical Engineering, Shenyang University of Chemical Technology, Shenyang, China
| | - Han Wang
- School of Pharmacy, Shenyang Medical College, Shenyang, China
| | - Zhengxu Yin
- School of Pharmacy, Shenyang Medical College, Shenyang, China
| | - Lingqiong Wu
- School of Pharmacy, Shenyang Medical College, Shenyang, China
| | - Yanmiao Huang
- School of Pharmacy, Shenyang Medical College, Shenyang, China
| | - Wenhu Zhang
- School of Pharmacy, Shenyang Medical College, Shenyang, China
| | - Youbing Wang
- School of Pharmacy, Shenyang Medical College, Shenyang, China
| | - Qibo Hu
- School of Pharmacy, Shenyang Medical College, Shenyang, China
| |
Collapse
|
4
|
Penieres‐Carrillo J, Ríos‐Guerra H, Pérez‐Flores J, Rodríguez‐Molina B, Torres‐Reyes Á, Barrera‐Téllez F, González‐Carrillo J, Moreno‐González L, Martínez‐Zaldívar A, Nolasco‐Fidencio J, Matus‐Meza A, Luna‐Mora R. Reevaluating the synthesis of 2,5‐disubstituted‐1
H
‐benzimidazole derivatives by different green activation techniques and their biological activity as antifungal and antimicrobial inhibitor. J Heterocycl Chem 2019. [DOI: 10.1002/jhet.3801] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- José‐Guillermo Penieres‐Carrillo
- Facultad de Estudios Superiores Cuautitlán, Departamento de Ciencias Químicas, Sección de Química OrgánicaUNAM Mexico City Mexico
| | - Hulme Ríos‐Guerra
- Facultad de Estudios Superiores Cuautitlán, Departamento de Ciencias Químicas, Sección de Química OrgánicaUNAM Mexico City Mexico
| | | | | | - Ángeles Torres‐Reyes
- Facultad de Estudios Superiores Cuautitlán, Departamento de Ciencias Químicas, Sección de Química OrgánicaUNAM Mexico City Mexico
| | - Francisco Barrera‐Téllez
- Facultad de Estudios Superiores Cuautitlán, Departamento de Ciencias Químicas, Sección de Química OrgánicaUNAM Mexico City Mexico
| | - Jessica González‐Carrillo
- Facultad de Estudios Superiores Cuautitlán, Departamento de Ciencias Químicas, Sección de Química OrgánicaUNAM Mexico City Mexico
| | - Lessly Moreno‐González
- Facultad de Estudios Superiores Cuautitlán, Departamento de Ciencias Químicas, Sección de Química OrgánicaUNAM Mexico City Mexico
| | - Alejandro Martínez‐Zaldívar
- Facultad de Estudios Superiores Cuautitlán, Departamento de Ciencias Químicas, Sección de Química OrgánicaUNAM Mexico City Mexico
| | - Juan‐Jesús Nolasco‐Fidencio
- Facultad de Estudios Superiores Cuautitlán, Departamento de Ciencias Químicas, Sección de Química OrgánicaUNAM Mexico City Mexico
| | | | - Ricardo‐Alfredo Luna‐Mora
- Facultad de Estudios Superiores Cuautitlán, Departamento de Ciencias Químicas, Sección de Química OrgánicaUNAM Mexico City Mexico
| |
Collapse
|
5
|
Padilla-Salinas R, Anderson R, Sakaniwa K, Zhang S, Nordeen P, Lu C, Shimizu T, Yin H. Discovery of Novel Small Molecule Dual Inhibitors Targeting Toll-Like Receptors 7 and 8. J Med Chem 2019; 62:10221-10244. [DOI: 10.1021/acs.jmedchem.9b01201] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Rosaura Padilla-Salinas
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Rachel Anderson
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Kentaro Sakaniwa
- Graduate School of Pharmaceuticals Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Shuting Zhang
- School of Pharmaceutical Sciences, Tsinghua University-Peking University Joint Center of Life Science, Tsinghua University, Beijing 100082, China
| | - Patrick Nordeen
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Chuanjun Lu
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Toshiyuki Shimizu
- Graduate School of Pharmaceuticals Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Hang Yin
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado 80309, United States
- School of Pharmaceutical Sciences, Tsinghua University-Peking University Joint Center of Life Science, Tsinghua University, Beijing 100082, China
| |
Collapse
|
6
|
State of the art of Smo antagonists for cancer therapy: advances in the target receptor and new ligand structures. Future Med Chem 2019; 11:617-638. [PMID: 30912670 DOI: 10.4155/fmc-2018-0497] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Since the Hedgehog signaling pathway has been associated with cancer, it has emerged as a therapeutic target for cancer therapy. The main target among the key Hedgehog proteins is the GPCR-like Smo receptor. Therefore, some Smo antagonists that have entered clinical trials, including the US FDA-approved drugs vismodegib and sonidegib, to treat basal cell carcinoma and medulloblastoma. However, early resistance of these drugs has spawned the need to understand the molecular bases of this phenomena. We therefore reviewed details about Smo receptor structures and the best Smo antagonist chemical structures. In addition, we discussed strategies that should be considered to develop new, safer generations of Smo antagonists that avoid current clinical limitations.
