1
|
Agrawal N, Bansal D, Pathak S. Exploring the Therapeutic Marvels: A Comprehensive Review on the Biological Potential of Quinoline-5,8-Dione. Med Chem 2024; 20:385-396. [PMID: 38173200 DOI: 10.2174/0115734064287677231215070816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/28/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024]
Abstract
Quinoline-5,8-diones, also referred to as 5,8-quinolinediones or quinolinequinones, have been researched extensively for their antiproliferative effects, where they displayed great results. Other than anticancer, they exhibit multiple activities such as antimalarial, antiviral, antibacterial, and antifungal activities. Natural quinolinequinones have also been known for their significant activities. The review highlights the diverse biological activities exhibited by synthetic quinoline- 5,8-diones over the past two decades. Continued research in this field is warranted to fully exploit the therapeutic potential of these intriguing compounds and their derivatives for future drug development. By comprehensively evaluating the therapeutic applications and biological activities of quinoline-5,8-dione derivatives, this review endeavors to provide researchers and practitioners with a valuable resource that will foster informed decision-making and inspire further investigations into harnessing the immense potential of this intriguing scaffold for the benefit of human health.
Collapse
Affiliation(s)
- Neetu Agrawal
- Institute of Pharmaceutical Research, GLA University, Mathura-281406, UP, India
| | - Dimple Bansal
- Institute of Pharmaceutical Research, GLA University, Mathura-281406, UP, India
| | - Shilpi Pathak
- Institute of Pharmaceutical Research, GLA University, Mathura-281406, UP, India
| |
Collapse
|
2
|
Wu JQ, Wu XY, Lu JM, Shi Q, Shao LX. Highly Active La(III)-Based Metal-Organic Framework as a Heterogeneous Lewis Acid Catalyst for Friedel-Crafts Alkylation. Chemistry 2022; 28:e202202441. [PMID: 36082763 DOI: 10.1002/chem.202202441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Indexed: 12/14/2022]
Abstract
In this study, a novel La(III)-based two-dimensional (2D) metal-organic framework, [La2/3 (qptca)1/2 ] (referred to as SLX-2), from LaCl3 and 1,1' : 4',1'' : 4'',1''' : 4''',1''''-quinquephenyl]-2,2'',2'''',5''-tetracarboxylic acid (H4 qptca) was synthesized by conventional solvothermal method and thoroughly characterized by using X-ray single-crystal diffraction, powder X-ray diffraction, and thermogravimetric analyses. The 2D SLX-2 features a unique lanthanum center exposed to the skeleton and was used as an efficient Lewis acid catalyst for the Friedel-Crafts alkylation of indole and pyrrole with β-nitrostyrene along with a wide substrate scope, giving the desired products in good-to-high yields under the optimal reaction conditions. Furthermore, the catalyst was used for twenty cycles, with nearly no effect on its activity, and the reaction was heterogeneous in nature. Moreover, compared to the previous hydrogen-bond-donating MOF catalysts for such alkylation reactions, SLX-2 showed an excellent stability toward harsh acidic and basic environment, and gave comparable catalytic activities.
Collapse
Affiliation(s)
- Jia-Qi Wu
- College of Chemistry and Materials Engineering, Wenzhou University, Chashan University Town, Wenzhou, Zhejiang Province, 325035, People's Republic of China
| | - Xin-Yuan Wu
- College of Chemistry and Materials Engineering, Wenzhou University, Chashan University Town, Wenzhou, Zhejiang Province, 325035, People's Republic of China
| | - Jian-Mei Lu
- College of Chemistry and Materials Engineering, Wenzhou University, Chashan University Town, Wenzhou, Zhejiang Province, 325035, People's Republic of China
| | - Qian Shi
- College of Chemistry and Materials Engineering, Wenzhou University, Chashan University Town, Wenzhou, Zhejiang Province, 325035, People's Republic of China
| | - Li-Xiong Shao
- College of Chemistry and Materials Engineering, Wenzhou University, Chashan University Town, Wenzhou, Zhejiang Province, 325035, People's Republic of China
| |
Collapse
|
3
|
Singh M, Neogi S. Urea-engineering mediated hydrogen-bond donating Friedel−Crafts alkylation of indoles and nitroalkenes in dual-functionalized and microporous metal-organic framework with high recyclability and pore-fitting-induced size-selectivity. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00206j] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
As an effective alternative to Lewis acid activation, hydrogen-bond donating (HBD) organo-catalysis denotes a powerful construction tool to important classes of carbon–carbon bonds, wherein metal-organic frameworks (MOFs) alleviate issues like...
