1
|
Abstract
Type III secretion systems (T3SSs) are utilized by Gram-negative pathogens to enhance their pathogenesis. This secretion system is associated with the delivery of effectors through a needle-like structure from the bacterial cytosol directly into a target eukaryotic cell. These effector proteins then manipulate specific eukaryotic cell functions to benefit pathogen survival within the host. The obligate intracellular pathogens of the family Chlamydiaceae have a highly evolutionarily conserved nonflagellar T3SS that is an absolute requirement for their survival and propagation within the host with about one-seventh of the genome dedicated to genes associated with the T3SS apparatus, chaperones, and effectors. Chlamydiae also have a unique biphasic developmental cycle where the organism alternates between an infectious elementary body (EB) and replicative reticulate body (RB). T3SS structures have been visualized on both EBs and RBs. And there are effector proteins that function at each stage of the chlamydial developmental cycle, including entry and egress. This review will discuss the history of the discovery of chlamydial T3SS and the biochemical characterization of components of the T3SS apparatus and associated chaperones in the absence of chlamydial genetic tools. These data will be contextualized into how the T3SS apparatus functions throughout the chlamydial developmental cycle and the utility of heterologous/surrogate models to study chlamydial T3SS. Finally, there will be a targeted discussion on the history of chlamydial effectors and recent advances in the field.
Collapse
Affiliation(s)
- Elizabeth A. Rucks
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Durham Research Center II, Omaha, Nebraska, USA
| |
Collapse
|
2
|
Research Progress on Small Molecular Inhibitors of the Type 3 Secretion System. Molecules 2022; 27:molecules27238348. [PMID: 36500441 PMCID: PMC9740592 DOI: 10.3390/molecules27238348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 12/05/2022] Open
Abstract
The overuse of antibiotics has led to severe bacterial drug resistance. Blocking pathogen virulence devices is a highly effective approach to combating bacterial resistance worldwide. Type three secretion systems (T3SSs) are significant virulence factors in Gram-negative pathogens. Inhibition of these systems can effectively weaken infection whilst having no significant effect on bacterial growth. Therefore, T3SS inhibitors may be a powerful weapon against resistance in Gram-negative bacteria, and there has been increasing interest in the research and development of T3SS inhibitors. This review outlines several reported small-molecule inhibitors of the T3SS, covering those of synthetic and natural origin, including their sources, structures, and mechanisms of action.
Collapse
|
3
|
A small molecule, C24H17ClN4O2S, inhibits the function of the type III secretion system in Salmonella Typhimurium. J Genet Eng Biotechnol 2022; 20:54. [PMID: 35380331 PMCID: PMC8982747 DOI: 10.1186/s43141-022-00336-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 03/22/2022] [Indexed: 11/17/2022]
Abstract
Background Salmonella enterica serovar Typhimurium (S. Typhimurium) causes gastroenteritis and diarrhea in humans and food-producing animals. The type III secretion system (T3SS) has been known to be a potent virulence mechanism by injecting effector proteins into the cytosol of host cells. S. Typhimurium encodes two T3SSs by Salmonella pathogenicity islands 1 and 2. Previous studies showed that T3SS shared a potent virulence mechanism and molecular structure among several gram-negative bacteria. Therefore, T3SS has been identified as an attractive target in the development of novel therapeutics for the treatment of bacterial infections. Several studies reported that small-molecule compounds are able to inhibit functions of bacterial T3SSs. A small molecule, C24H17ClN4O2S, has been shown the ability to inhibit the activity of Yersinia pestis T3SS ATPase, YscN, resulting to block the secretion of effector proteins. In this study, we studied the effects and mechanism for SPI-1 T3SS inhibition of this compound in S. Typhimurium. Results We demonstrated that this compound prohibited the secretion of effector proteins from Salmonella via SPI-1 T3SS at 100 μM. As the result, bacterial invasion ability into epithelial cell cultures was reduced. In contrast with previous study, the C24H17ClN4O2S molecule did not inactivate the activity of SPI-1 T3SS ATPase, InvC, in Salmonella. However, we studied the global cellular effects of S. Typhimurium after being treated with this compound using a quantitative proteomic technique. These proteomic results showed that the main SPI-1 transcription regulator, InvF, and two effector proteins, SipA and SipC, were reduced in bacterial cells treated with the compound. Conclusions It may explain that action of the small-molecule compound, C24H17ClN4O2S, for blocking the secretion of SPI-1 T3SS in Salmonella is through inhibition of SPI-1 regulator, InvF, expression. Further studies are necessary to identify specific mechanisms for inhibition between this small-compound and InvF SPI-1 regulator protein.
Collapse
|
4
|
Krátký M, Konečná K, Brablíková M, Janoušek J, Pflégr V, Maixnerová J, Trejtnar F, Vinšová J. Iodinated 1,2-diacylhydrazines, benzohydrazide-hydrazones and their analogues as dual antimicrobial and cytotoxic agents. Bioorg Med Chem 2021; 41:116209. [PMID: 34015704 DOI: 10.1016/j.bmc.2021.116209] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/03/2021] [Accepted: 05/04/2021] [Indexed: 10/21/2022]
Abstract
Hydrazide-hydrazones have been described as a scaffold with antimicrobial and cytotoxic activities as well as iodinated compounds. A resistance rate of bacterial and fungal pathogens has increased considerably. That is why we synthesized and screened twenty-two iodinated hydrazide-hydrazones 1 and 2, ten 1,2-diacylhydrazines 3 and their three reduced analogues 4 for their antibacterial, antifungal, and cytotoxic properties. Hydrazide-hydrazones were prepared by condensation of 4-substituted benzohydrazides with 2-/4-hydroxy-3,5-diiodobenzaldehydes, diacylhydrazines from identical benzohydrazides and 3,5-diiodosalicylic acid via its chloride. These compounds were investigated in vitro against eight bacterial and eight fungal strains. The derivatives were found potent antibacterial agents against Gram-positive cocci including methicillin-resistant Staphylococcus aureus with the lowest values of minimum inhibitory concentrations (MIC) of 7.81 µM. Four compounds inhibited also human pathogenic fungi (MIC of ≥1.95 µM). The derivatives had different degrees of cytotoxicity for HepG2 and HK-2 cell lines (IC50 values from 11.72 and 26.80 µM, respectively). Importantly, normal human cells exhibited lower sensitivity. The apoptotic effect was also investigated. In general, the presence of 3,5-diiodosalicylidene scaffold (compounds 1) is translated into enhanced both antimicrobial and cytotoxic properties whereas its 4-hydroxy isomers 2 share a low biological activity. N'-Benzoyl-2-hydroxy-3,5-diiodobenzohydrazides 3 have a non-homogeneous activity profile. Focusing on 4-substituted benzohydrazide part, the presence of an electron-withdrawing group (F, Cl, CF3, NO2) was found to be beneficial.