Collapse
|
7
|
Bariwal J, Kumar V, Dong Y, Mahato RI. Design of Hedgehog pathway inhibitors for cancer treatment. Med Res Rev 2018; 39:1137-1204. [PMID: 30484872 DOI: 10.1002/med.21555] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 10/18/2018] [Accepted: 10/19/2018] [Indexed: 12/11/2022]
Abstract
Hedgehog (Hh) signaling is involved in the initiation and progression of various cancers and is essential for embryonic and postnatal development. This pathway remains in the quiescent state in adult tissues but gets activated upon inflammation and injuries. Inhibition of Hh signaling pathway using natural and synthetic compounds has provided an attractive approach for treating cancer and inflammatory diseases. While the majority of Hh pathway inhibitors target the transmembrane protein Smoothened (SMO), some small molecules that target the signaling cascade downstream of SMO are of particular interest. Substantial efforts are being made to develop new molecules targeting various components of the Hh signaling pathway. Here, we have discussed the discovery of small molecules as Hh inhibitors from the diverse chemical background. Also, some of the recently identified natural products have been included as a separate section. Extensive structure-activity relationship (SAR) of each chemical class is the focus of this review. Also, clinically advanced molecules are discussed from the last 5 to 7 years. Nanomedicine-based delivery approaches for Hh pathway inhibitors are also discussed concisely.
Collapse
Affiliation(s)
- Jitender Bariwal
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska
| | - Virender Kumar
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska
| | - Yuxiang Dong
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska
| | - Ram I Mahato
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|
8
|
Mostafa AS, Gomaa RM, Elmorsy MA. Design and synthesis of 2-phenyl benzimidazole derivatives as VEGFR-2 inhibitors with anti-breast cancer activity. Chem Biol Drug Des 2018; 93:454-463. [PMID: 30393973 DOI: 10.1111/cbdd.13433] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 10/06/2018] [Accepted: 10/21/2018] [Indexed: 11/27/2022]
Abstract
Three new series of 2-phenyl benzimidazole-based derivatives were designed, synthesized, and evaluated for their in vitro cytotoxic activity against breast cancer (MCF-7) cell lines. Three compounds 8, 9, and 15 showed high cytotoxic activities, with IC50 values of 3.37, 6.30, and 5.84 μM, respectively, while they showed comparable cytotoxicity to the standard drug doxorubicin against human normal cells, including nontumorigenic breast epithelial cell line (MCF-10F), skin fibroblast cell line (BJ), and lung fibroblast cell line (MRC-5). Six of the synthesized compounds were screened against vascular endothelial growth factor receptor 2 (VEGFR-2) where compounds 8, 9, 12, and 15 exhibited an outstanding potency in comparison with sorafenib, with IC50 values of 6.7-8.9 nM. Molecular docking study assessed the good binding patterns of the most potent compounds with the reported conserved amino acids of VEGFR-2 active site.
Collapse
Affiliation(s)
- Amany S Mostafa
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Rania M Gomaa
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Mohammad A Elmorsy
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt.,Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| |
Collapse
|
9
|
Tong W, Qiu L, Qi M, Liu J, Hu K, Lin W, Huang Y, Fu J. GANT-61 and GDC-0449 induce apoptosis of prostate cancer stem cells through a GLI-dependent mechanism. J Cell Biochem 2018; 119:3641-3652. [PMID: 29231999 DOI: 10.1002/jcb.26572] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 11/30/2017] [Indexed: 02/05/2023]
Abstract
Aberrant reactivation of the Sonic Hedgehog (SHH) signaling pathway promotes prostate cancer (PC) growth and progression by regulating cancer-related genes through its downstream effectors GLI1 and GLI2. Therefore, targeting the SHH-GLI pathway provides an alternative approach to avoid cancer progression. The aim of this study was to delineate the underlying molecular mechanisms by which GDC-0449 (a SMO receptor inhibitor) and GANT-61 (a GLI transcription factor inhibitor) regulate cellular proliferation and self-renewal in human PC stem cells (ProCSCs). Inhibition of the SHH signaling pathway by GANT-61 induced apoptosis with more efficacy than by GDC-0449 in ProCSCs and PC cell lines. GLI1 and GLI2 expression, promoter-binding activity and GLI-responsive luciferase reporter activity were all decreased with either GDC-0449 or GANT-61 treatment. Expression of Fas, DR4, DR5, and cleavage of caspase-3 and PARP were increased, whereas levels of PDGFR-α and Bcl-2 were reduced. Double knockout of GLI1 and GLI2 using shRNA abolished the effects observed with either GDC-0449 or GANT-61 treatment. Collectively, our results showed that GANT-61 and GDC-0449 induced ProCSC apoptosis by directly or indirectly inhibiting the activities of the GLI family transcription factors, may enhance the efficacy of PC treatment.
