1
|
Rani S, Luxami V, Paul K. Synthesis of Triphenylethylene-Naphthalimide Conjugates as topoisomerase-IIα inhibitor and HSA binder. ChemMedChem 2021; 16:1821-1831. [PMID: 33725393 DOI: 10.1002/cmdc.202100034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/18/2021] [Indexed: 12/29/2022]
Abstract
A series of triphenylethylene-naphthalimide (TPE-naph) conjugates was synthesized by a molecular hybridization technique, and their anticancer activity was evaluated in vitro on 60 human cancer cell lines through their cytotoxicity. The ratios of E and Z isomers were determined on the basis of HPLC methodology and NMR spectroscopy. The structure-activity relationship for anticancer activity was deduced on the basis of the nature and bulkiness of the amine attached to the C-4 position of the naphthalene ring. Experimental and molecular modeling studies of the most active TPE-naph conjugate bearing a morpholinyl group showed that it was able to inhibit topoisomerase-II (TOPO-II) as a possible intracellular target. Moreover, the transportation behavior of TPE-naph conjugate towards human serum albumin (HSA) indicated efficient binding affinity. The steady-state and time-dependent fluorescent results suggested that this conjugate quenched HSA significantly through static as well as dynamic quenching. Thus, this report discloses the scope of triphenylethylene-naphthalimide (TPE-naph) conjugates as efficient anticancer agents.
Collapse
Affiliation(s)
- Sudesh Rani
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala, 147004, Punjab, India
| | - Vijay Luxami
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala, 147004, Punjab, India
| | - Kamaldeep Paul
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala, 147004, Punjab, India
| |
Collapse
|
2
|
Rani S, Paul K. Triphenylethylene analogues: Design, synthesis and evaluation of antitumor activity and topoisomerase inhibitors. Eur J Med Chem 2020; 208:112775. [DOI: 10.1016/j.ejmech.2020.112775] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 08/08/2020] [Accepted: 08/19/2020] [Indexed: 12/24/2022]
|
3
|
Tandon N, Luxami V, Tandon R, Paul K. Recent Advances in the Synthesis of Tamoxifen and Analogues in Medicinal Chemistry. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000308] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Nitin Tandon
- School of Chemical Engineering and Physical Sciences Lovely Professional University Phagwara 144411 India
| | - Vijay Luxami
- School of Chemistry and Biochemistry Thapar Institute of Engineering and Technology Patiala 147 001 India
| | - Runjhun Tandon
- School of Chemical Engineering and Physical Sciences Lovely Professional University Phagwara 144411 India
| | - Kamaldeep Paul
- School of Chemistry and Biochemistry Thapar Institute of Engineering and Technology Patiala 147 001 India
| |
Collapse
|
4
|
Niu H, Strecker TE, Gerberich JL, Campbell JW, Saha D, Mondal D, Hamel E, Chaplin DJ, Mason RP, Trawick ML, Pinney KG. Structure Guided Design, Synthesis, and Biological Evaluation of Novel Benzosuberene Analogues as Inhibitors of Tubulin Polymerization. J Med Chem 2019; 62:5594-5615. [PMID: 31059248 DOI: 10.1021/acs.jmedchem.9b00551] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A promising design paradigm for small-molecule inhibitors of tubulin polymerization that bind to the colchicine site draws structural inspiration from the natural products colchicine and combretastatin A-4 (CA4). Our previous studies with benzocycloalkenyl and heteroaromatic ring systems yielded promising inhibitors with dihydronaphthalene and benzosuberene analogues featuring phenolic (KGP03 and KGP18) and aniline (KGP05 and KGP156) congeners emerging as lead agents. These molecules demonstrated dual mechanism of action, functioning both as potent vascular disrupting agents (VDAs) and as highly cytotoxic anticancer agents. A further series of analogues was designed to extend functional group diversity and investigate regioisomeric tolerance. Ten new molecules were effective inhibitors of tubulin polymerization (IC50 < 5 μM) with seven of these exhibiting highly potent activity comparable to CA4, KGP18, and KGP03. For one of the most effective agents, dose-dependent vascular shutdown was demonstrated using dynamic bioluminescence imaging in a human prostate tumor xenograft growing in a rat.