Collapse
Affiliation(s)
- Martin Krátký
- Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic.
| | - Klára Konečná
- Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Michaela Brablíková
- Unipetrol Centre of Research and Education, 436 70 Litvínov-Záluží 1, Czech Republic
| | - Jiří Janoušek
- Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Václav Pflégr
- Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Jana Maixnerová
- Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - František Trejtnar
- Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Jarmila Vinšová
- Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| |
Collapse
|
5
|
Bougherara H, Kadri R, Kadri M, Yekhlef M, Boumaza A. Complex of 4-(2-aminophenyl) −1,2,3- thiadiazole with 2,3-dichloro- 5,6-dicyano-1,4-benzoquinone: Experimental study and investigation at different exchange-correlation functionals. DOS, NBO, QTAIM and RDG analyses. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.128855] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
6
|
Yuan X, Yu M, Yang CH. Innovation and Application of the Type III Secretion System Inhibitors in Plant Pathogenic Bacteria. Microorganisms 2020; 8:microorganisms8121956. [PMID: 33317075 PMCID: PMC7764658 DOI: 10.3390/microorganisms8121956] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/05/2020] [Accepted: 12/07/2020] [Indexed: 12/16/2022] Open
Abstract
Many Gram-negative pathogenic bacteria rely on a functional type III secretion system (T3SS), which injects multiple effector proteins into eukaryotic host cells, for their pathogenicity. Genetic studies conducted in different host-microbe pathosystems often revealed a sophisticated regulatory mechanism of their T3SSs, suggesting that the expression of T3SS is tightly controlled and constantly monitored by bacteria in response to the ever-changing host environment. Therefore, it is critical to understand the regulation of T3SS in pathogenic bacteria for successful disease management. This review focuses on a model plant pathogen, Dickeyadadantii, and summarizes the current knowledge of its T3SS regulation. We highlight the roles of several T3SS regulators that were recently discovered, including the transcriptional regulators: FlhDC, RpoS, and SlyA; the post-transcriptional regulators: PNPase, Hfq with its dependent sRNA ArcZ, and the RsmA/B system; and the bacterial second messenger cyclic-di-GMP (c-di-GMP). Homologs of these regulatory components have also been characterized in almost all major bacterial plant pathogens like Erwiniaamylovora, Pseudomonassyringae, Pectobacterium spp., Xanthomonas spp., and Ralstonia spp. The second half of this review shifts focus to an in-depth discussion of the innovation and development of T3SS inhibitors, small molecules that inhibit T3SSs, in the field of plant pathology. This includes T3SS inhibitors that are derived from plant phenolic compounds, plant coumarins, and salicylidene acylhydrazides. We also discuss their modes of action in bacteria and application for controlling plant diseases.
Collapse
Affiliation(s)
- Xiaochen Yuan
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA;
| | - Manda Yu
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA
- Correspondence: (M.Y.); (C.-H.Y.)
| | - Ching-Hong Yang
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA
- Correspondence: (M.Y.); (C.-H.Y.)
| |
Collapse
|
7
|
Filimonov VO, Dianova LN, Beryozkina TV, Mazur D, Beliaev NA, Volkova NN, Ilkin VG, Dehaen W, Lebedev AT, Bakulev VA. Water/Alkali-Catalyzed Reactions of Azides with 2-Cyanothioacetamides. Eco-Friendly Synthesis of Monocyclic and Bicyclic 1,2,3-Thiadiazole-4-carbimidamides and 5-Amino-1,2,3-triazole-4-carbothioamides. J Org Chem 2019; 84:13430-13446. [PMID: 31547663 DOI: 10.1021/acs.joc.9b01599] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The reactions of thioamides with azides in water were studied. It was reliably shown that the reaction of 2-cyanothioacetamides 1 with various types of azides 2 in water in the presence of alkali presents an efficient, general, one-step, atom-economic, and eco-friendly method for the synthesis of 1,2,3-thiadiazol-4-carbimidamides 5 and 1,2,3-triazole-4-carbothioamides 4. This method can be extended to the one-pot reaction of sulfonyl chlorides and 6-chloropyrimidines 2'o with sodium azide, leading to final products in higher yields, that is, avoiding the isolation of unsafe sulfonyl azides. The method was furthermore applied to the reaction of N,N'-bis-(2-cyanothiocarbonyl)pyrazine 1h with sulfonyl azides to afford bicyclic 1,2,3-thiadiazoles 8 and 1,2,3-triazoles 9 connected via a 1,1'-piperazinyl linker. 2-Cyanothioacetamides 1 were also shown to react with aromatic azides in water in the presence of alkali to afford 1-aryl-5-amino-1,2,3-triazole-4-carbothioamides 11. In contrast to aromatic azides and similarly to sulfonyl azides, 6-azidopyrimidine-2,4-diones 2o-q react with cyanothioacetamides to form N-pyrimidin-6-yl-5-dialkylamino-1,2,3-thiadiazole-4-N-l-carbimidamides 12. A mechanism was proposed to rationalize the role of water in changing the reactivity of azides toward 2-cyanothioacetamides.
Collapse
Affiliation(s)
| | - Lidia N Dianova
- Ural Federal University , 19 Mira St. , Yekaterinburg 620002 , Russia
| | | | - Dmitrii Mazur
- Department of Chemistry , Lomonosov Moscow State University , Moscow 119991 , Russia
| | - Nikolai A Beliaev
- Ural Federal University , 19 Mira St. , Yekaterinburg 620002 , Russia
| | - Natalia N Volkova
- Ural Federal University , 19 Mira St. , Yekaterinburg 620002 , Russia
| | - Vladimir G Ilkin
- Ural Federal University , 19 Mira St. , Yekaterinburg 620002 , Russia
| | - Wim Dehaen
- Molecular Design and Synthesis, Department of Chemistry , KU Leuven , Celestijnenlaan 200F , Leuven B-3001 , Belgium
| | - Albert T Lebedev
- Department of Chemistry , Lomonosov Moscow State University , Moscow 119991 , Russia
| | - Vasiliy A Bakulev
- Ural Federal University , 19 Mira St. , Yekaterinburg 620002 , Russia
| |
Collapse
|
8
|
Gudala S, Ambati SR, Patel JL, Vedula RR, Penta S. An Efficient Synthesis of Pyrazolyl‐1,2,3‐thiadiazoles
via
Hurd–Mori Reaction. J Heterocycl Chem 2019. [DOI: 10.1002/jhet.3609] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Satish Gudala
- Department of ChemistryNational Institute of Technology Raipur 492010 CG India
| | - Srinivasa Rao Ambati
- Department of ChemistryNational Institute of Technology Raipur 492010 CG India
- Department of Research and DevelopmentMSN R&D Center Pashamylarram, Medak 502307 TS India
| | - Jeevan Lal Patel
- Department of ChemistryNational Institute of Technology Raipur 492010 CG India
| | - Rajeswar Rao Vedula
- Department of ChemistryNational Institute of Technology Warangal Telangana India
| | - Santhosh Penta
- Department of ChemistryNational Institute of Technology Raipur 492010 CG India
| |
Collapse
|
9
|
Antimicrobial assesment of aroylhydrazone derivatives in vitro. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2019; 69:277-285. [PMID: 31259730 DOI: 10.2478/acph-2019-0020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/14/2018] [Indexed: 01/19/2023]
Abstract
Aroylhydrazones 1-13 were screened for antimicrobial and antibiofilm activities in vitro. N'-(2-hydroxy-phenylmethylidene)-3-pyridinecarbohydrazide (2), N'-(5-chloro-2-hydroxyphenyl-methylidene)-3-pyridinecarbohydrazide (10), N'-(3,5-chloro-2-hydroxyphenylmethylidene)-3-pyridinecarbohydrazide (11), and N'-(2-hydroxy-5-nitrophenylmethylidene)-3-pyridinecarbohydrazide (12) showed antibacterial activity against Escherichia coli, with MIC values (in µmol mL-1) of 0.18-0.23, 0.11-0.20, 0.16-0.17 and 0.35-0.37, resp. Compounds 11 and 12, as well as N'-(2-hydroxy-3-methoxyphenylmethylidene)-3-pyridinecarbohydrazide (6) and N'-(2-hydroxy-5- methoxyphenylmethylidene)-3-pyridinecarbohydrazide (8) showed antibacterial activity against Staphylococcus aureus, with the lowest MIC values of 0.005-0.2, 0.05-0.12, 0.06-0.48 and 0.17-0.99 µmol mL-1. N'-(2-hydroxy-5-methoxyphenylmethylidene)-3-pyridinecarbohydrazide (7) showed antifungal activity against both fluconazole resistant and susceptible C. albicans strains with IC90 range of 0.18-0.1 µmol mL-1. Only compound 11 showed activity against C. albicans ATCC 10231 comparable to the activity of nystatin (the lowest MIC 4.0 ×10-2 vs. 1.7 × 10-2 µmol mL-1). Good activity regarding multi-resistant clinical strains was observed for compound 12 against MRSA strain (MIC 0.02 µmol mL-1) and compounds 2, 6 and 12 against ESBL+ E. coli MFBF 12794, with the lowest MIC for compound 12 (IC50 0.16 µmol mL-1). Anti-biofilm activity was found for compounds 2 (MBFIC 0.015-0.02 µmol mL-1 against MRSA) and 12 (MBFIC 0.013 µmol mL-1 against EBSL+ E. coli). In the case of compound 2 against MRSA biofilm formation, MBFIC values were comparable to those of gentamicin sulphate, whereas in the case of compound 12 and EBSL+ E. coli even more favourable activity compared to gentamicin was observed.