Collapse
Affiliation(s)
- Wangxia Tong
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province, P.R. China.,Department of Hepatology, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, P.R. China
| | - Lei Qiu
- Division of Abdominal Cancer, West China Hospital, Sichuan University and National Collaborative Innovation Center for Biotherapy, Chengdu, P.R. China
| | - Meng Qi
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province, P.R. China
| | - Jianbing Liu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province, P.R. China
| | - Kaihui Hu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province, P.R. China
| | - Wenxiong Lin
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province, P.R. China.,Institute of Modern Seed Industrial Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province, P.R. China
| | - Yan Huang
- Center for Nuclear Medicine, Nanjing First Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu Province, P.R. China
| | - Junsheng Fu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province, P.R. China.,Institute of Modern Seed Industrial Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province, P.R. China
| |
Collapse
|
10
|
Xin M, Ji X, De La Cruz LK, Thareja S, Wang B. Strategies to target the Hedgehog signaling pathway for cancer therapy. Med Res Rev 2018; 38:870-913. [PMID: 29315702 DOI: 10.1002/med.21482] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 11/09/2017] [Accepted: 12/13/2017] [Indexed: 01/10/2023]
Abstract
Hedgehog (Hh) signaling is an essential pathway in the human body, and plays a major role in embryo development and tissue patterning. Constitutive activation of the Hh signaling pathway through sporadic mutations or other mechanisms is explicitly associated with cancer development and progression in various solid malignancies. Therefore, targeted inhibition of the Hh signaling pathway has emerged as an attractive and validated therapeutic strategy for the treatment of a wide range of cancers. Vismodegib, a first-in-class Hh signaling pathway inhibitor was approved by the US Food and Drug Administration in 2012, and sonidegib, another potent Hh pathway inhibitor, received FDA's approval in 2015 as a new treatment of locally advanced or metastatic basal cell carcinoma. The clinical success of vismodegib and sonidegib provided strong support for the development of Hh signaling pathway inhibitors via targeting the smoothened (Smo) receptor. Moreover, Hh signaling pathway inhibitors aimed to target proteins, which are downstream or upstream of Smo, have also been pursued based on the identification of additional therapeutic benefits. Recently, much progress has been made in Hh singling and inhibitors of this pathway. Herein, medicinal chemistry strategies, especially the structural optimization process of different classes of Hh inhibitors, are comprehensively summarized. Further therapeutic potentials and challenges are also discussed.
Collapse
Affiliation(s)
- Minhang Xin
- Department of Medicinal Chemistry, School of Pharmacy, Health Science Center, Xi'an Jiaotong University, 710061, Xi'an, Shaanxi, P.R. China.,Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA
| | - Xinyue Ji
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA
| | - Ladie Kimberly De La Cruz
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA
| | - Suresh Thareja
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA
| | - Binghe Wang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA
| |
Collapse
|
11
|
Liu G, Xue D, Yang J, Wang J, Liu X, Huang W, Li J, Long YQ, Tan W, Zhang A. Design, Synthesis, and Pharmacological Evaluation of 2-(2,5-Dimethyl-5,6,7,8-tetrahydroquinolin-8-yl)-N-aryl Propanamides as Novel Smoothened (Smo) Antagonists. J Med Chem 2016; 59:11050-11068. [PMID: 27736063 DOI: 10.1021/acs.jmedchem.6b01247] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A series of novel Smo antagonists were developed either by directly incorporating the basic skeleton of the natural product artemisinin or by first breaking artemisinin into structurally simpler and stable intermediates and then reconstructing into diversified heterocyclic derivatives, equipped with a Smo-targeting bullet. 2-(2,5-Dimethyl-5,6,7,8-tetrahydroquinolin-8-yl)-N-arylpropanamide 65 was identified as the most potent, with an IC50 value of 9.53 nM against the Hh signaling pathway. Complementary mechanism studies confirmed that 65 inhibits Hh signaling pathway by targeting Smo and shares the same binding site as that of the tool drug cyclopamine. Meanwhile, 65 has a good plasma exposure and an acceptable oral bioavailability. Dose-dependent antiproliferative effects were observed in ptch+/-;p53-/- medulloblastoma cells, and significant tumor growth inhibitions were achieved for 65 in the ptch+/-;p53-/- medulloblastoma allograft model.
Collapse
Affiliation(s)
- Gang Liu
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica (SIMM), University of Chinese Academy of Sciences , 555 Zuchongzhi Lu, Building 3, Room 426, Shanghai 201203, China
| | - Ding Xue
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica (SIMM), University of Chinese Academy of Sciences , 555 Zuchongzhi Lu, Building 3, Room 426, Shanghai 201203, China
| | - Jun Yang