Collapse
Affiliation(s)
- Haichan Niu
- Department of Chemistry and Biochemistry , Baylor University , One Bear Place, No. 97348 , Waco , Texas 76798-7348 , United States
| | - Tracy E Strecker
- Department of Chemistry and Biochemistry , Baylor University , One Bear Place, No. 97348 , Waco , Texas 76798-7348 , United States
| | - Jeni L Gerberich
- Department of Radiology , The University of Texas Southwestern Medical Center , 5323 Harry Hines Boulevard , Dallas , Texas 75390-9058 , United States
| | - James W Campbell
- Department of Radiology , The University of Texas Southwestern Medical Center , 5323 Harry Hines Boulevard , Dallas , Texas 75390-9058 , United States
| | - Debabrata Saha
- Department of Radiology Oncology, Division of Molecular Radiation Biology , The University of Texas Southwestern Medical Center , 2201 Inwood Road , Dallas , Texas 75390-9187 , United States
| | - Deboprosad Mondal
- Department of Chemistry and Biochemistry , Baylor University , One Bear Place, No. 97348 , Waco , Texas 76798-7348 , United States
| | - Ernest Hamel
- Screening Technologies Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis , National Cancer Institute, Frederick National Laboratory for Cancer Research, National Institutes of Health , Frederick , Maryland 21702 , United States
| | - David J Chaplin
- Department of Chemistry and Biochemistry , Baylor University , One Bear Place, No. 97348 , Waco , Texas 76798-7348 , United States.,Mateon Therapeutics, Inc. , 701 Gateway Boulevard, Suite 210 , South San Francisco , California 94080 , United States
| | - Ralph P Mason
- Department of Radiology , The University of Texas Southwestern Medical Center , 5323 Harry Hines Boulevard , Dallas , Texas 75390-9058 , United States
| | - Mary Lynn Trawick
- Department of Chemistry and Biochemistry , Baylor University , One Bear Place, No. 97348 , Waco , Texas 76798-7348 , United States
| | - Kevin G Pinney
- Department of Chemistry and Biochemistry , Baylor University , One Bear Place, No. 97348 , Waco , Texas 76798-7348 , United States
| |
Collapse
|
5
|
Pipatrattanaseree W, Itharat A, Mukkasombut N, Saesiw U. Potential in vitro anti-allergic, anti-inflammatory and cytotoxic activities of ethanolic extract of Baliospermum montanum root, its major components and a validated HPLC method. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 19:45. [PMID: 30755219 PMCID: PMC6373163 DOI: 10.1186/s12906-019-2449-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 01/24/2019] [Indexed: 12/14/2022]
Abstract
Background The root of Baliospermum montanum has been used as an ingredient of traditional Thai medicines for the treatments of several diseases including itching eczema, muscle and joint inflammation, and cancer. Few studies have been done on phytochemical components of this root. In this study, we isolated major compounds of the crude ethanolic extract of B. montanum root and developed and validated a high performance liquid chromatographic (HPLC) method for the determination of its major components. We then investigated anti-allergic, anti-inflammatory and cytotoxic activities of the extract. Methods The aims of this study were to investigate in vitro activities including inhibitory effect of β-hexosaminidase released from RBL-2H3 cells, inhibition of nitric oxide (NO) production from RAW 264.7 cells and cytotoxic activity against cancerous liver cell lines (HepG2 and KKU M156) by using sulforhodamine B (SRB) assay. Isolation of major components was conducted by using column chromatographic method. Isolated major compounds were analyzed by using high performance liquid chromatography (HPLC). Results The crude extract exhibited the highest cytotoxic activity, with IC50 less than 1 μg/mL, while its anti-allergy and anti-inflammation were also potent with IC50 less than 6 μg/mL. Three propiophenones isolated from B. montanum root exhibited moderate cytotoxic activities (IC50 > 20 μg/mL). Two of the propiophenones found were major components that can be detected by HPLC. The developed and validated HPLC method showed good accuracy, precision, and linearity. Conclusion The results of this study suggested that ethanolic extract of of B.montanum root can be a potential source of anti-allergy, anti-inflammation, and anti-cancer compounds. The isolated compounds can serve as markers when B. montanum is used in herbal remedies but not as overall responsive markers. The HPLC method developed may be useful for quality control in the production of the extract and for further formulation developments. However, investigation of several associated biological activities is necessary before the development can proceed further. Minor active compounds should be isolated and a more sensitive analytical method should be developed to detail the key responsive components of the ethanolic extract of B. montanum root. Electronic supplementary material The online version of this article (10.1186/s12906-019-2449-0) contains supplementary material, which is available to authorized users.