Collapse
|
10
|
Mojica SA, Eriksson AU, Davis RA, Bahnan W, Elofsson M, Gylfe Å. Red Fluorescent Chlamydia trachomatis Applied to Live Cell Imaging and Screening for Antibacterial Agents. Front Microbiol 2019; 9:3151. [PMID: 30619216 PMCID: PMC6305398 DOI: 10.3389/fmicb.2018.03151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 12/05/2018] [Indexed: 11/13/2022] Open
Abstract
In this study, we describe the application of a transformed Chlamydia trachomatis strain constitutively expressing the red fluorescent protein mCherry, to allow real-time monitoring of the infection cycle and screening for agents that block replication of C. trachomatis. The red fluorescent C. trachomatis strain was detected autonomously without antibody staining and was equally susceptible to doxycycline as the wild type strain. A high-throughput screening assay was developed using the transformed strain and automated fluorescence microscopy. The assay was used in a pilot screen of a 349 compound library containing natural products from Australian flora and fauna. Compounds with anti-chlamydial activity were tested for dose response and toxicity to host cells and two non-toxic compounds had 50% effective concentration (EC50) values in the low micromolar range. Natural products are valuable sources for drug discovery and the identified Chlamydia growth inhibition may be starting points for future drug development. Live cell imaging was used to visualize growth of the red fluorescent C. trachomatis strain over time. The screening assay reduced workload and reagents compared to an assay requiring immunostaining and could further be used to monitor the development of Chlamydia inclusions and anti-chlamydial effect in real time.
Collapse
Affiliation(s)
- Sergio A Mojica
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| | - Anna U Eriksson
- Chemical Biology Consortium Sweden, Laboratories of Chemical Biology, Umeå University, Umeå, Sweden
| | - Rohan A Davis
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD, Australia
| | - Wael Bahnan
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Mikael Elofsson
- Department of Chemistry, Umeå University, Umeå, Sweden.,Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden.,Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Åsa Gylfe
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden.,Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden.,Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| |
Collapse
|
11
|
Puigvert M, Solé M, López‐Garcia B, Coll NS, Beattie KD, Davis RA, Elofsson M, Valls M. Type III secretion inhibitors for the management of bacterial plant diseases. MOLECULAR PLANT PATHOLOGY 2019; 20:20-32. [PMID: 30062690 PMCID: PMC6430469 DOI: 10.1111/mpp.12736] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The identification of chemical compounds that prevent and combat bacterial diseases is fundamental for crop production. Bacterial virulence inhibitors are a promising alternative to classical control treatments, because they have a low environmental impact and are less likely to generate bacterial resistance. The major virulence determinant of most animal and plant bacterial pathogens is the type III secretion system (T3SS). In this work, we screened nine plant extracts and 12 isolated compounds-including molecules effective against human pathogens-for their capacity to inhibit the T3SS of plant pathogens and for their applicability as virulence inhibitors for crop protection. The screen was performed using a luminescent reporter system developed in the model pathogenic bacterium Ralstonia solanacearum. Five synthetic molecules, one natural product and two plant extracts were found to down-regulate T3SS transcription, most through the inhibition of the regulator hrpB. In addition, for three of the molecules, corresponding to salicylidene acylhydrazide derivatives, the inhibitory effect caused a dramatic decrease in the secretion capacity, which was translated into impaired plant responses. These candidate virulence inhibitors were then tested for their ability to protect plants. We demonstrated that salicylidene acylhydrazides can limit R. solanacearum multiplication in planta and protect tomato plants from bacterial speck caused by Pseudomonas syringae pv. tomato. Our work validates the efficiency of transcription reporters to discover compounds or natural product extracts that can be potentially applied to prevent bacterial plant diseases.
Collapse
Affiliation(s)
- Marina Puigvert
- Department of GeneticsUniversity of BarcelonaBarcelona08028CataloniaSpain
- Centre for Research in Agricultural Genomics (CSIC‐IRTA‐UAB‐UB)Bellaterra08193CataloniaSpain
| | - Montserrat Solé
- Centre for Research in Agricultural Genomics (CSIC‐IRTA‐UAB‐UB)Bellaterra08193CataloniaSpain
| | - Belén López‐Garcia
- Centre for Research in Agricultural Genomics (CSIC‐IRTA‐UAB‐UB)Bellaterra08193CataloniaSpain
| | - Núria S. Coll
- Centre for Research in Agricultural Genomics (CSIC‐IRTA‐UAB‐UB)Bellaterra08193CataloniaSpain
| | - Karren D. Beattie
- Griffith Institute for Drug DiscoveryGriffith UniversityQld4111Australia
| | - Rohan A. Davis
- Griffith Institute for Drug DiscoveryGriffith UniversityQld4111Australia
| | | | - Marc Valls
- Department of GeneticsUniversity of BarcelonaBarcelona08028CataloniaSpain
- Centre for Research in Agricultural Genomics (CSIC‐IRTA‐UAB‐UB)Bellaterra08193CataloniaSpain
| |
Collapse
|
12
|
Zetterström CE, Uusitalo P, Qian W, Hinch S, Caraballo R, Grundström C, Elofsson M. Screening for Inhibitors of Acetaldehyde Dehydrogenase (AdhE) from Enterohemorrhagic Escherichia coli (EHEC). SLAS DISCOVERY 2018; 23:815-822. [PMID: 29630847 DOI: 10.1177/2472555218768062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Acetaldehyde dehydrogenase (AdhE) is a bifunctional acetaldehyde-coenzyme A (CoA) dehydrogenase and alcohol dehydrogenase involved in anaerobic metabolism in gram-negative bacteria. This enzyme was recently found to be a key regulator of the type three secretion (T3S) system in Escherichia coli. AdhE inhibitors can be used as tools to study bacterial virulence and a starting point for discovery of novel antibacterial agents. We developed a robust enzymatic assay, based on the acetaldehyde-CoA dehydrogenase activity of AdhE using both absorption and fluorescence detection models (Z' > 0.7). This assay was used to screen ~11,000 small molecules in 384-well format that resulted in three hits that were confirmed by resynthesis and validation. All three compounds are noncompetitive with respect to acetaldehyde and display a clear dose-response effect with hill slopes of 1-2. These new inhibitors will be used as chemical tools to study the interplay between metabolism and virulence and the role of AdhE in T3S regulation in gram-negative bacteria, and as starting points for the development of novel antibacterial agents.