- Department of Pharmacology, School of Pharmacy, Fudan University , Shanghai 201203, China
| | - Juan Wang
- Department of Pharmacology, School of Pharmacy, Fudan University , Shanghai 201203, China
| | - Xiaohua Liu
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica (SIMM), University of Chinese Academy of Sciences , 555 Zuchongzhi Lu, Building 3, Room 426, Shanghai 201203, China
| | - Wenjing Huang
- Department of Pharmacology, School of Pharmacy, Fudan University , Shanghai 201203, China
| | - Jie Li
- School of Life Science and Technology, ShanghaiTech University , Shanghai 201210, China
| | - Ya-Qiu Long
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica (SIMM), University of Chinese Academy of Sciences , 555 Zuchongzhi Lu, Building 3, Room 426, Shanghai 201203, China
| | - Wenfu Tan
- Department of Pharmacology, School of Pharmacy, Fudan University , Shanghai 201203, China
| | - Ao Zhang
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica (SIMM), University of Chinese Academy of Sciences , 555 Zuchongzhi Lu, Building 3, Room 426, Shanghai 201203, China.,School of Life Science and Technology, ShanghaiTech University , Shanghai 201210, China
| |
Collapse
|
12
|
Kötzner L, Leutzsch M, Sievers S, Patil S, Waldmann H, Zheng Y, Thiel W, List B. Organokatalytische Synthese von enantiomerenreinen 2H- und 3H-Pyrrolen: Inhibitoren des Hedgehog-Signalwegs. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201602932] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Lisa Kötzner
- Max-Planck-Institut für Kohlenforschung; Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Deutschland
| | - Markus Leutzsch
- Max-Planck-Institut für Kohlenforschung; Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Deutschland
| | - Sonja Sievers
- Max-Planck-Institut für Molekulare Physiologie; Compound Management and Screening Center (COMAS); Otto-Hahn-Straße 11 44227 Dortmund Deutschland
| | - Sumersing Patil
- Max-Planck-Institut für Molekulare Physiologie; Otto-Hahn-Straße 11 44227 Dortmund Deutschland
| | - Herbert Waldmann
- Max-Planck-Institut für Molekulare Physiologie; Otto-Hahn-Straße 11 44227 Dortmund Deutschland
| | - Yiying Zheng
- Max-Planck-Institut für Kohlenforschung; Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Deutschland
| | - Walter Thiel
- Max-Planck-Institut für Kohlenforschung; Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Deutschland
| | - Benjamin List
- Max-Planck-Institut für Kohlenforschung; Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Deutschland
| |
Collapse
|
13
|
Kötzner L, Leutzsch M, Sievers S, Patil S, Waldmann H, Zheng Y, Thiel W, List B. The Organocatalytic Approach to Enantiopure 2H- and 3H-Pyrroles: Inhibitors of the Hedgehog Signaling Pathway. Angew Chem Int Ed Engl 2016; 55:7693-7. [DOI: 10.1002/anie.201602932] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Indexed: 11/12/2022]
Affiliation(s)
- Lisa Kötzner
- Max-Planck-Institut für Kohlenforschung; Kaiser Wilhelm-Platz 1 45470 Mülheim an der Ruhr Germany
| | - Markus Leutzsch
- Max-Planck-Institut für Kohlenforschung; Kaiser Wilhelm-Platz 1 45470 Mülheim an der Ruhr Germany
| | - Sonja Sievers
- Max-Planck-Institut für Molekulare Physiologie; Compound Management and Screening Center (COMAS); Otto-Hahn-Strasse 11 44227 Dortmund Germany
| | - Sumersing Patil
- Max-Planck-Institut für Molekulare Physiologie; Otto-Hahn-Strasse 11 44227 Dortmund Germany
| | - Herbert Waldmann
- Max-Planck-Institut für Molekulare Physiologie; Otto-Hahn-Strasse 11 44227 Dortmund Germany
| | - Yiying Zheng
- Max-Planck-Institut für Kohlenforschung; Kaiser Wilhelm-Platz 1 45470 Mülheim an der Ruhr Germany
| | - Walter Thiel
- Max-Planck-Institut für Kohlenforschung; Kaiser Wilhelm-Platz 1 45470 Mülheim an der Ruhr Germany
| | - Benjamin List
- Max-Planck-Institut für Kohlenforschung; Kaiser Wilhelm-Platz 1 45470 Mülheim an der Ruhr Germany
| |
Collapse
|
14
|
Jung B, Messias AC, Schorpp K, Geerlof A, Schneider G, Saur D, Hadian K, Sattler M, Wanker EE, Hasenöder S, Lickert H. Novel small molecules targeting ciliary transport of Smoothened and oncogenic Hedgehog pathway activation. Sci Rep 2016; 6:22540. [PMID: 26931153 PMCID: PMC4773810 DOI: 10.1038/srep22540] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 02/15/2016] [Indexed: 01/04/2023] Open
Abstract
Trafficking of the G protein-coupled receptor (GPCR) Smoothened (Smo) to the primary cilium (PC) is a potential target to inhibit oncogenic Hh pathway activation in a large number of tumors. One drawback is the appearance of Smo mutations that resist drug treatment, which is a common reason for cancer treatment failure. Here, we undertook a high content screen with compounds in preclinical or clinical development and identified ten small molecules that prevent constitutive active mutant SmoM2 transport into PC for subsequent Hh pathway activation. Eight of the ten small molecules act through direct interference with the G protein-coupled receptor associated sorting protein 2 (Gprasp2)-SmoM2 ciliary targeting complex, whereas one antagonist of ionotropic receptors prevents intracellular trafficking of Smo to the PC. Together, these findings identify several compounds with the potential to treat drug-resistant SmoM2-driven cancer forms, but also reveal off-target effects of established drugs in the clinics.