Collapse
|
4
|
Ghosh S, Nagarjun N, Alam M, Dhakshinamoorthy A, Biswas S. Friedel-Crafts alkylation reaction efficiently catalyzed by a di-amide functionalized Zr(IV) metal-organic framework. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2021.112007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
5
|
Suliphuldevara Matada B, Yernale NG, Basha JN. Updates on the versatile quinoline heterocycles as anticancer agents. PHYSICAL SCIENCES REVIEWS 2021. [DOI: 10.1515/psr-2021-0040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Abstract
Quinoline motifs have befallen significant molecules due to their assortment of interest in medicine, chemical synthesis, coordination chemistry, also in the field of applied chemistry. Therefore, various researchers have produced these molecules as objective structures and studied their natal potential. The current chapter endows with concise attention about cancer, anticancer agents, sources (natural) of quinoline, and together with an innovative scope of quinoline-related medicines. Further, the present section gives knowledge concerned with the anticancer activity of synthesized quinolines and their derivatives.
Collapse
Affiliation(s)
| | | | - Jeelan N. Basha
- Department of Chemistry , Indian Academy Degree College Autonomous , Bengaluru , India
| |
Collapse
|
6
|
In silico design of novel diamino-quinoline-5,8‑dione derivatives as putative inhibitors of NAD(P)H:Quinone oxidoreductase 1 based on docking studies and molecular dynamics simulations. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.129906] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Hachey AC, Havrylyuk D, Glazer EC. Biological activities of polypyridyl-type ligands: implications for bioinorganic chemistry and light-activated metal complexes. Curr Opin Chem Biol 2021; 61:191-202. [PMID: 33799087 DOI: 10.1016/j.cbpa.2021.01.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 01/24/2021] [Accepted: 01/31/2021] [Indexed: 12/16/2022]
Abstract
Polypyridyl coordinating ligands are common in metal complexes used in medicinal inorganic chemistry. These ligands possess intrinsic cytotoxicity, but detailed data on this phenomenon are sparse, and cytotoxicity values vary widely and are often irreproducible. To provide new insights into the biological effects of bipyridyl-type ligands and structurally related metal-binding systems, reports of free ligand cytotoxicity were reviewed. The cytotoxicity of 25 derivatives of 2,2'-bipyridine and 1,10-phenanthroline demonstrates that there is no correlation between IC50 values and ligand properties such as pKa, log D, polarizability volume, and electron density, as indicated by NMR shifts. As a result of these observations, as well as the various reported mechanisms of action of polypyridyl ligands, we offer the hypothesis that biological effects are governed by the availability of and affinity for specific metal ions within the experimental model.
Collapse
Affiliation(s)
- Austin C Hachey
- Department of Chemistry, The University of Kentucky, 505 Rose St, Lexington, KY 40506, USA
| | - Dmytro Havrylyuk
- Department of Chemistry, The University of Kentucky, 505 Rose St, Lexington, KY 40506, USA
| | - Edith C Glazer
- Department of Chemistry, The University of Kentucky, 505 Rose St, Lexington, KY 40506, USA.
| |
Collapse
|
8
|
Jain S, Chandra V, Kumar Jain P, Pathak K, Pathak D, Vaidya A. Comprehensive review on current developments of quinoline-based anticancer agents. ARAB J CHEM 2019. [DOI: 10.1016/j.arabjc.2016.10.009] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
9
|
Kadela-Tomanek M, Bębenek E, Chrobak E, Boryczka S. 5,8-Quinolinedione Scaffold as a Promising Moiety of Bioactive Agents. Molecules 2019; 24:E4115. [PMID: 31739496 PMCID: PMC6891355 DOI: 10.3390/molecules24224115] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/08/2019] [Accepted: 11/12/2019] [Indexed: 12/24/2022] Open
Abstract
Natural 5,8-quinolinedione antibiotics exhibit a broad spectrum of activities including anticancer, antibacterial, antifungal, and antimalarial activities. The structure-activity research showed that the 5,8-quinolinedione scaffold is responsible for its biological effect. The subject of this review report is a presentation of the pharmacological activity of synthetic 5,8-quinolinedione compounds containing different groups at C-6 and/or C-7 positions. The relationship between the activity and the mechanism of action is included if these data have been included in the original literature. The review mostly covers the period between 2000 and 2019. Previously published literature data were used to present historical points.