Collapse
|
6
|
Maguire CJ, Chen Z, Mocharla VP, Sriram M, Strecker TE, Hamel E, Zhou H, Lopez R, Wang Y, Mason RP, Chaplin DJ, Trawick ML, Pinney KG. Synthesis of dihydronaphthalene analogues inspired by combretastatin A-4 and their biological evaluation as anticancer agents. MEDCHEMCOMM 2018; 9:1649-1662. [PMID: 30429970 PMCID: PMC6201230 DOI: 10.1039/c8md00322j] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 08/13/2018] [Indexed: 12/17/2022]
Abstract
The natural products colchicine and combretastatin A-4 (CA4) have provided inspiration for the discovery and development of a wide array of derivatives and analogues that inhibit tubulin polymerization through a binding interaction at the colchicine site on β-tubulin. A water-soluble phosphate prodrug salt of CA4 (referred to as CA4P) has demonstrated the ability to selectively damage tumor-associated vasculature and ushered in a new class of developmental anticancer agents known as vascular disrupting agents (VDAs). Through a long-term program of structure activity relationship (SAR) driven inquiry, we discovered that the dihydronaphthalene molecular scaffold provided access to small-molecule inhibitors of tubulin polymerization. In particular, a dihydronaphthalene analogue bearing a pendant trimethoxy aryl ring (referred to as KGP03) and a similar aroyl ring (referred to as KGP413) were potent inhibitors of tubulin polymerization (IC50 = 1.0 and 1.2 μM, respectively) and displayed low nM cytotoxicity against human cancer cell lines. In order to enhance water-solubility for in vivo evaluation, the corresponding phosphate prodrug salts (KGP04 and KGP152, respectively) were synthesized. In a preliminary in vivo study in a SCID-BALB/c mouse model bearing the human breast tumor MDA-MB-231-luc, a 99% reduction in signal was observed with bioluminescence imaging (BLI) 4 h after IP administration of KGP152 (200 mg kg-1) indicating reduced tumor blood flow. In a separate study, disruption of tumor-associated blood flow in a Fischer rat bearing an A549-luc human lung tumor was observed by color Doppler ultrasound following administration of KGP04 (15 mg kg-1).
Collapse
Affiliation(s)
- Casey J Maguire
- Department of Chemistry and Biochemistry , Baylor University , One Bear Place #97348 , Waco , TX 76798-7348 , USA . ; Tel: +(254) 710 4117
| | - Zhi Chen
- Department of Chemistry and Biochemistry , Baylor University , One Bear Place #97348 , Waco , TX 76798-7348 , USA . ; Tel: +(254) 710 4117
| | - Vani P Mocharla
- Department of Chemistry and Biochemistry , Baylor University , One Bear Place #97348 , Waco , TX 76798-7348 , USA . ; Tel: +(254) 710 4117
| | - Madhavi Sriram
- Department of Chemistry and Biochemistry , Baylor University , One Bear Place #97348 , Waco , TX 76798-7348 , USA . ; Tel: +(254) 710 4117
| | - Tracy E Strecker
- Department of Chemistry and Biochemistry , Baylor University , One Bear Place #97348 , Waco , TX 76798-7348 , USA . ; Tel: +(254) 710 4117
| | - Ernest Hamel
- Screening Technologies Branch , Developmental Therapeutics Program , Division of Cancer Treatment and Diagnosis , National Cancer Institute , Frederick National Laboratory for Cancer Research , National Institutes of Health , Frederick , MD 21702 , USA
| | - Heling Zhou
- Department of Radiology , The University of Texas Southwestern Medical Center , 5323 Harry Hines Boulevard , Dallas , TX 75390-9058 , USA
| | - Ramona Lopez
- Department of Radiology , The University of Texas Southwestern Medical Center , 5323 Harry Hines Boulevard , Dallas , TX 75390-9058 , USA
| | - Yifan Wang
- Department of Chemistry and Biochemistry , Baylor University , One Bear Place #97348 , Waco , TX 76798-7348 , USA . ; Tel: +(254) 710 4117