Collapse
Affiliation(s)
- Bomi Jung
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Germany.,Institute of Stem Cell Research, Helmholtz Zentrum München, Germany
| | - Ana C Messias
- Institute of Structural Biology, Helmholtz Zentrum München, Germany.,Center for Integrated Protein Science Munich at Biomolecular NMR Spectroscopy, Department Chemistry, Technische Universität München, 85747 Garching, Germany
| | - Kenji Schorpp
- Assay Development and Screening Platform, Helmholtz Zentrum München, Germany
| | - Arie Geerlof
- Institute of Structural Biology, Helmholtz Zentrum München, Germany
| | - Günter Schneider
- Department of Internal Medicine II, Klinikum rechts der Isar, München, Germany.,Technische Universität München, München, Germany
| | - Dieter Saur
- Department of Internal Medicine II, Klinikum rechts der Isar, München, Germany.,Technische Universität München, München, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Kamyar Hadian
- Assay Development and Screening Platform, Helmholtz Zentrum München, Germany
| | - Michael Sattler
- Institute of Structural Biology, Helmholtz Zentrum München, Germany.,Center for Integrated Protein Science Munich at Biomolecular NMR Spectroscopy, Department Chemistry, Technische Universität München, 85747 Garching, Germany
| | - Erich E Wanker
- Neuroproteomics, Max Delbrueck Center for Molecular Medicine, 13125 Berlin, Germany
| | - Stefan Hasenöder
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Germany.,Institute of Stem Cell Research, Helmholtz Zentrum München, Germany
| | - Heiko Lickert
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Germany.,Institute of Stem Cell Research, Helmholtz Zentrum München, Germany.,Technische Universität München, München, Germany.,German Center for Diabetes Research (DZD), Germany
| |
Collapse
|
15
|
Keurulainen L, Siiskonen A, Nasereddin A, Kopelyanskiy D, Sacerdoti-Sierra N, Leino TO, Tammela P, Yli-Kauhaluoma J, Jaffe CL, Kiuru P. Synthesis and biological evaluation of 2-arylbenzimidazoles targeting Leishmania donovani. Bioorg Med Chem Lett 2015; 25:1933-7. [DOI: 10.1016/j.bmcl.2015.03.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 03/10/2015] [Accepted: 03/11/2015] [Indexed: 11/26/2022]
|
16
|
Švenda J, Sheremet M, Kremer L, Maier L, Bauer JO, Strohmann C, Ziegler S, Kumar K, Waldmann H. Biology-Oriented Synthesis of a Withanolide-Inspired Compound Collection Reveals Novel Modulators of Hedgehog Signaling. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201500112] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
17
|
Švenda J, Sheremet M, Kremer L, Maier L, Bauer JO, Strohmann C, Ziegler S, Kumar K, Waldmann H. Biology-oriented synthesis of a withanolide-inspired compound collection reveals novel modulators of hedgehog signaling. Angew Chem Int Ed Engl 2015; 54:5596-602. [PMID: 25736574 DOI: 10.1002/anie.201500112] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Indexed: 11/12/2022]
Abstract
Biology-oriented synthesis employs the structural information encoded in complex natural products to guide the synthesis of compound collections enriched in bioactivity. The trans-hydrindane dehydro-δ-lactone motif defines the characteristic scaffold of the steroid-like withanolides, a plant-derived natural product class with a diverse pattern of bioactivity. A withanolide-inspired compound collection was synthesized by making use of three key intermediates that contain this characteristic framework derivatized with different reactive functional groups. Biological evaluation of the compound collection in cell-based assays that monitored biological signal-transduction processes revealed a novel class of Hedgehog signaling inhibitors that target the protein Smoothened.
Collapse
Affiliation(s)
- Jakub Švenda
- Max-Planck-Institut für Molekulare Physiologie, Abteilung Chemische Biologie, Otto-Hahn-Strasse 11, 44227 Dortmund (Germany)
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Manetti F, Taddei M, Petricci E. Structure–Activity Relationships and Mechanism of Action of Small Molecule Smoothened Modulators Discovered by High-Throughput Screening and Rational Design. TOPICS IN MEDICINAL CHEMISTRY 2014. [DOI: 10.1007/7355_2014_61] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
19
|
Chenna V, Hu C, Khan SR. Synthesis and cytotoxicity studies of Hedgehog enzyme inhibitors SANT-1 and GANT-61 as anticancer agents. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2014; 49:641-647. [PMID: 24521409 DOI: 10.1080/10934529.2014.865425] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Cancer-related death is one of the most common causes of mortality in society. Small molecules have the capability to disrupt aberrant signaling pathways in tumors, leading to anticancer activities. Therefore the search for new molecules for cancer treatment continues to draw attention to the scientific research community. Synthesis and biological evaluation of hedgehog (Hh) pathway inhibitors SANT-1 and GANT-61 are disclosed. These molecules have been synthesized from common precursors using simple conversions, our synthesis features Vils-Meier-Haack reaction, imine formation reaction and N-arylation reaction. These drugs were evaluated using a Hh reporter assay to confirm pathway inhibitory activity, and tested for cell viability against pancreatic and prostate cancer cells. These methodologies can be applied to make potent analogs of both inhibitors.
Collapse
Affiliation(s)
- Venugopal Chenna
- a Department of Pathology , Johns Hopkins University School of Medicine , Baltimore , Maryland , USA
| | | | | |
Collapse
|
20
|
Narayan R, Bauer JO, Strohmann C, Antonchick AP, Waldmann H. Catalytic Enantioselective Synthesis of Functionalized Tropanes Reveals Novel Inhibitors of Hedgehog Signaling. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201307392] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
21
|
Narayan R, Bauer JO, Strohmann C, Antonchick AP, Waldmann H. Catalytic enantioselective synthesis of functionalized tropanes reveals novel inhibitors of hedgehog signaling. Angew Chem Int Ed Engl 2013; 52:12892-6. [PMID: 24151037 DOI: 10.1002/anie.201307392] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Indexed: 01/06/2023]
Abstract
Dipolar cycloaddition: A highly efficient copper(I)-catalyzed enantioselective [3+2] cycloaddition reaction of 1,3-fused cyclic azomethine ylides and nitroalkenes has been developed. This method provides access to functionalized tropane scaffolds with several quaternary and tertiary stereocenters in a single step under mild reaction conditions.