Collapse
Affiliation(s)
- Caroline E Zetterström
- 1 Department of Chemistry, Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Pia Uusitalo
- 1 Department of Chemistry, Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Weixing Qian
- 1 Department of Chemistry, Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Shannon Hinch
- 1 Department of Chemistry, Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Rémi Caraballo
- 1 Department of Chemistry, Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Christin Grundström
- 1 Department of Chemistry, Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Mikael Elofsson
- 1 Department of Chemistry, Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| |
Collapse
|
13
|
Hakobyan S, Rzhepishevska O, Barbero DR, Ramstedt M. Functionalization of zwitterionic polymer brushes, do they remain antifouling? SURF INTERFACE ANAL 2018. [DOI: 10.1002/sia.6376] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
14
|
Zambelloni R, Connolly JPR, Huerta Uribe A, Burgess K, Marquez R, Roe AJ. Novel compounds targeting the enterohemorrhagic Escherichia coli type three secretion system reveal insights into mechanisms of secretion inhibition. Mol Microbiol 2017; 105:606-619. [PMID: 28557017 PMCID: PMC5575525 DOI: 10.1111/mmi.13719] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Anti‐virulence (AV) compounds are a promising alternative to traditional antibiotics for fighting bacterial infections. The Type Three Secretion System (T3SS) is a well‐studied and attractive AV target, given that it is widespread in more than 25 species of Gram‐negative bacteria, including enterohemorrhagic E. coli (EHEC), and as it is essential for host colonization by many pathogens. In this work, we designed, synthesized and tested a new series of compounds that block the functionality of the T3SS of EHEC. Affinity chromatography experiments identified the primary target of the compounds as the T3SS needle pore protein EspD, which is essential for effector protein translocation into host cells. These data were supported by mechanistic studies that determined the coiled‐coil domain 1 of EspD as a key compound‐binding site, thereby preventing correct assembly of the T3SS complex on the cell surface. However, binding of inhibitors to EspD or deletion of EspD itself did not result in transcriptional down‐regulation of effector proteins. Instead, we found the compounds to exhibit dual‐functionality by also down‐regulating transcription of the entire chromosomal locus encoding the T3SS, further demonstrating their desirability and effectiveness.
Collapse
Affiliation(s)
- Riccardo Zambelloni
- Institute of Infection, Immunity & Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - James P R Connolly
- Institute of Infection, Immunity & Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Alejandro Huerta Uribe
- Institute of Infection, Immunity & Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Karl Burgess
- Institute of Infection, Immunity & Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Rodolfo Marquez
- Department of Chemistry, Xi'an Jiaotong-Liverpool University, SIP Suzhou, 215123, China
| | - Andrew J Roe
- Institute of Infection, Immunity & Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| |
Collapse
|
15
|
Filimonov VO, Dianova LN, Galata KA, Beryozkina TV, Novikov MS, Berseneva VS, Eltsov OS, Lebedev AT, Slepukhin PA, Bakulev VA. Switchable Synthesis of 4,5-Functionalized 1,2,3-Thiadiazoles and 1,2,3-Triazoles from 2-Cyanothioacetamides under Diazo Group Transfer Conditions. J Org Chem 2017; 82:4056-4071. [PMID: 28328204 DOI: 10.1021/acs.joc.6b02736] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
High yield solvent-base-controlled, transition metal-free synthesis of 4,5-functionalized 1,2,3-thiadiazoles and 1,2,3-triazoles from 2-cyanothioacetamides and sulfonyl azides is described. Under diazo transfer conditions in the presence of a base in an aprotic solvent 2-cyanothioacetamides operating as C-C-S building blocks produce 5-amino-4-cyano-1,2,3-thiadiazoles exclusively. The use of alkoxide/alcohol system completely switches the reaction course due to the change of one of the reaction centers in the 2-cyanothioacetamide (C-C-N building block) resulting in the formation of 5-sulfonamido-1,2,3-triazole-4-carbothioamide sodium salts as the only products. The latter serve as good precursors for 5-amino-1,2,3-thiadiazole-4-carboximidamides, the products of Cornforth-type rearrangement occurring in neutral protic medium or under acid conditions. According to DFT calculations (B3LYP/6-311+G(d,p)) the rearrangement proceeds via intermediate formation of a diazo compound, and can be catalyzed by acids via the protonation of oxygen atom of the sulfonamide group.
Collapse
Affiliation(s)
- Valeriy O Filimonov
- Ural Federal University named after the first President of Russia B. N. Yeltsin , 19 Mira st., Yekaterinburg 620002, Russia
| | - Lidia N Dianova
- Ural Federal University named after the first President of Russia B. N. Yeltsin , 19 Mira st., Yekaterinburg 620002, Russia
| | - Kristina A Galata
- Ural Federal University named after the first President of Russia B. N. Yeltsin , 19 Mira st., Yekaterinburg 620002, Russia
| | - Tetyana V Beryozkina
- Ural Federal University named after the first President of Russia B. N. Yeltsin , 19 Mira st., Yekaterinburg 620002, Russia
| | - Mikhail S Novikov
- Institute of Chemistry, St. Petersburg State University , 7/9 Universitetskaya nab., St. Petersburg 199034, Russia
| | - Vera S Berseneva
- Ural Federal University named after the first President of Russia B. N. Yeltsin , 19 Mira st., Yekaterinburg 620002, Russia
| | - Oleg S Eltsov
- Ural Federal University named after the first President of Russia B. N. Yeltsin , 19 Mira st., Yekaterinburg 620002, Russia
| | - Albert T Lebedev
- Department of Chemistry, Lomonosov Moscow State University , Moscow 119991, Russia
| | - Pavel A Slepukhin
- Ural Federal University named after the first President of Russia B. N. Yeltsin , 19 Mira st., Yekaterinburg 620002, Russia.,I. Ya. Postovsky Institute of Organic Synthesis, Ural Branch of Russian Academy of Sciences , 20 S. Kovalevskaya st., Yekaterinburg 620990, Russia
| | - Vasiliy A Bakulev
- Ural Federal University named after the first President of Russia B. N. Yeltsin , 19 Mira st., Yekaterinburg 620002, Russia
| |
Collapse
|
16
|
Hakobyan S, Rzhepishevska O, Björn E, Boily JF, Ramstedt M. Influence of chelation strength and bacterial uptake of gallium salicylidene acylhydrazide on biofilm formation and virulence of Pseudomonas aeruginosa. J Inorg Biochem 2016; 160:24-32. [DOI: 10.1016/j.jinorgbio.2016.04.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 03/07/2016] [Accepted: 04/04/2016] [Indexed: 01/13/2023]
|
17
|
McShan AC, De Guzman RN. The bacterial type III secretion system as a target for developing new antibiotics. Chem Biol Drug Des 2015; 85:30-42. [PMID: 25521643 DOI: 10.1111/cbdd.12422] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 08/25/2014] [Accepted: 08/26/2014] [Indexed: 01/14/2023]
Abstract
Antibiotic resistance in pathogens requires new targets for developing novel antibacterials. The bacterial type III secretion system (T3SS) is an attractive target for developing antibacterials as it is essential in the pathogenesis of many Gram-negative bacteria. The T3SS consists of structural proteins, effectors, and chaperones. Over 20 different structural proteins assemble into a complex nanoinjector that punctures a hole on the eukaryotic cell membrane to allow the delivery of effectors directly into the host cell cytoplasm. Defects in the assembly and function of the T3SS render bacteria non-infective. Two major classes of small molecules, salicylidene acylhydrazides and thiazolidinones, have been shown to inhibit multiple genera of bacteria through the T3SS. Many additional chemically and structurally diverse classes of small molecule inhibitors of the T3SS have been identified as well. While specific targets within the T3SS of a few inhibitors have been suggested, the vast majority of specific protein targets within the T3SS remain to be identified or characterized. Other T3SS inhibitors include polymers, proteins, and polypeptides mimics. In addition, T3SS activity is regulated by its interaction with biologically relevant molecules, such as bile salts and sterols, which could serve as scaffolds for drug design.