Collapse
Affiliation(s)
- Monika Kadela-Tomanek
- Department of Organic Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 4 Jagiellońska Str., 41-200 Sosnowiec, Poland; (E.B.); (E.C.); (S.B.)
| | | | | | | |
Collapse
|
10
|
Kadela-Tomanek M, Bębenek E, Chrobak E, Marciniec K, Latocha M, Kuśmierz D, Jastrzębska M, Boryczka S. Betulin-1,4-quinone hybrids: Synthesis, anticancer activity and molecular docking study with NQO1 enzyme. Eur J Med Chem 2019; 177:302-315. [DOI: 10.1016/j.ejmech.2019.05.063] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/18/2019] [Accepted: 05/23/2019] [Indexed: 11/16/2022]
|
11
|
Zhang J, Li X. Intramolecular hydrogen bonding, π-π stacking interactions, and substituent effects of 8-hydroxyquinoline derivative supermolecular structures: a theoretical study. J Mol Model 2019; 25:241. [DOI: 10.1007/s00894-019-4140-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 07/14/2019] [Indexed: 10/26/2022]
|
12
|
da Silva Júnior EN, Jardim GAM, Jacob C, Dhawa U, Ackermann L, de Castro SL. Synthesis of quinones with highlighted biological applications: A critical update on the strategies towards bioactive compounds with emphasis on lapachones. Eur J Med Chem 2019; 179:863-915. [PMID: 31306817 DOI: 10.1016/j.ejmech.2019.06.056] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 06/19/2019] [Accepted: 06/19/2019] [Indexed: 01/04/2023]
Abstract
Naphthoquinones are of key importance in organic synthesis and medicinal chemistry. In the last few years, various synthetic routes have been developed to prepare bioactive compounds derived or based on lapachones. In this sense, this review is mainly focused on the synthetic aspects and strategies used for the design of these compounds on the basis of their biological activities for the development of drugs against the neglected diseases leishmaniases and Chagas disease and also cancer. Three strategies used to develop bioactive quinones are discussed and categorized: (i) C-ring modification, (ii) redox centre modification and (iii) A-ring modification. Framed within these strategies for the development of naphthoquinoidal compounds against T. cruzi. Leishmania and cancer, reactions including copper-catalyzed azide-alkyne cycloaddition (click chemistry), palladium-catalysed cross couplings, C-H activation reactions, Ullmann couplings and heterocyclisations reported up to July 2019 will be discussed. The aim of derivatisation is the generation of novel molecules that can potentially inhibit cellular organelles/processes, generate reactive oxygen species and increase lipophilicity to enhance penetration through the plasma membrane. Modified lapachones have emerged as promising prototypes for the development of drugs against leishmaniases, Chagas disease and cancer.
Collapse
Affiliation(s)
- Eufrânio N da Silva Júnior
- Laboratory of Synthetic and Heterocyclic Chemistry, Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil; Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany.
| | - Guilherme A M Jardim
- Laboratory of Synthetic and Heterocyclic Chemistry, Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil; Federal University of Santa Catarina, Florianópolis, Santa Catarina, 88040-900, Brazil
| | - Claus Jacob
- Division of Bioorganic Chemistry, School of Pharmacy, Saarland University, Campus B2 1, D-66123, Saarbruecken, Germany
| | - Uttam Dhawa
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
| | - Solange L de Castro
- Laboratory of Cell Biology, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, Rio de Janeiro, 21045-900, Brazil
| |
Collapse
|
13
|
Structural, vibrational and quantum chemical investigations for 6,7-dichloro-2-methyl-5,8-quinolinedione. Cytotoxic and molecular docking studies. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2018.05.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Development of novel amino-quinoline-5,8-dione derivatives as NAD(P)H:quinone oxidoreductase 1 (NQO1) inhibitors with potent antiproliferative activities. Eur J Med Chem 2018; 154:199-209. [PMID: 29803003 DOI: 10.1016/j.ejmech.2018.05.025] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 05/16/2018] [Accepted: 05/16/2018] [Indexed: 01/09/2023]
Abstract
Fourteen novel amino-quinoline-5,8-dione derivatives (6a-h and 7a-h) were designed and synthesized by coupling different alkyl- or aryl-amino fragments at the C6- or C7-position of quinoline-5,8-dione. All target compounds showed antiproliferative potency in the low micromolar range in both drug sensitive HeLaS3 and multidrug resistant KB-vin cell lines. Compounds 6h, 6d, 7a, and 7d exhibited more potent antiproliferative effects than the other compounds. Especially, compounds 6d and 7d displayed NQO1-dependent cytotoxicity and competitive NQO1 inhibitory effects in both drug sensitive HeLaS3 and multidrug resistant KB-vin cell lines. Furthermore, compounds 6h, 6d, 7a, and 7d induced a dose-dependent lethal mitochondrial dysfunction in both drug sensitive HeLaS3 and multidrug resistant KB-vin cells by increasing intracellular reactive oxygen species (ROS) levels. Notably, compound 7d selectively inhibited cancer cells, but not non-tumor liver cell proliferation in vitro, and significantly triggered HeLaS3 cell apoptosis by regulating apoptotic proteins of Bcl-2, Bax, and cleaved caspase-3 in a dose-dependent manner. Our findings suggest that these novel C6- or C7-substituted amino-quinoline-5,8-dione derivatives, such as 7d, could be further developed in the future as potent and selective antitumor agents to potentially circumvent multi-drug resistance (MDR).