| | - Ralph P Mason
- Department of Radiology , The University of Texas Southwestern Medical Center , 5323 Harry Hines Boulevard , Dallas , TX 75390-9058 , USA
| | - David J Chaplin
- Department of Chemistry and Biochemistry , Baylor University , One Bear Place #97348 , Waco , TX 76798-7348 , USA . ; Tel: +(254) 710 4117
- Mateon Therapeutics, Inc. , 701 Gateway Boulevard, Suite 210 , South San Francisco , CA 94080 , USA
| | - Mary Lynn Trawick
- Department of Chemistry and Biochemistry , Baylor University , One Bear Place #97348 , Waco , TX 76798-7348 , USA . ; Tel: +(254) 710 4117
| | - Kevin G Pinney
- Department of Chemistry and Biochemistry , Baylor University , One Bear Place #97348 , Waco , TX 76798-7348 , USA . ; Tel: +(254) 710 4117
| |
Collapse
|
7
|
Shagufta, Ahmad I. Tamoxifen a pioneering drug: An update on the therapeutic potential of tamoxifen derivatives. Eur J Med Chem 2018; 143:515-531. [DOI: 10.1016/j.ejmech.2017.11.056] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 10/25/2017] [Accepted: 11/20/2017] [Indexed: 12/13/2022]
|
8
|
Herdman CA, Strecker TE, Tanpure RP, Chen Z, Winters A, Gerberich J, Liu L, Hamel E, Mason RP, Chaplin DJ, Trawick ML, Pinney KG. Synthesis and Biological Evaluation of Benzocyclooctene-based and Indene-based Anticancer Agents that Function as Inhibitors of Tubulin Polymerization. MEDCHEMCOMM 2016; 7:2418-2427. [PMID: 28217276 PMCID: PMC5308454 DOI: 10.1039/c6md00459h] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The natural products colchicine and combretastatin A-4 (CA4) have been inspirational for the design and synthesis of structurally related analogues and spin-off compounds as inhibitors of tubulin polymerization. The discovery that a water-soluble phosphate prodrug salt of CA4 (referred to as CA4P) is capable of imparting profound and selective damage to tumor-associated blood vessels paved the way for the development of a new therapeutic approach for cancer treatment utilizing small-molecule inhibitors of tubulin polymerization that also act as vascular disrupting agents (VDAs). Combination of salient structural features associated with colchicine and CA4 led to the design and synthesis of a variety of fused aryl-cycloalkyl and aryl-heterocyclic compounds that function as inhibitors of tubulin polymerization. Prominent among these compounds is a benzosuberene analogue (referred to as KGP18), which demonstrates sub-nM cytotoxicity against human cancer cell lines and functions (when administered as a water-soluble prodrug salt) as a VDA in mouse models. Structure activity relationship considerations led to the evaluation of benzocyclooctyl [6,8 fused] and indene [6,5 fused] ring systems. Four benzocyclooctene and four indene analogues were prepared and evaluated biologically. Three of the benzocyclooctene analogues were active as inhibitors of tubulin polymerization (IC50 < 5 μM), and benzocyclooctene phenol 23 was comparable to KGP18 in terms of potency. The analogous indene-based compound 31 also functioned as an inhibitor of tubulin polymerization (IC50 = 11 μM) with reduced potency. The most potent inhibitor of tubulin polymerization from this group was benzocyclooctene analogue 23, and it was converted to its water-soluble prodrug salt 24 to assess its potential as a VDA. Preliminary in vivo studies, which utilized the MCF7-luc-GFP-mCherry breast tumor in a SCID mouse model, demonstrated that treatment with 24 (120 mg/kg) resulted in significant vascular shutdown, as evidenced by bioluminescence imaging at 4 h post administration, and that the effect continued at both 24 and 48 h. Contemporaneous studies with CA4P, a clinically relevant VDA, were carried out as a positive control.