Collapse
Affiliation(s)
- Andrew C McShan
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, 66045, USA
| | | |
Collapse
|
18
|
Sunduru N, Salin O, Gylfe Å, Elofsson M. Design, synthesis and evaluation of novel polypharmacological antichlamydial agents. Eur J Med Chem 2015. [PMID: 26204507 DOI: 10.1016/j.ejmech.2015.07.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Discovery of new polypharmacological antibacterial agents with multiple modes of actions can be an alternative to combination therapy and also a possibility to slow development of antibiotic resistance. In support to this hypothesis, we synthesized 16 compounds by combining the pharmacophores of Chlamydia trachomatis inhibitors and inhibitors of type III secretion (T3S) in gram-negative bacteria. In this study we have developed salicylidene acylhydrazide sulfonamides (11c &11d) as new antichlamydial agents that also inhibit T3S in Yersinia pseudotuberculosis.
Collapse
Affiliation(s)
- Naresh Sunduru
- Department of Chemistry, Umeå University, SE90187 Umeå, Sweden; Umeå Centre for Microbial Research (UCMR), SE90187 Umeå, Sweden
| | - Olli Salin
- Department of Chemistry, Umeå University, SE90187 Umeå, Sweden; Department of Clinical Microbiology, Umeå University, SE90187 Umeå, Sweden; Umeå Centre for Microbial Research (UCMR), SE90187 Umeå, Sweden
| | - Åsa Gylfe
- Department of Chemistry, Umeå University, SE90187 Umeå, Sweden; Umeå Centre for Microbial Research (UCMR), SE90187 Umeå, Sweden; Molecular Infection Medicine Sweden (MIMS), Umeå University, SE90187 Umeå, Sweden
| | - Mikael Elofsson
- Department of Chemistry, Umeå University, SE90187 Umeå, Sweden; Umeå Centre for Microbial Research (UCMR), SE90187 Umeå, Sweden.
| |
Collapse
|
19
|
Deniz U, Ulgen KO, Ozkirimli E. Identification of potential Tpx inhibitors against pathogen-host interactions. Comput Biol Chem 2015; 58:126-38. [PMID: 26189127 DOI: 10.1016/j.compbiolchem.2015.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 05/21/2015] [Accepted: 05/21/2015] [Indexed: 12/01/2022]
Abstract
Yersinia organisms cause many infectious diseases by invading human cells and delivering their virulence factors via the type three secretion system (T3SS). One alternative strategy in the fight against these pathogenic organisms is to interfere with their T3SS. Previous studies demonstrated that thiol peroxidase, Tpx is functional in the assembly of T3SS and its inhibition by salicylidene acylhydrazides prevents the secretion of pathogenic effectors. In this study, the aim was to identify potential inhibitors of Tpx using an integrated approach starting with high throughput virtual screening and ending with molecular dynamics simulations of selected ligands. Virtual screening of ZINC database of 500,000 compounds via ligand-based and structure-based pharmacophore models retrieved 10,000 hits. The structure-based pharmacophore model was validated using high-throughput virtual screening (HTVS). After multistep docking (SP and XP), common scaffolds were used to find common substructures and the ligand binding poses were optimized using induced fit docking. The stability of the protein-ligand complex was examined with molecular dynamics simulations and the binding free energy of the complex was calculated. As a final outcome eight compounds with different chemotypes were proposed as potential inhibitors for Tpx. The eight ligands identified by a detailed virtual screening protocol can serve as leads in future drug design efforts against the destructive actions of pathogenic bacteria.
Collapse
Affiliation(s)
- Utku Deniz
- Chemical Engineering Department, Bogazici University, Bebek, 34342 Istanbul, Turkey
| | - Kutlu O Ulgen
- Chemical Engineering Department, Bogazici University, Bebek, 34342 Istanbul, Turkey
| | - Elif Ozkirimli
- Chemical Engineering Department, Bogazici University, Bebek, 34342 Istanbul, Turkey.
| |
Collapse
|
20
|
Vasantha K, Basavarajaswamy G, Vaishali Rai M, Boja P, Pai VR, Shruthi N, Bhat M. Rapid ‘one-pot’ synthesis of a novel benzimidazole-5-carboxylate and its hydrazone derivatives as potential anti-inflammatory and antimicrobial agents. Bioorg Med Chem Lett 2015; 25:1420-6. [DOI: 10.1016/j.bmcl.2015.02.043] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 02/05/2015] [Accepted: 02/20/2015] [Indexed: 12/29/2022]
|
21
|
Charro N, Mota LJ. Approaches targeting the type III secretion system to treat or prevent bacterial infections. Expert Opin Drug Discov 2015; 10:373-87. [DOI: 10.1517/17460441.2015.1019860] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Nuno Charro
- 1UCIBIO, REQUIMTE, Departmento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica 2829-516, Portugal
| | - Luís Jaime Mota
- 2UCIBIO, REQUIMTE, Departmento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica 2829-516, Portugal ;
| |
Collapse
|
22
|
Other Related Techniques. UNDERSTANDING THE BASICS OF QSAR FOR APPLICATIONS IN PHARMACEUTICAL SCIENCES AND RISK ASSESSMENT 2015. [PMCID: PMC7149793 DOI: 10.1016/b978-0-12-801505-6.00010-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
With the advances in computational resources, there is an increasing urge among the computational researchers to make the in silico approaches fast, convenient, reproducible, acceptable, and sensible ones. Along with the typical two-dimensional (2D) and three-dimensional (3D) quantitative structure–activity relationship (QSAR) methods, approaches like pharmacophore, structure-based docking studies, and combinations of ligand- and structure-based approaches like comparative residue interaction analysis (CoRIA) and comparative binding energy analysis (COMBINE) have gained a significant popularity in the computational drug design process. A pharmacophore can be developed either in a ligand-based method, by superposing a set of active molecules and extracting common chemical features which are vital for their bioactivity; or in a structure-based manner, by probing probable interaction points between the macromolecular target and ligands. The interaction of protein and ligand molecules with each other is one of the interesting studies in modern molecular biology and molecular recognition. This interaction can well be explained with the conceptof a docking study to show how a molecule can bind to another molecule to exert the bioactivity. Docking and pharmacophore are non-QSAR approaches in in silico drug design that can support the QSAR findings. Approaches like CoRIA and COMBINE can use information generated from the ligand–receptor complexes to extract the critical clue concerning the types of significant interaction at the level of both the receptor and the ligand. Employing the abovementioned ligand- and structure-based methodologies and chemical libraries, virtual screening (VS) emerged as an important tool in the quest to develop novel drug compounds. VS serves as an efficient computational tool that integrates structural data with lead optimization as a cost-effective approach to drug discovery.