Collapse
|
15
|
Zhang K, Chen D, Ma K, Wu X, Hao H, Jiang S. NAD(P)H:Quinone Oxidoreductase 1 (NQO1) as a Therapeutic and Diagnostic Target in Cancer. J Med Chem 2018; 61:6983-7003. [DOI: 10.1021/acs.jmedchem.8b00124] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Kuojun Zhang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Dong Chen
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Kun Ma
- Center for Drug Evaluation, China Food and Drug Administration, Beijing 100038, China
| | - Xiaoxing Wu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Haiping Hao
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Sheng Jiang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| |
Collapse
|
16
|
Cu3(BTC)2 as a viable heterogeneous solid catalyst for Friedel-Crafts alkylation of indoles with nitroalkenes. J Colloid Interface Sci 2017; 494:282-289. [DOI: 10.1016/j.jcis.2017.01.091] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 01/20/2017] [Accepted: 01/23/2017] [Indexed: 11/21/2022]
|
17
|
Rao PC, Mandal S. Friedel-Crafts Alkylation of Indoles with Nitroalkenes through Hydrogen-Bond-Donating Metal-Organic Framework. ChemCatChem 2017. [DOI: 10.1002/cctc.201601583] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Purna Chandra Rao
- School of Chemistry; Indian Institute of Science Education and Research Thiruvananthapuram; Thiruvananthapuram Kerala 695016 India
| | - Sukhendu Mandal
- School of Chemistry; Indian Institute of Science Education and Research Thiruvananthapuram; Thiruvananthapuram Kerala 695016 India
| |
Collapse
|
18
|
Ladraa S, Chioua M, Belfaitah A. A Simple and Ecofriendly One-Pot Synthesis of Highly Substituted 3-Cyanopyridine-Quinoline Hybridsviaa Triphenyphosphine-Catalyzed Multicomponent Reaction Under Mild Conditions. J Heterocycl Chem 2016. [DOI: 10.1002/jhet.2631] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Souheila Ladraa
- Laboratoire des Produits Naturels d'Origine Végétale et de Synthèse Organique, Faculté des Sciences Exactes, Campus de Chaabat Ersas; Université des frères Mentouri-Constantine; Constantine 25000 Algeria
| | - Mourad Chioua
- Instituto de Quimica Organica General; Spanish National Research Council; CSIC at C/Serrano, 117 28006 Madrid Spain
| | - Ali Belfaitah
- Laboratoire des Produits Naturels d'Origine Végétale et de Synthèse Organique, Faculté des Sciences Exactes, Campus de Chaabat Ersas; Université des frères Mentouri-Constantine; Constantine 25000 Algeria
| |
Collapse
|
19
|
Kadela M, Jastrzębska M, Bębenek E, Chrobak E, Latocha M, Kusz J, Książek M, Boryczka S. Synthesis, Structure and Cytotoxic Activity of Mono- and Dialkoxy Derivatives of 5,8-Quinolinedione. Molecules 2016; 21:156. [PMID: 26828467 PMCID: PMC6273037 DOI: 10.3390/molecules21020156] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 12/07/2015] [Accepted: 12/11/2015] [Indexed: 11/16/2022] Open
Abstract
A series of 5,8-quinolinedione derivatives containing one or two alkoxy groups was synthesized and characterized by ¹H- and (13)C-NMR, IR and MS spectra. X-ray diffraction was used to investigate the crystal structures of 6-chloro-7-(2-cyjanoethoxy)-5,8-quinolinedione and 6,7-di(2,2,2-trifloroethoxy)-5,8-quinolinedione. All studied compounds were tested in vitro for their antiproliferative activity against three human cancer cell lines and human normal fibroblasts. Most of the compounds showed higher cytotoxicity than the starting compound, 6,7-dichloro-5,8-quinolinedione, and cisplatin, which was used as a reference agent.