Collapse
Affiliation(s)
- Christine A Herdman
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798-7348, United States
| | - Tracy E Strecker
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798-7348, United States
| | - Rajendra P Tanpure
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798-7348, United States
| | - Zhi Chen
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798-7348, United States
| | - Alex Winters
- Prognostic Imaging Research Laboratory, Department of Radiology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9058, United States
| | - Jeni Gerberich
- Prognostic Imaging Research Laboratory, Department of Radiology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9058, United States
| | - Li Liu
- Prognostic Imaging Research Laboratory, Department of Radiology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9058, United States
| | - Ernest Hamel
- Screening Technologies Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Frederick National Laboratory for Cancer Research, National Institutes of Health, Frederick, MD 21702, United States
| | - Ralph P Mason
- Prognostic Imaging Research Laboratory, Department of Radiology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9058, United States
| | - David J Chaplin
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798-7348, United States; Mateon Therapeutics, Inc., 701 Gateway Boulevard, Suite 210, South San Francisco, California 94080, United States
| | - Mary Lynn Trawick
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798-7348, United States
| | - Kevin G Pinney
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798-7348, United States
| |
Collapse
|
9
|
Murty MSR, Katiki MR, Nanubolu JB, Garimella S, Polepalli S, Jain N, Buddana SK, Prakasham RS. Synthesis and biological evaluation of novel tamoxifen-1,2,4-triazole conjugates. Mol Divers 2016; 20:687-703. [PMID: 27278444 DOI: 10.1007/s11030-016-9677-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 05/22/2016] [Indexed: 10/21/2022]
Abstract
A new class of compounds, structurally related to the breast cancer drug tamoxifen, was designed and synthesized. The McMurry coupling reaction was used as the key synthetic step in the preparation of these analogs, and the structural assignments were made on the basis of [Formula: see text] NMR, [Formula: see text] NMR, and HRMS studies. The absolute stereochemistry of E and Z isomers was unambiguously confirmed by a single-crystal X-ray diffraction analysis. Water was found to be an inexpensive nontoxic and effective medium for the C-N bond formation. Utilizing this protocol, various tamoxifen derivatives were synthesized in good yields. Environmental acceptability, low cost, and high yields are the important features of this protocol. These compounds were evaluated for their antiproliferative activity on five human tumor cell lines. Compound 4p ([Formula: see text]) showed improved antiproliferative activity against breast cancer cell line (MDA-MB-231) compared to tamoxifen ([Formula: see text]), while the compound 4o ([Formula: see text]) exhibited similar activity against SiHa compared to the reference drug, tamoxifen ([Formula: see text]). In addition, these analogs were investigated for their antibacterial activity against six bacterial strains. Preliminary results indicate that some of the newly synthesized title compounds exhibited promising antibacterial activity compared with the standard drug, vancomycin. A new class of compounds were designed rationally by the replacement of a ethyl group in tamoxifen with a methylene (1H-1,2,4-triazole) group. The absolute stereochemistry of E and Z isomers were unambiguously confirmed by a single-crystal X-ray diffraction analysis. The title compounds were evaluated for their antiproliferative and antibacterial activities.
Collapse
Affiliation(s)
- M S R Murty
- Medicinal Chemistry & Pharmacology Division, Discovery Laboratory, CSIR-Indian Institute of Chemical Technology, Hyderabad, India.
| | - Mohana Rao Katiki
- Medicinal Chemistry & Pharmacology Division, Discovery Laboratory, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| | - Jagadeesh Babu Nanubolu
- Centre for X-Ray Crystallography, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| | - Srujana Garimella
- Centre for Chemical Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| | - Sowjanya Polepalli
- Centre for Chemical Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| | - Nishant Jain
- Centre for Chemical Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| | - Sudheer Kumar Buddana
- Bioengineering & Environmental Sciences, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| | - R S Prakasham
- Bioengineering & Environmental Sciences, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| |
Collapse
|
10
|
Yan J, Chen J, Zhang S, Hu J, Huang L, Li X. Synthesis, Evaluation, and Mechanism Study of Novel Indole-Chalcone Derivatives Exerting Effective Antitumor Activity Through Microtubule Destabilization in Vitro and in Vivo. J Med Chem 2016; 59:5264-83. [PMID: 27149641 DOI: 10.1021/acs.jmedchem.6b00021] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Twenty-nine novel indole-chalcone derivatives were synthesized and evaluated for antiproliferative activity. Among them, 14k exhibited most potent activity, with IC50 values of 3-9 nM against six cancer cells, which displayed a 3.8-8.7-fold increase in activity when compare with compound 2. Further investigation revealed 14k was a novel tubulin polymerization inhibitor binding to the colchicine site. Its low cytotoxicity toward normal human cells and nearly equally potent activity against drug-resistant cells revealed the possibility for cancer therapy. Cellular mechanism studies elucidated 14k arrests cell cycle at G2/M phase and induces apoptosis along with the decrease of mitochondrial membrane potential. Furthermore, good metabolic stability of 14k was observed in mouse liver microsomes. Importantly, 14k and its phosphate salt 14k-P inhibited tumor growth in xenograft models in vivo without apparent toxicity, which was better than the reference compound CA-4P and 2. In summary, 14k deserves consideration for cancer therapy.