Collapse
|
23
|
Abstract
In a screen for compounds that inhibit infectivity of the obligate intracellular pathogen Chlamydia trachomatis, we identified the 2-pyridone amide KSK120. A fluorescent KSK120 analogue was synthesized and observed to be associated with the C. trachomatis surface, suggesting that its target is bacterial. We isolated KSK120-resistant strains and determined that several resistance mutations are in genes that affect the uptake and use of glucose-6-phosphate (G-6P). Consistent with an effect on G-6P metabolism, treatment with KSK120 blocked glycogen accumulation. Interestingly, KSK120 did not affect Escherichia coli or the host cell. Thus, 2-pyridone amides may represent a class of drugs that can specifically inhibit C. trachomatis infection. Chlamydia trachomatis is a bacterial pathogen of humans that causes a common sexually transmitted disease as well as eye infections. It grows only inside cells of its host organism, within a parasitophorous vacuole termed the inclusion. Little is known, however, about what bacterial components and processes are important for C. trachomatis cellular infectivity. Here, by using a visual screen for compounds that affect bacterial distribution within the chlamydial inclusion, we identified the inhibitor KSK120. As hypothesized, the altered bacterial distribution induced by KSK120 correlated with a block in C. trachomatis infectivity. Our data suggest that the compound targets the glucose-6-phosphate (G-6P) metabolism pathway of C. trachomatis, supporting previous indications that G-6P metabolism is critical for C. trachomatis infectivity. Thus, KSK120 may be a useful tool to study chlamydial glucose metabolism and has the potential to be used in the treatment of C. trachomatis infections.
Collapse
|
24
|
Pedersen C, Slepenkin A, Andersson SBE, Fagerberg JH, Bergström CAS, Peterson EM. Formulation of the microbicide INP0341 for in vivo protection against a vaginal challenge by Chlamydia trachomatis. PLoS One 2014; 9:e110918. [PMID: 25356686 PMCID: PMC4214720 DOI: 10.1371/journal.pone.0110918] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 09/24/2014] [Indexed: 11/19/2022] Open
Abstract
The salicylidene acylhydrazide (SA) compounds have exhibited promising microbicidal properties. Previous reports have shown the SA compounds, using cell cultures, to exhibit activity against Chlamydia trachomatis, herpes simplex virus and HIV-1. In addition, using an animal model of a vaginal infection the SA compound INP0341, when dissolved in a liquid, was able to significantly protect mice from a vaginal infection with C. trachomatis. To expand upon this finding, in this report INP0341 was formulated as a vaginal gel, suitable for use in humans. Gelling agents (polymers) with inherent antimicrobial properties were chosen to maximize the total antimicrobial effect of the gel. In vitro formulation work generated a gel with suitable rheology and sustained drug release. A formulation containing 1 mM INP0341, 1.6 wt% Cremophor ELP (solubility enhancer) and 1.5 wt% poly(acrylic acid) (gelling and antimicrobial agent), was chosen for studies of efficacy and toxicity using a mouse model of a vaginal infection. The gel formulation was able to attenuate a vaginal challenge with C. trachomatis, serovar D. Formulations with and without INP0341 afforded protection, but the inclusion of INP0341 increased the protection. Mouse vaginal tissue treated with the formulation showed no indication of gel toxicity. The lack of toxicity was confirmed by in vitro assays using EpiVaginal tissues, which showed that a 24 h exposure to the gel formulation did not decrease the cell viability or the barrier function of the tissue. Therefore, the gel formulation described here appears to be a promising vaginal microbicide to prevent a C. trachomatis infection with the potential to be expanded to other sexually transmitted diseases.
Collapse
Affiliation(s)
- Christian Pedersen
- Department of Pharmacy, Uppsala University, Biomedical Center, Uppsala, Sweden
| | - Anatoly Slepenkin
- Department of Pathology and Laboratory Medicine, University of California Irvine, Irvine, California, United States of America
| | | | - Jonas H. Fagerberg
- Department of Pharmacy, Uppsala University, Biomedical Center, Uppsala, Sweden
| | | | - Ellena M. Peterson
- Department of Pathology and Laboratory Medicine, University of California Irvine, Irvine, California, United States of America
- * E-mail:
| |
Collapse
|
25
|
The gallium(III)–salicylidene acylhydrazide complex shows synergistic anti-biofilm effect and inhibits toxin production by Pseudomonas aeruginosa. J Inorg Biochem 2014; 138:1-8. [DOI: 10.1016/j.jinorgbio.2014.04.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 04/11/2014] [Accepted: 04/14/2014] [Indexed: 11/21/2022]
|
26
|
Bao X, Gylfe A, Sturdevant GL, Gong Z, Xu S, Caldwell HD, Elofsson M, Fan H. Benzylidene acylhydrazides inhibit chlamydial growth in a type III secretion- and iron chelation-independent manner. J Bacteriol 2014; 196:2989-3001. [PMID: 24914180 PMCID: PMC4135636 DOI: 10.1128/jb.01677-14] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 06/04/2014] [Indexed: 11/20/2022] Open
Abstract
Chlamydiae are widespread Gram-negative pathogens of humans and animals. Salicylidene acylhydrazides, developed as inhibitors of type III secretion system (T3SS) in Yersinia spp., have an inhibitory effect on chlamydial infection. However, these inhibitors also have the capacity to chelate iron, and it is possible that their antichlamydial effects are caused by iron starvation. Therefore, we have explored the modification of salicylidene acylhydrazides with the goal to uncouple the antichlamydial effect from iron starvation. We discovered that benzylidene acylhydrazides, which cannot chelate iron, inhibit chlamydial growth. Biochemical and genetic analyses suggest that the derivative compounds inhibit chlamydiae through a T3SS-independent mechanism. Four single nucleotide polymorphisms were identified in a Chlamydia muridarum variant resistant to benzylidene acylhydrazides, but it may be necessary to segregate the mutations to differentiate their roles in the resistance phenotype. Benzylidene acylhydrazides are well tolerated by host cells and probiotic vaginal Lactobacillus species and are therefore of potential therapeutic value.
Collapse
Affiliation(s)
- Xiaofeng Bao
- Department of Pharmacology, Rutgers University Robert Wood Johnson Medical School, Piscataway, New Jersey, USA Department of Pharmacology, Nantong University School of Pharmacy, Nantong, People's Republic of China
| | - Asa Gylfe
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| | - Gail L Sturdevant
- Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Zheng Gong
- Department of Pharmacology, Rutgers University Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | - Shuang Xu
- Department of Pharmacology, Rutgers University Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | - Harlan D Caldwell
- Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | | | - Huizhou Fan
- Department of Pharmacology, Rutgers University Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| |
Collapse
|
27
|
Li J, Sun W, Guo Z, Lu C, Shen Y. Fusaric acid modulates Type Three Secretion System of Salmonella enterica serovar Typhimurium. Biochem Biophys Res Commun 2014; 449:455-9. [PMID: 24853802 DOI: 10.1016/j.bbrc.2014.05.044] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 05/06/2014] [Indexed: 10/25/2022]
Abstract
Natural small-molecule products are promising lead compounds for developing a generation of novel antimicrobials agents to meet the challenge of antibiotic-resistant pathogens. To facilitate the search for novel anti-virulence agents, we chose a virulence factor of Type Three Secretion System (T3SS) as a drug target to screen candidates from a small-molecule library in our laboratory. This study demonstrated fusaric acid had dramatically inhibitory effects on secretion of Salmonella island 1 (SPI-1) effector proteins and invasion of Salmonella into HeLa cells. Moreover, fusaric acid had no inhibitory effects on bacterial growth and viability of host cells. Protein HilA is a key regulator of SPI-1 in Salmonella, which affects transcription of SPI-1 effectors and SPI-1 apparatus genes. In this study, fusaric acid (FA) did not affect secretion of SPI-1 effectors in HilA over-expressed strain, suggesting it did not affect the transcription of SPI-1. In addition, fusaric acid did not affect the protein level of apparatus protein PrgH in SPI-1 needle complex. As a result, we proposed fusaric acid had an inhibitory effect on SPI-1 probably depending on its influence on SicA/InvF. In summary, fusaric acid is a novel inhibitor of T3SS with potential for further developing novel anti-virulence agents.