Collapse
Affiliation(s)
- Monika Kadela
- Department of Organic Chemistry, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia in Katowice, 4 Jagiellońska Str., 41-200 Sosnowiec, Poland.
| | - Maria Jastrzębska
- Department of Solid State Physics, Institute of Physics, University of Silesia, 4 Uniwersytecka Str., 40-007 Katowice, Poland.
- Silesian Center for Education and Interdisciplinary Research, University of Silesia, 75 Pułku Piechoty 1, 41-500 Chorzów, Poland.
| | - Ewa Bębenek
- Department of Organic Chemistry, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia in Katowice, 4 Jagiellońska Str., 41-200 Sosnowiec, Poland.
| | - Elwira Chrobak
- Department of Organic Chemistry, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia in Katowice, 4 Jagiellońska Str., 41-200 Sosnowiec, Poland.
| | - Małgorzata Latocha
- Department of Cell Biology, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia in Katowice, 8 Jedności Str., 41-200 Sosnowiec, Poland.
| | - Joachim Kusz
- Department of Physics of Crystals, Institute of Physics, University of Silesia, 4 Uniwersytecka Str., 40-007 Katowice, Poland.
| | - Maria Książek
- Department of Solid State Physics, Institute of Physics, University of Silesia, 4 Uniwersytecka Str., 40-007 Katowice, Poland.
| | - Stanisław Boryczka
- Department of Organic Chemistry, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia in Katowice, 4 Jagiellońska Str., 41-200 Sosnowiec, Poland.
| |
Collapse
|
20
|
McGuirk CM, Katz MJ, Stern CL, Sarjeant AA, Hupp JT, Farha OK, Mirkin CA. Turning on catalysis: incorporation of a hydrogen-bond-donating squaramide moiety into a Zr metal-organic framework. J Am Chem Soc 2015; 137:919-25. [PMID: 25574688 DOI: 10.1021/ja511403t] [Citation(s) in RCA: 140] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Herein, we demonstrate that the incorporation of an acidic hydrogen-bond-donating squaramide moiety into a porous UiO-67 metal-organic framework (MOF) derivative leads to dramatic acceleration of the biorelevant Friedel-Crafts reaction between indole and β-nitrostyrene. In comparison, it is shown that free squaramide derivatives, not incorporated into MOF architectures, have no catalytic activity. Additionally, using the UiO-67 template, we were able to perform a direct comparison of catalytic activity with that of the less acidic urea-based analogue. This is the first demonstration of the functionalization of a heterogeneous framework with an acidic squaramide derivative.
Collapse
Affiliation(s)
- C Michael McGuirk
- Department of Chemistry and the International Institute for Nanotechnology, Northwestern University , 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | | | | | | | | | | | | |
Collapse
|
21
|
Afzal O, Kumar S, Haider MR, Ali MR, Kumar R, Jaggi M, Bawa S. A review on anticancer potential of bioactive heterocycle quinoline. Eur J Med Chem 2014; 97:871-910. [PMID: 25073919 DOI: 10.1016/j.ejmech.2014.07.044] [Citation(s) in RCA: 507] [Impact Index Per Article: 50.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 07/08/2014] [Accepted: 07/14/2014] [Indexed: 01/06/2023]
Abstract
The advent of Camptothecin added a new dimension in the field anticancer drug development containing quinoline motif. Quinoline scaffold plays an important role in anticancer drug development as their derivatives have shown excellent results through different mechanism of action such as growth inhibitors by cell cycle arrest, apoptosis, inhibition of angiogenesis, disruption of cell migration, and modulation of nuclear receptor responsiveness. The anti-cancer potential of several of these derivatives have been demonstrated on various cancer cell lines. In this review we have compiled and discussed specifically the anticancer potential of quinoline derivatives, which could provide a low-height flying bird's eye view of the quinoline derived compounds to a medicinal chemist for a comprehensive and target oriented information for development of clinically viable anticancer drugs.
Collapse
Affiliation(s)
- Obaid Afzal
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hamdard University, New Delhi 110062, India
| | - Suresh Kumar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hamdard University, New Delhi 110062, India
| | - Md Rafi Haider
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hamdard University, New Delhi 110062, India
| | - Md Rahmat Ali
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hamdard University, New Delhi 110062, India
| | - Rajiv Kumar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hamdard University, New Delhi 110062, India
| | - Manu Jaggi
- Dabur Research Foundation, Ghaziabad, Uttar Pradesh, India
| | - Sandhya Bawa
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hamdard University, New Delhi 110062, India.