Collapse
Affiliation(s)
- Rishikesh Narayan
- Max-Planck-Institut für Molekulare Physiologie, Abteilung Chemische Biologie, Otto-Hahn-Strasse 11, 44227 Dortmund (Germany)
| | | | | | | | | |
Collapse
|
22
|
Takayama H, Jia ZJ, Kremer L, Bauer JO, Strohmann C, Ziegler S, Antonchick AP, Waldmann H. Discovery of inhibitors of the Wnt and Hedgehog signaling pathways through the catalytic enantioselective synthesis of an iridoid-inspired compound collection. Angew Chem Int Ed Engl 2013; 52:12404-8. [PMID: 24115579 DOI: 10.1002/anie.201306948] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Indexed: 01/12/2023]
Abstract
Cousins you can count on: An iridoid-inspired compound collection was synthesized efficiently by the resolution of cyclic enones in an asymmetric cycloaddition with azomethine ylides. The collection contained novel potent inhibitors of the Wnt and Hedgehog signaling pathways.
Collapse
Affiliation(s)
- Hiroshi Takayama
- Max-Planck-Institut für Molekulare Physiologie, Abteilung Chemische Biologie, Otto-Hahn-Strasse 11, 44227 Dortmund (Germany)
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Takayama H, Jia ZJ, Kremer L, Bauer JO, Strohmann C, Ziegler S, Antonchick AP, Waldmann H. Discovery of Inhibitors of the Wnt and Hedgehog Signaling Pathways through the Catalytic Enantioselective Synthesis of an Iridoid-Inspired Compound Collection. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201306948] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
24
|
Seifert K, Büttner A, Rigol S, Eilert N, Wandel E, Giannis A. Potent small molecule Hedgehog agonists induce VEGF expression in vitro. Bioorg Med Chem 2012; 20:6465-81. [DOI: 10.1016/j.bmc.2012.08.026] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 08/17/2012] [Accepted: 08/20/2012] [Indexed: 12/21/2022]
|
25
|
Yun JI, Kim HR, Park H, Kim SK, Lee J. Small molecule inhibitors of the hedgehog signaling pathway for the treatment of cancer. Arch Pharm Res 2012; 35:1317-33. [PMID: 22941475 DOI: 10.1007/s12272-012-0801-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Revised: 06/05/2012] [Accepted: 06/06/2012] [Indexed: 12/28/2022]
Abstract
Over the past decade, the Hedgehog signaling pathway has attracted considerable interest because the pathway plays important roles in the tumorigenesis of several types of cancer as well as developmental processes. It has also been observed that Hedgehog signaling regulates the proliferation and self-renewal of cancer stem cells. A great number of Hedgehog pathway inhibitors have been discovered through small molecule screens and subsequent medicinal chemistry efforts. Among the inhibitors, several Smo antagonists have reached the clinical trial phase. It has been proved that the inhibition of Hedgehog signaling with Smo antagonists is beneficial to cancer patients with basal cell carcinoma and medulloblastoma. In this review, we provide an overview of Hedgehog pathway inhibitors with focusing on the preclinical and/or clinical efficacy and molecular mechanisms of these inhibitors.
Collapse
Affiliation(s)
- Jeong In Yun
- Division of Drug Discovery Research, Korea Research Institute of Chemical Technology, Deajeon, 305-600, Korea
| | | | | | | | | |
Collapse
|
26
|
Small molecule inhibitors of Smoothened ciliary localization and ciliogenesis. Proc Natl Acad Sci U S A 2012; 109:13644-9. [PMID: 22864913 DOI: 10.1073/pnas.1207170109] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Vertebrate Hedgehog (Hh) signals involved in development and some forms of cancer, such as basal cell carcinoma, are transduced by the primary cilium, a microtubular projection found on many cells. A critical step in vertebrate Hh signal transduction is the regulated movement of Smoothened (Smo), a seven-transmembrane protein, to the primary cilium. To identify small molecules that interfere with either the ciliary localization of Smo or ciliogenesis, we undertook a high-throughput, microscopy-based screen for compounds that alter the ciliary localization of YFP-tagged Smo. This screen identified 10 compounds that inhibit Hh pathway activity. Nine of these Smo antagonists (SA1-9) bind Smo, and one (SA10) does not. We also identified two compounds that inhibit ciliary biogenesis, which block microtubule polymerization or alter centrosome composition. Differential labeling of cell surface and intracellular Smo pools indicates that SA1-7 and 10 specifically inhibit trafficking of intracellular Smo to cilia. In contrast, SA8 and 9 recruit endogenous Smo to the cilium in some cell types. Despite these different mechanisms of action, all of the SAs inhibit activation of the Hh pathway by an oncogenic form of Smo, and abrogate the proliferation of basal cell carcinoma-like cancer cells. The SA compounds may provide alternative means of inhibiting pathogenic Hh signaling, and our study reveals that different pools of Smo move into cilia through distinct mechanisms.
Collapse
|
27
|
Discovery of novel hedgehog antagonists from cell-based screening: Isosteric modification of p38 bisamides as potent inhibitors of SMO. Bioorg Med Chem Lett 2012; 22:4907-11. [DOI: 10.1016/j.bmcl.2012.04.104] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2012] [Revised: 04/19/2012] [Accepted: 04/23/2012] [Indexed: 01/06/2023]
|
28
|
Che C, Li S, Yang B, Xin S, Yu Z, Shao T, Tao C, Lin S, Yang Z. Synthesis and characterization of Sant-75 derivatives as Hedgehog-pathway inhibitors. Beilstein J Org Chem 2012; 8:841-9. [PMID: 23015832 PMCID: PMC3388872 DOI: 10.3762/bjoc.8.94] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 05/08/2012] [Indexed: 12/17/2022] Open
Abstract
Sant-75 is a newly identified potent inhibitor of the hedgehog pathway. We designed a diversity-oriented synthesis program, and synthesized a series of Sant-75 analogues, which lays the foundation for further investigation of the structure–activity relationship of this important class of hedgehog-pathway inhibitors.