Collapse
Affiliation(s)
- Jun Yan
- School of Pharmaceutical Sciences, Sun Yat-sen University , Guangzhou 510006, China
| | - Jie Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University , Guangzhou 510006, China
| | - Shun Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University , Guangzhou 510006, China
| | - Jinhui Hu
- School of Pharmaceutical Sciences, Sun Yat-sen University , Guangzhou 510006, China
| | - Ling Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University , Guangzhou 510006, China
| | - Xingshu Li
- School of Pharmaceutical Sciences, Sun Yat-sen University , Guangzhou 510006, China
| |
Collapse
|
11
|
Herdman CA, Devkota L, Lin CM, Niu H, Strecker TE, Lopez R, Liu L, George CS, Tanpure RP, Hamel E, Chaplin DJ, Mason RP, Trawick ML, Pinney KG. Structural interrogation of benzosuberene-based inhibitors of tubulin polymerization. Bioorg Med Chem 2015; 23:7497-520. [PMID: 26775540 PMCID: PMC4828293 DOI: 10.1016/j.bmc.2015.10.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 10/01/2015] [Accepted: 10/10/2015] [Indexed: 11/16/2022]
Abstract
The discovery of 3-methoxy-9-(30,40,50-trimethoxyphenyl)-6,7-dihydro-5H-benzo[7]annulen-4-ol (a benzosuberene-based analogue referred to as KGP18) was originally inspired by the natural products colchicine and combretastatin A-4 (CA4). The relative structural simplicity and ease of synthesis of KGP18, coupled with its potent biological activity as an inhibitor of tubulin polymerization and its cytotoxicity (in vitro) against human cancer cell lines, has resulted in studies focused on new analogue design and synthesis. Our goal was to probe the relationship of structure to function in this class of anticancer agents. A series of twenty-two new benzosuberene-based analogues of KGP18 was designed and synthesized. These compounds vary in their methoxylation pattern and separately incorporate trifluoromethyl groups around the pendant aryl ring for the evaluation of the effect of functional group modifications on the fused six-membered aromatic ring. In addition, the 8,9-saturated congener of KGP18 has been synthesized to assess the necessity of unsaturation at the carbon atom bearing the pendant aryl ring. Six of the molecules from this benzosuberene-series of compounds were active (IC50 < 5 lM) as inhibitors of tubulin polymerization while four analogues were comparable (IC50 approximately 1 lM) in their tubulin inhibitory activity to CA4 and KGP18. The potency of a bis-trifluoromethyl analogue 74 and the unsaturated KGP18 derivative 73 as inhibitors of tubulin assembly along with their moderate cytotoxicity suggested the potential utility of these compounds as vascular disrupting agents (VDAs) to selectively target microvessels feeding tumors. Accordingly, water-soluble and DMSO-soluble phosphate prodrug salts of each were synthesized for preliminary in vivo studies to assess their potential efficacy as VDAs.