| |
Collapse
|
22
|
2-Substituted 3-methylnaphtho[1,2-b]furan-4,5-diones as novel L-shaped ortho-quinone substrates for NAD(P)H:quinone oxidoreductase (NQO1). Eur J Med Chem 2014; 82:56-67. [DOI: 10.1016/j.ejmech.2014.05.041] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 05/12/2014] [Accepted: 05/13/2014] [Indexed: 11/18/2022]
|
23
|
Lancianesi S, Palmieri A, Petrini M. Synthetic Approaches to 3-(2-Nitroalkyl) Indoles and Their Use to Access Tryptamines and Related Bioactive Compounds. Chem Rev 2014; 114:7108-49. [DOI: 10.1021/cr400676v] [Citation(s) in RCA: 238] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Stefano Lancianesi
- School
of Science and Technology,
Chemistry Division, Università di Camerino, via S. Agostino,
1, I-62032 Camerino, Italy
| | - Alessandro Palmieri
- School
of Science and Technology,
Chemistry Division, Università di Camerino, via S. Agostino,
1, I-62032 Camerino, Italy
| | - Marino Petrini
- School
of Science and Technology,
Chemistry Division, Università di Camerino, via S. Agostino,
1, I-62032 Camerino, Italy
| |
Collapse
|
24
|
Jastrzebska M, Boryczka S, Kadela M, Wrzalik R, Kusz J, Nowak M. Synthesis, crystal structure and infrared spectra of new 6- and 7-propylamine-5,8-quinolinediones. J Mol Struct 2014. [DOI: 10.1016/j.molstruc.2014.03.031] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
25
|
Verma S, Verma D, Jain SL. Magnetically separable palladium–graphene nanocomposite as heterogeneous catalyst for the synthesis of 2-alkylquinolines via one pot reaction of anilines with alkenyl ethers. Tetrahedron Lett 2014. [DOI: 10.1016/j.tetlet.2014.02.120] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
26
|
Xia X, Lin S, Xia XX, Cong FS, Zhong JJ. Significance of agitation-induced shear stress on mycelium morphology and lavendamycin production by engineered Streptomyces flocculus. Appl Microbiol Biotechnol 2014; 98:4399-407. [PMID: 24522728 DOI: 10.1007/s00253-014-5555-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 01/13/2014] [Accepted: 01/18/2014] [Indexed: 11/30/2022]
Abstract
Lavendamycin methyl ester (LME) is a derivative of a highly functionalized aminoquinone alkaloid lavendamycin and could be used as a scaffold for novel anticancer agent development. This work demonstrated LME production by cultivation of an engineered strain of Streptomyces flocculus CGMCC4.1223 ΔstnB1, while the wild-type strain did not produce. To enhance its production, the effect of shear stress and oxygen supply on ΔstnB1 strain cultivation was investigated in detail. In flask culture, when the shaking speed increased from 150 to 220 rpm, the mycelium was altered from a large pellet to a filamentous hypha, and the LME production was almost doubled, while no significant differences were observed among varied filling volumes, which implied a crucial role of shear stress in the morphology and LME production. To confirm this suggestion, experiments with agitation speed ranging from 400 to 1,000 rpm at a fixed aeration rate of 1.0 vvm were conducted in a stirred tank bioreactor. It was found that the morphology became more hairy with reduced pellet size, and the LME production was enhanced threefolds when the agitation speed increased from 400 to 800 rpm. Further experiments by varying initial k L a value at the same agitation speed indicated that oxygen supply only slightly affected the physiological status of ΔstnB1 strain. Altogether, shear stress was identified as a major factor affecting the cell morphology and LME production. The work would be helpful to the production of LME and other secondary metabolites by filamentous microorganism cultivation.
Collapse
Affiliation(s)
- Xue Xia
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai, 200240, China
| | | | | | | | | |
Collapse
|
27
|
|
28
|
Keyari CM, Kearns AK, Duncan NS, Eickholt EA, Abbott G, Beall HD, Diaz P. Synthesis of new quinolinequinone derivatives and preliminary exploration of their cytotoxic properties. J Med Chem 2013; 56:3806-19. [PMID: 23574193 DOI: 10.1021/jm301689x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A series of 7-amino- and 7-acetamidoquinoline-5,8-diones with aryl substituents at the 2-position were synthesized, characterized, and evaluated as potential NAD(P)H:quinone oxidoreductase (NQO1) -directed antitumor agents. The synthesis of lavendamycin analogues is illustrated. Metabolism studies demonstrated that 7-amino analogues were generally better substrates for NQO1 than 7-amido analogues, as were compounds with smaller heteroaromatic substituents at the C-2 position. Surprisingly, only two compounds, 7-acetamido-2-(8'-quinolinyl)quinoline-5,8-dione (11) and 7-amino-2-(2-pyridinyl)quinoline-5,8-dione (23), showed selective cytotoxicity toward the NQO1-expressing MDA468-NQ16 breast cancer cells versus the NQO1-null MDA468-WT cells. For all other compounds, NQO1 protected against quinoline-5,8-dione cytotoxicity. Compound 22 showed potent activity against human breast cancer cells expressing or not expressing NQO1, with respective IC50 values of 190 nM and 140 nM and a low NQO1-mediated reduction rate, which suggests that the mode of action of 22 differs from that of lavendamycin and involves an unidentified target(s).