Collapse
Affiliation(s)
- Chao Che
- Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China ; Shenzhen Shengjie Biotech Co., Ltd., Shenzhen 518055, China
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Transcriptional responses of zebrafish embryos exposed to potential sonic hedgehog pathway interfering compounds deviate from expression profiles of cyclopamine. Reprod Toxicol 2012; 33:254-63. [DOI: 10.1016/j.reprotox.2011.12.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 12/13/2011] [Accepted: 12/16/2011] [Indexed: 01/08/2023]
|
30
|
Farooqi AA, Mukhtar S, Riaz AM, Waseem S, Minhaj S, Dilawar BA, Malik BA, Nawaz A, Bhatti S. Wnt and SHH in prostate cancer: trouble mongers occupy the TRAIL towards apoptosis. Cell Prolif 2011; 44:508-15. [PMID: 21973075 DOI: 10.1111/j.1365-2184.2011.00784.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Prostate cancer is a serious molecular disorder that arises because of reduction in tumour suppressors and overexpression of oncogenes. The malignant cells survive within the context of a three-dimensional microenvironment in which they are exposed to mechanical and physical cues. These signals are, nonetheless, deregulated through perturbations to mechanotransduction, from the nanoscale level to the tissue level. Increasingly sophisticated interpretations have uncovered significant contributions of signal transduction cascades in governing prostate cancer progression. To dismantle the major determinants that lie beneath disruption of spatiotemporal patterns of activity, crosstalk between various signalling cascades and their opposing and promoting effects on TRAIL-mediated activities cannot be ruled out. It is important to focus on that molecular multiplicity of cancer cells, various phenotypes reflecting expression of a variety of target oncogenes, reversible to irreversible, exclusive, overlapping or linked, coexist and compete with each other. Comprehensive investigations into TRAIL-mediated mitochondrial dynamics will remain a worthwhile area for underlining causes of tumourigenesis and for unravelling interference options.
Collapse
Affiliation(s)
- A A Farooqi
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore, Pakistan.
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Zhang X, Zhou Y, Wang H, Guo D, Ye D, Xu Y, Jiang H, Liu H. An Effective Synthetic Entry to Fused Benzimidazoles via Iodocyclization. Adv Synth Catal 2011. [DOI: 10.1002/adsc.201100038] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
32
|
So PL, Tang JY, Epstein EH. Novel investigational drugs for basal cell carcinoma. Expert Opin Investig Drugs 2011; 19:1099-112. [PMID: 20662553 DOI: 10.1517/13543784.2010.504714] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
IMPORTANCE OF THE FIELD In the United States, the annual incidence of basal cell carcinoma (BCC) is close to 1 million. Ultraviolet radiation exposure is the main risk factor; however, the availability of ever more potent sunscreens and education have not prevented the rise in BCC incidence. Therefore, concerted effects to identify novel preventive and therapeutic strategies are necessary. AREAS COVERED IN THIS REVIEW This article summarizes our current understanding of the etiology and molecular mechanisms of BCC tumorigenesis and discusses the preclinical and clinical studies to identify agents with anti-BCC efficacy. WHAT THE READER WILL GAIN The discovery that hyperactive Hh pathway signaling causes several cancers, including BCC, has spawned the development of many pharmacologic inhibitors of Hh signaling. Early clinical testing of the most advanced, GDC-0449, demonstrated impressive efficacy in patients with advanced BCC. Other promising anti-BCC chemopreventive strategies include drugs that are already FDA-approved for treating other diseases. TAKE HOME MESSAGE Preclinical and clinical trials with pre-existing FDA-approved drugs suggest novel uses for BCC chemoprevention and treatment. Also, new chemical entities that inhibit the Hh pathway show promise, and in combination with other drugs may provide a nonsurgical cure for this most common cancer.
Collapse
Affiliation(s)
- Po-Lin So
- Children's Hospital Oakland Research Institute, Cancer Division, 5700 Martin Luther King Jr Way, Oakland, CA 94609, USA.
| | | | | |
Collapse
|
33
|
Keurulainen L, Salin O, Siiskonen A, Kern JM, Alvesalo J, Kiuru P, Maass M, Yli-Kauhaluoma J, Vuorela P. Design and synthesis of 2-arylbenzimidazoles and evaluation of their inhibitory effect against Chlamydia pneumoniae. J Med Chem 2010; 53:7664-74. [PMID: 20932010 DOI: 10.1021/jm1008083] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Chlamydia pneumoniae is an intracellular bacterium that responds poorly to antibiotic treatment. Insufficient antibiotic usage leads to chronic infection, which is linked to disease processes of asthma, atherosclerosis, and Alzheimer's disease. The Chlamydia research lacks genetic tools exploited by other antimicrobial research, and thus other approaches to drug discovery must be applied. A set of 2-arylbenzimidazoles was designed based on our earlier findings, and 33 derivatives were synthesized. Derivatives were assayed against C. pneumoniae strain CWL-029 in an acute infection model using TR-FIA method at a concentration of 10 μM, and the effects of the derivatives on the host cell viability were evaluated at the same concentration. Fourteen compounds showed at least 80% inhibition, with only minor changes in host cell viability. Nine most potential compounds were evaluated using immunofluorescence microscopy on two different strains of C. pneumoniae CWL-029 and CV-6. The N-[3-(1H-benzimidazol-2-yl)phenyl]-3-methylbenzamide (42) had minimal inhibitory concentration (MIC) of 10 μM against CWL-029 and 6.3 μM against the clinical strain CV-6. This study shows the high antichlamydial potential of 2-arylbenzimidazoles, which also seem to have good characteristics for lead compounds.