Collapse
Affiliation(s)
- Christine A. Herdman
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798-7348, United States
| | - Laxman Devkota
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798-7348, United States
| | - Chen-Ming Lin
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798-7348, United States
| | - Haichan Niu
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798-7348, United States
| | - Tracy E. Strecker
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798-7348, United States
| | - Ramona Lopez
- Department of Radiology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390-9058, United States
| | - Li Liu
- Department of Radiology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390-9058, United States
| | - Clinton S. George
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798-7348, United States
| | - Rajendra P. Tanpure
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798-7348, United States
| | - Ernest Hamel
- Screening Technologies Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Frederick National Laboratory for Cancer Research, National Institutes of Health, Frederick, MD 21702, United States
| | - David J. Chaplin
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798-7348, United States
- OXiGENE Inc., 701 Gateway Boulevard, Suite 210, South San Francisco, California 94080, United States
| | - Ralph P. Mason
- Department of Radiology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390-9058, United States
| | - Mary Lynn Trawick
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798-7348, United States
| | - Kevin G. Pinney
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798-7348, United States
| |
Collapse
|
12
|
Hadimani MB, MacDonough MT, Ghatak A, Strecker TE, Lopez R, Sriram M, Nguyen BL, Hall JJ, Kessler RJ, Shirali AR, Liu L, Garner CM, Pettit GR, Hamel E, Chaplin DJ, Mason RP, Trawick ML, Pinney KG. Synthesis of a 2-aryl-3-aroyl indole salt (OXi8007) resembling combretastatin A-4 with application as a vascular disrupting agent. JOURNAL OF NATURAL PRODUCTS 2013; 76:1668-78. [PMID: 24016002 PMCID: PMC3985392 DOI: 10.1021/np400374w] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The natural products colchicine and combretastatin A-4 are potent inhibitors of tubulin assembly, and they have inspired the design and synthesis of a large number of small-molecule, potential anticancer agents. The indole-based molecular scaffold is prominent among these SAR modifications, leading to a rapidly increasing number of agents. The water-soluble phosphate prodrug 33 (OXi8007) of 2-aryl-3-aroylindole-based phenol 8 (OXi8006) was prepared by chemical synthesis and found to be strongly cytotoxic against selected human cancer cell lines (GI₅₀ = 36 nM against DU-145 cells, for example). The free phenol, 8 (OXi8006), was a strong inhibitor (IC₅₀ = 1.1 μM) of tubulin assembly. The corresponding phosphate prodrug 33 (OXi8007) also demonstrated pronounced interference with tumor vasculature in a preliminary in vivo study utilizing a SCID mouse model bearing an orthotopic PC-3 (prostate) tumor as imaged by color Doppler ultrasound. The combination of these results provides evidence that the indole-based phosphate prodrug 33 (OXi8007) functions as a vascular disrupting agent that may prove useful for the treatment of cancer.
Collapse
Affiliation(s)
- Mallinath B. Hadimani
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas, 76798-7348, USA
| | - Matthew T. MacDonough
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas, 76798-7348, USA
| | - Anjan Ghatak
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas, 76798-7348, USA
| | - Tracy E. Strecker
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas, 76798-7348, USA
| | - Ramona Lopez
- Department of Radiology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas, 75390-9058, USA
| | - Madhavi Sriram
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas, 76798-7348, USA
| | - Benson L. Nguyen
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas, 76798-7348, USA
| | - John J. Hall
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas, 76798-7348, USA
| | - Raymond J. Kessler
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas, 76798-7348, USA
| | - Anupama R. Shirali
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas, 76798-7348, USA
| | - Li Liu
- Department of Radiology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas, 75390-9058, USA
| | - Charles M. Garner
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas, 76798-7348, USA
| | - George R. Pettit
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona, 85287-1604, USA
| | - Ernest Hamel
- Screening Technologies Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Frederick National Laboratory for Cancer Research, National Institutes of Health, Frederick, Maryland, 21702, USA
| | - David J. Chaplin
- Oxigene Inc., 701 Gateway Boulevard, Suite 210, South San Francisco, California, 94080, USA
| | - Ralph P. Mason
- Department of Radiology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas, 75390-9058, USA
| | - Mary Lynn Trawick
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas, 76798-7348, USA
| | - Kevin G. Pinney
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas, 76798-7348, USA
- Corresponding Author: Tel: 1-254-710-4117. Fax: 1-254-710-4272.
| |
Collapse
|
13
|
Design and synthesis of biaryl aryl stilbenes/ethylenes as antimicrotubule agents. Eur J Med Chem 2013; 60:305-24. [DOI: 10.1016/j.ejmech.2012.12.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 11/27/2012] [Accepted: 12/05/2012] [Indexed: 12/22/2022]
|
14
|
Liu QC, Guo TT, Fan Z, Li D, Li WH. First total synthesis of two new heterocyclic compounds: Bretschneiderazines A and B. CHINESE CHEM LETT 2011. [DOI: 10.1016/j.cclet.2010.11.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Hamze A, Le Menez P, Provot O, Morvan E, Brion JD, Alami M. Regioselective hydrostannation of highly hindered arylalkynes under ortho-directing effects. Tetrahedron 2010. [DOI: 10.1016/j.tet.2010.09.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|