Collapse
Affiliation(s)
- Charles M Keyari
- Core Laboratory for Neuromolecular Production, Department of Biomedical and Pharmaceutical Sciences, The University of Montana , Missoula, Montana 59812, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Chan SH, Chui CH, Chan SW, Kok SHL, Chan D, Tsoi MYT, Leung PHM, Lam AKY, Chan ASC, Lam KH, Tang JCO. Synthesis of 8-hydroxyquinoline derivatives as novel antitumor agents. ACS Med Chem Lett 2013; 4:170-4. [PMID: 24900641 DOI: 10.1021/ml300238z] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2012] [Accepted: 12/03/2012] [Indexed: 11/30/2022] Open
Abstract
This letter describes the preparation of quinoline derivatives and their cytotoxic potentials toward human carcinoma cell lines. Among the selected compounds, 8-hydroxy-2-quinolinecarbaldehyde (3) showed the best in vitro cytotoxicity against the human cancer cell lines, including MDA231, T-47D, Hs578t, SaoS2, K562, SKHep1 (with a MTS50 range of 12.5-25 μg/mL) and Hep3B (with a MTS50 range of 6.25±0.034 μg/mL). The in vivo antitumor activity of compound 3 on subcutenaous Hep3B hepatocellular carcinoma xenograft in athymic nude mice was then studied. The results showed that the dose of 10 mg/kg/day of compound 3 with intraperitoneal injection for 9 days totally abolished the growth of the xenograft tumor of Hep3B with no histological damage on vital organs as compared with the control. The experimental results suggested that compound 3 has a good potential as an antitumor agent.
Collapse
Affiliation(s)
- Sau Hing Chan
- State Key Laboratory of Chirosciences,
State Key Laboratory of Chinese Medicine and Molecular Pharmacology
(Shenzhen), Lo Ka Chung Centre for Natural Anti-Cancer Drug Development,
Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR,
People's Republic of China
| | - Chung Hin Chui
- Clinical Division, School of
Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, People's Republic of China
| | - Shun Wan Chan
- State Key Laboratory of Chirosciences,
State Key Laboratory of Chinese Medicine and Molecular Pharmacology
(Shenzhen), Lo Ka Chung Centre for Natural Anti-Cancer Drug Development,
Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR,
People's Republic of China
| | - Stanton Hon Lun Kok
- State Key Laboratory of Chirosciences,
State Key Laboratory of Chinese Medicine and Molecular Pharmacology
(Shenzhen), Lo Ka Chung Centre for Natural Anti-Cancer Drug Development,
Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR,
People's Republic of China
| | - Dessy Chan
- State Key Laboratory of Chirosciences,
State Key Laboratory of Chinese Medicine and Molecular Pharmacology
(Shenzhen), Lo Ka Chung Centre for Natural Anti-Cancer Drug Development,
Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR,
People's Republic of China
| | - Miriam Yuen Tung Tsoi
- State Key Laboratory of Chirosciences,
State Key Laboratory of Chinese Medicine and Molecular Pharmacology
(Shenzhen), Lo Ka Chung Centre for Natural Anti-Cancer Drug Development,
Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR,
People's Republic of China
| | - Polly Hang Mei Leung
- Department of Health Technology & Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, People's Republic of China
| | - Alfred King Yin Lam
- Department of Pathology, Griffith
Medical School and Griffith Health Institute, Griffith University, Gold Coast, Queensland, Australia
| | - Albert Sun Chi Chan
- The President Office, Hong Kong Baptist University, Hong Kong SAR, People's
Republic of China
| | - Kim Hung Lam
- State Key Laboratory of Chirosciences,
State Key Laboratory of Chinese Medicine and Molecular Pharmacology
(Shenzhen), Lo Ka Chung Centre for Natural Anti-Cancer Drug Development,
Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR,
People's Republic of China
| | - Johnny Cheuk On Tang
- State Key Laboratory of Chirosciences,
State Key Laboratory of Chinese Medicine and Molecular Pharmacology
(Shenzhen), Lo Ka Chung Centre for Natural Anti-Cancer Drug Development,
Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR,
People's Republic of China
| |
Collapse
|
30
|
Brandy Y, Brandy N, Akinboye E, Lewis M, Mouamba C, Mack S, Butcher RJ, Anderson AJ, Bakare O. Synthesis and characterization of novel unsymmetrical and symmetrical 3-halo- or 3-methoxy-substituted 2-dibenzoylamino-1,4-naphthoquinone derivatives. Molecules 2013; 18:1973-84. [PMID: 23381023 PMCID: PMC3654863 DOI: 10.3390/molecules18021973] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 01/30/2013] [Accepted: 01/30/2013] [Indexed: 01/23/2023] Open
Abstract
Symmetrical and unsymmetrical 3-halo- or 3-methoxy- substituted 2-dibenzoylamino- 1,4-naphthoquinone analogs were synthesized with an average yield of 45% via sodium hydride promoted bis-acylation of 2-amino-3-chloro-1,4-naphthoquinone, 2-amino-3-bromo-1,4-naphthoquinone and 2-amino-3-methoxy-1,4-naphthoquinone.