Collapse
Affiliation(s)
- Jianfang Li
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Weiyang Sun
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Zhixing Guo
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Chunhua Lu
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Yuemao Shen
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China.
| |
Collapse
|
28
|
Hakobyan S, Boily JF, Ramstedt M. Proton and gallium(III) binding properties of a biologically active salicylidene acylhydrazide. J Inorg Biochem 2014; 138:9-15. [PMID: 24837332 DOI: 10.1016/j.jinorgbio.2014.04.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 04/14/2014] [Accepted: 04/15/2014] [Indexed: 11/19/2022]
Abstract
Bacterial biofilm formation causes a range of problems in our society, especially in health care. Salicylidene acylhydrazides (hydrazones) are promising antivirulence drugs targeting secretion systems used during bacterial infection of host cells. When mixed with the gallium ion they become especially potent as bacterial and biofilm growth-suppressing agents, although the mechanisms through which this occurs are not fully understood. At the base of this uncertainty lies the nature of hydrazone-metal interactions. This study addresses this issue by resolving the equilibrium speciation of hydrazone-gallium aqueous solutions. The protonation constants of the target 2-oxo-2-[N-(2,4,6-trihydroxy-benzylidene)-hydrazino]-acetamide (ME0163) hydrazone species and of its 2,4,6-trihydroxybenzaldehyde and oxamic acid hydrazide building blocks were determined by UV-visible spectrophotometry to achieve this goal. These studies show that the hydrazone is an excessively strong complexing agent for gallium and that its antivirulence properties are predominantly ascribed to monomeric 1:1Ga-ME0163 complexes of various Ga hydrolysis and ME0163 protonation states. The chelation of Ga(III) to the hydrazone also increased the stability of the compounds against acid-induced hydrolysis, making this group of compounds very interesting for biological applications where the Fe-antagonist action of both Ga(III) and the hydrazone can be combined for enhanced biological effect.
Collapse
|
29
|
Nagaraju A, Ramulu BJ, Shukla G, Srivastava A, Verma GK, Raghuvanshi K, Singh MS. A facile and straightforward synthesis of 1,2,3-thiadiazoles from α-enolicdithioesters via nitrosation/reduction/diazotization/cyclization cascade in one-pot. Tetrahedron Lett 2014. [DOI: 10.1016/j.tetlet.2014.02.115] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
30
|
Lindgren AEG, Larsson A, Linusson A, Elofsson M. Statistical molecular design: a tool to follow up hits from small-molecule screening. Methods Mol Biol 2014; 1056:169-188. [PMID: 24306873 DOI: 10.1007/978-1-62703-592-7_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
In high-throughput screening (HTS) a robust assay is used to interrogate a large collection of small organic molecules in order to find compounds, hits, with a desired biological activity. The hits are then further explored by an iterative process where new compounds are designed, purchased, or synthesized, followed by an evaluation in one or more assays. Statistical molecular design (SMD) is a useful method to select a balanced, varied, and information-rich compound collection based on hits from HTS in order to create a foundation for development of optimized compounds with improved properties. In this chapter, we describe the use of SMD to explore a hit obtained from small-molecule screening.
Collapse
|
31
|
Yang F, Korban SS, Pusey PL, Elofsson M, Sundin GW, Zhao Y. Small-molecule inhibitors suppress the expression of both type III secretion and amylovoran biosynthesis genes in Erwinia amylovora. MOLECULAR PLANT PATHOLOGY 2014; 15:44-57. [PMID: 23915008 PMCID: PMC6638656 DOI: 10.1111/mpp.12064] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The type III secretion system (T3SS) and exopolysaccharide (EPS) amylovoran are two essential pathogenicity factors in Erwinia amylovora, the causal agent of the serious bacterial disease fire blight. In this study, small molecules that inhibit T3SS gene expression in E. amylovora under hrp (hypersensitive response and pathogenicity)-inducing conditions were identified and characterized using green fluorescent protein (GFP) as a reporter. These compounds belong to salicylidene acylhydrazides and also inhibit amylovoran production. Microarray analysis of E. amylovora treated with compounds 3 and 9 identified a total of 588 significantly differentially expressed genes. Among them, 95 and 78 genes were activated and suppressed by both compounds, respectively, when compared with the dimethylsulphoxide (DMSO) control. The expression of the majority of T3SS genes in E. amylovora, including hrpL and the avrRpt2 effector gene, was suppressed by both compounds. Compound 3 also suppressed the expression of amylovoran precursor and biosynthesis genes. However, both compounds induced significantly the expression of glycogen biosynthesis genes and siderophore biosynthesis, regulatory and transport genes. Furthermore, many membrane, lipoprotein and exported protein-encoding genes were also activated by both compounds. Similar expression patterns were observed for compounds 1, 2 and 4. Using crab apple flower as a model, compound 3 was capable of reducing disease development in pistils. These results suggest a common inhibition mechanism shared by salicylidene acylhydrazides and indicate that small-molecule inhibitors that disable T3SS function could be explored to control fire blight disease.
Collapse
Affiliation(s)
- Fan Yang
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | | | | | | | | | | |
Collapse
|
32
|
The resveratrol tetramer (-)-hopeaphenol inhibits type III secretion in the gram-negative pathogens Yersinia pseudotuberculosis and Pseudomonas aeruginosa. PLoS One 2013; 8:e81969. [PMID: 24324737 PMCID: PMC3853165 DOI: 10.1371/journal.pone.0081969] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 10/18/2013] [Indexed: 11/19/2022] Open
Abstract
Society faces huge challenges, as a large number of bacteria have developed resistance towards many or all of the antibiotics currently available. Novel strategies that can help solve this problem are urgently needed. One such strategy is to target bacterial virulence, the ability to cause disease e.g., by inhibition of type III secretion systems (T3SSs) utilized by many clinically relevant gram-negative pathogens. Many of the antibiotics used today originate from natural sources. In contrast, most virulence-blocking compounds towards the T3SS identified so far are small organic molecules. A recent high-throughput screening of a prefractionated natural product library identified the resveratrol tetramer (-)-hopeaphenol as an inhibitor of the T3SS in Yersinia pseudotuberculosis. In this study we have investigated the virulence blocking properties of (-)-hopeaphenol in three different gram-negative bacteria. (-)-Hopeaphenol was found to have micromolar activity towards the T3SSs in Yersinia pseudotuberculosis and Pseudomonas aeruginosa in cell-based infection models. In addition (-)-hopeaphenol reduced cell entry and subsequent intracellular growth of Chlamydia trachomatis.