Collapse
Affiliation(s)
- Leena Keurulainen
- Division of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Helsinki, PO Box 56 Viikinkaari 5 E, FI-00014 University of Helsinki, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Mimeault M, Batra SK. Frequent deregulations in the hedgehog signaling network and cross-talks with the epidermal growth factor receptor pathway involved in cancer progression and targeted therapies. Pharmacol Rev 2010; 62:497-524. [PMID: 20716670 DOI: 10.1124/pr.109.002329] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The hedgehog (Hh)/glioma-associated oncogene (GLI) signaling network is among the most important and fascinating signal transduction systems that provide critical functions in the regulation of many developmental and physiological processes. The coordinated spatiotemporal interplay of the Hh ligands and other growth factors is necessary for the stringent control of the behavior of diverse types of tissue-resident stem/progenitor cells and their progenies. The activation of the Hh cascade might promote the tissue regeneration and repair after severe injury in numerous organs, insulin production in pancreatic beta-cells, and neovascularization. Consequently, the stimulation of the Hh pathway constitutes a potential therapeutic strategy to treat diverse human disorders, including severe tissue injuries; diabetes mellitus; and brain, skin, and cardiovascular disorders. In counterbalance, a deregulation of the Hh signaling network might lead to major tissular disorders and the development of a wide variety of aggressive and metastatic cancers. The target gene products induced through the persistent Hh activation can contribute to the self-renewal, survival, migration, and metastasis of cancer stem/progenitor cells and their progenies. Moreover, the pivotal role mediated through the Hh/GLI cascade during cancer progression also implicates the cooperation with other oncogenic products, such as mutated K-RAS and complex cross-talk with different growth factor pathways, including tyrosine kinase receptors, such as epidermal growth factor receptor (EGFR), Wnt/beta-catenin, and transforming growth factor-beta (TGF-beta)/TGF-beta receptors. Therefore, the molecular targeting of distinct deregulated gene products, including Hh and EGFR signaling components and other signaling elements that are frequently deregulated in highly tumorigenic cancer-initiating cells and their progenies, might constitute a potential therapeutic strategy to eradicate the total cancer cell mass. Of clinical interest is that these multitargeted approaches offer great promise as adjuvant treatments for improving the current antihormonal therapies, radiotherapies, and/or chemotherapies against locally advanced and metastatic cancers, thereby preventing disease relapse and the death of patients with cancer.
Collapse
Affiliation(s)
- Murielle Mimeault
- Department of Biochemistry and Molecular Biology, Eppley Institute for Research in Cancer, and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | | |
Collapse
|
35
|
Sauk JJ, Nikitakis NG, Scheper MA. Are we on the brink of nonsurgical treatment for ameloblastoma? ACTA ACUST UNITED AC 2010; 110:68-78. [DOI: 10.1016/j.tripleo.2010.01.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Revised: 01/06/2010] [Accepted: 01/26/2010] [Indexed: 12/17/2022]
|
36
|
Mas C, Ruiz i Altaba A. Small molecule modulation of HH-GLI signaling: current leads, trials and tribulations. Biochem Pharmacol 2010; 80:712-23. [PMID: 20412786 DOI: 10.1016/j.bcp.2010.04.016] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2010] [Revised: 04/12/2010] [Accepted: 04/13/2010] [Indexed: 01/07/2023]
Abstract
Many human sporadic cancers have been recently shown to require the activity of the Hedgehog-GLI pathway for sustained growth. The survival and expansion of cancer stem cells is also HH-GLI dependent. Here we review the advances on the modulation of HH-GLI signaling by small molecules. We focus on both natural compounds and synthetic molecules that target upstream pathway components, mostly SMOOTHENED, and those that target the last steps of the pathway, the GLI transcription factors. In this review we have sought to provide some bases for useful comparisons, listing original assays used and sources to facilitate comparisons of IC50 values. This area is a rapidly expanding field where biology, medicine and chemistry intersect, both in academia and industry. We also highlight current clinical trials, with positive results in early stages. While we have tried to be exhaustive regarding the molecules, not all data is in the public domain yet. Indeed, we have opted to avoid listing chemical structures but these can be easily found in the references given. Finally, we are hopeful that the best molecules will soon reach the patients but caution about the lack of investment on compounds that lack tight IP positions. While the market in developed nations is expected to compensate the investment and risk of making HH-GLI modulators, other sources or plans must be available for developing nations and poor patient populations. The promise of curing cancer recalls the once revered dream of El Dorado, which taught us that not everything that GLI-tters is gold.
Collapse
Affiliation(s)
- Christophe Mas
- Department of Genetic Medicine and Development, University of Geneva Medical School, 1 rue Michel Servet, CH-1211 Geneva, Switzerland.
| | | |
Collapse
|
37
|
Koizumi TA, Kanbara T. Oxidative Dehydrogenation Promoted by Cyclometalated Ruthenium Complexes. ACTA ACUST UNITED AC 2010. [DOI: 10.4019/bjscc.56.14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
| | - Takaki Kanbara
- Graduate School of Pure and Applied Sciences, University of Tsukuba
| |
Collapse
|