Collapse
Affiliation(s)
- Yakini Brandy
- Department of Chemistry, Howard University, Washington, DC 20059, USA
| | - Nailah Brandy
- Department of Chemistry, Howard University, Washington, DC 20059, USA
| | - Emmanuel Akinboye
- Department of Chemistry, Howard University, Washington, DC 20059, USA
| | - Malik Lewis
- Department of Chemistry, Howard University, Washington, DC 20059, USA
| | - Claudia Mouamba
- Department of Chemistry, Howard University, Washington, DC 20059, USA
| | - Seshat Mack
- Department of Chemistry, Howard University, Washington, DC 20059, USA
| | - Ray J. Butcher
- Department of Chemistry, Howard University, Washington, DC 20059, USA
| | - Alan J. Anderson
- Department of Natural Sciences, Bowie State University, Bowie, MD 20715, USA
| | - Oladapo Bakare
- Department of Chemistry, Howard University, Washington, DC 20059, USA
| |
Collapse
|
31
|
LIAO K, NIU F, HAO HP, WANG GJ. Advances on structure-activity relationship of NQO1-targeting antitumor quinones. Chin J Nat Med 2012. [DOI: 10.3724/sp.j.1009.2012.00170] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
32
|
Li X, Zheng SL, Li X, Li JL, Qiang O, Liu R, He L. Synthesis and anti-breast cancer activity of new indolylquinone derivatives. Eur J Med Chem 2012; 54:42-8. [DOI: 10.1016/j.ejmech.2012.04.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 04/10/2012] [Accepted: 04/12/2012] [Indexed: 12/24/2022]
|
33
|
Matsubara Y, Hirakawa S, Yamaguchi Y, Yoshida ZI. Assembly of Substituted 2-Alkylquinolines by a Sequential Palladium-Catalyzed CN and CC Bond Formation. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201102076] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
34
|
Matsubara Y, Hirakawa S, Yamaguchi Y, Yoshida ZI. Assembly of Substituted 2-Alkylquinolines by a Sequential Palladium-Catalyzed CN and CC Bond Formation. Angew Chem Int Ed Engl 2011; 50:7670-3. [DOI: 10.1002/anie.201102076] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Indexed: 11/10/2022]
|
35
|
Synthesis and cytotoxic activities of some 2-arylnaphtho[2,3-d]oxazole-4,9-dione derivatives on androgen-dependent (LNCaP) and androgen-independent (PC3) human prostate cancer cell lines. Invest New Drugs 2011; 30:1709-14. [PMID: 21243402 DOI: 10.1007/s10637-011-9635-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Accepted: 01/05/2011] [Indexed: 10/18/2022]
Abstract
The synthesis of five 2-arylnaphtho[2,3-d]oxazole-4,9-dione derivatives was accomplished by refluxing 2-amino-3-bromo-1,4-naphthoquinone with appropriate benzoyl chloride analogs at elevated temperatures. In vitro anticancer evaluation of these compounds was performed on androgen-dependent, LNCaP, and androgen-independent, PC3, human prostate cancer cell lines. In general, these compounds displayed slightly stronger cytotoxicity on the androgen-dependent LNCaP than on the androgen-independent PC3 prostate cancer cell lines. The meta-substituted 2-(3-Chloro-phenyl)-naphtho[2,3-d]oxazole-4,9-dione (10) appear to display the best cytotoxicity on both cell lines with an IC(50) of 0.03 μM on LNCaP and 0.08 μM on PC3 after 5 days of exposure.
Collapse
|