Collapse
|
33
|
Mutations in hemG mediate resistance to salicylidene acylhydrazides, demonstrating a novel link between protoporphyrinogen oxidase (HemG) and Chlamydia trachomatis infectivity. J Bacteriol 2013; 195:4221-30. [PMID: 23852872 DOI: 10.1128/jb.00506-13] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Salicylidene acylhydrazides (SAHs) inhibit the type III secretion system (T3S) of Yersinia and other Gram-negative bacteria. In addition, SAHs restrict the growth and development of Chlamydia species. However, since the inhibition of Chlamydia growth by SAH is suppressed by the addition of excess iron and since SAHs have an iron-chelating capacity, their role as specific T3S inhibitors is unclear. We investigated here whether SAHs exhibit a function on C. trachomatis that goes beyond iron chelation. We found that the iron-saturated SAH INP0341 (IS-INP0341) specifically affects C. trachomatis infectivity with reduced generation of infectious elementary body (EB) progeny. Selection and isolation of spontaneous SAH-resistant mutant strains revealed that mutations in hemG suppressed the reduced infectivity caused by IS-INP0341 treatment. Structural modeling of C. trachomatis HemG predicts that the acquired mutations are located in the active site of the enzyme, suggesting that IS-INP0341 inhibits this domain of HemG and that protoporphyrinogen oxidase (HemG) and heme metabolism are important for C. trachomatis infectivity.
Collapse
|
34
|
Cytosporone B, an inhibitor of the type III secretion system of Salmonella enterica serovar Typhimurium. Antimicrob Agents Chemother 2013; 57:2191-8. [PMID: 23459474 DOI: 10.1128/aac.02421-12] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Bacterial virulence factors have been increasingly regarded as attractive targets for development of novel antibacterial agents. Virulence inhibitors are less likely to generate bacterial resistance, which makes them superior to traditional antibiotics that target bacterial viability. Salmonella enterica serovar Typhimurium, an important food-borne human pathogen, has type III secretion system (T3SS) as its major virulence factor. T3SS secretes effector proteins to facilitate invasion into host cells. In this study, we identified several analogs of cytosporone B (Csn-B) that strongly block the secretion of Salmonella pathogenicity island 1 (SPI-1)-associated effector proteins, without affecting the secretion of flagellar protein FliC in vitro. Csn-B and two other derivatives exhibited a strong inhibitory effect on SPI-1-mediated invasion to HeLa cells, while no significant toxicity to bacteria was observed. Nucleoid proteins Hha and H-NS bind to the promoters of SPI-1 regulator genes hilD, hilC, and rtsA to repress their expression and consequently regulate the expression of SPI-1 apparatus and effector genes. We found that Csn-B upregulated the transcription of hha and hns, implying that Csn-B probably affected the secretion of effectors through the Hha-H-NS regulatory pathway. In summary, this study presented an effective SPI-1 inhibitor, Csn-B, which may have potential in drug development against antibiotic-resistant Salmonella.
Collapse
|
35
|
Martinez-Argudo I, Veenendaal AKJ, Liu X, Roehrich AD, Ronessen MC, Franzoni G, van Rietschoten KN, Morimoto YV, Saijo-Hamano Y, Avison MB, Studholme DJ, Namba K, Minamino T, Blocker AJ. Isolation of Salmonella mutants resistant to the inhibitory effect of Salicylidene acylhydrazides on flagella-mediated motility. PLoS One 2013; 8:e52179. [PMID: 23300965 PMCID: PMC3534715 DOI: 10.1371/journal.pone.0052179] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 11/12/2012] [Indexed: 12/23/2022] Open
Abstract
Salicylidene acylhydrazides identified as inhibitors of virulence-mediating type III secretion systems (T3SSs) potentially target their inner membrane export apparatus. They also lead to inhibition of flagellar T3SS-mediated swimming motility in Salmonella enterica serovar. Typhimurium. We show that INP0404 and INP0405 act by reducing the number of flagella/cell. These molecules still inhibit motility of a Salmonella ΔfliH-fliI-fliJ/flhB(P28T) strain, which lacks three soluble components of the flagellar T3S apparatus, suggesting that they are not the target of this drug family. We implemented a genetic screen to search for the inhibitors' molecular target(s) using motility assays in the ΔfliH-fliI/flhB(P28T) background. Both mutants identified were more motile than the background strain in the absence of the drugs, although HM18 was considerably more so. HM18 was more motile than its parent strain in the presence of both drugs while DI15 was only insensitive to INP0405. HM18 was hypermotile due to hyperflagellation, whereas DI15 was not hyperflagellated. HM18 was also resistant to a growth defect induced by high concentrations of the drugs. Whole-genome resequencing of HM18 indicated two alterations within protein coding regions, including one within atpB, which encodes the inner membrane a-subunit of the FOF1-ATP synthase. Reverse genetics indicated that the alteration in atpB was responsible for all of HM18's phenotypes. Genome sequencing of DI15 uncovered a single A562P mutation within a gene encoding the flagellar inner membrane protein FlhA, the direct role of which in mediating drug insensitivity could not be confirmed. We discuss the implications of these findings in terms of T3SS export apparatus function and drug target identification.
Collapse
Affiliation(s)
- Isabel Martinez-Argudo
- Schools of Cellular & Molecular Medicine and Biochemistry, University of Bristol, Bristol, United Kingdom
| | - Andreas K. J. Veenendaal
- Schools of Cellular & Molecular Medicine and Biochemistry, University of Bristol, Bristol, United Kingdom
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Xia Liu
- Schools of Cellular & Molecular Medicine and Biochemistry, University of Bristol, Bristol, United Kingdom
| | - A. Dorothea Roehrich
- Schools of Cellular & Molecular Medicine and Biochemistry, University of Bristol, Bristol, United Kingdom
| | - Maria C. Ronessen
- Schools of Cellular & Molecular Medicine and Biochemistry, University of Bristol, Bristol, United Kingdom
| | - Giulia Franzoni
- Schools of Cellular & Molecular Medicine and Biochemistry, University of Bristol, Bristol, United Kingdom
| | | | - Yusuke V. Morimoto
- Graduate School of Frontier Biosciences, University of Osaka, Osaka, Japan
| | | | - Matthew B. Avison
- Schools of Cellular & Molecular Medicine and Biochemistry, University of Bristol, Bristol, United Kingdom
| | - David J. Studholme
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Keiichi Namba
- Graduate School of Frontier Biosciences, University of Osaka, Osaka, Japan
| | - Tohru Minamino
- Graduate School of Frontier Biosciences, University of Osaka, Osaka, Japan
- Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
| | - Ariel J. Blocker
- Schools of Cellular & Molecular Medicine and Biochemistry, University of Bristol, Bristol, United Kingdom
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
36
|
Tsou LK, Dossa PD, Hang HC. Small molecules aimed at type III secretion systems to inhibit bacterial virulence. MEDCHEMCOMM 2013; 4:68-79. [PMID: 23930198 DOI: 10.1039/c2md20213a] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The development of new anti-bacterial compounds presents a major challenge to modern medicine as bacterial strains resistant to traditional antibiotics are constantly emerging.
Collapse
Affiliation(s)
- Lun K Tsou
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York, NY 10065, USA
| | | | | |
Collapse
|
37
|
Small molecule screening for inhibitors of the YopH phosphatase of Yersinia pseudotuberculosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 954:357-63. [PMID: 22782782 DOI: 10.1007/978-1-4614-3561-7_43] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
|
38
|
Chemical inhibitors of the type three secretion system: disarming bacterial pathogens. Antimicrob Agents Chemother 2012; 56:5433-41. [PMID: 22850518 DOI: 10.1128/aac.00975-12] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The recent and dramatic rise of antibiotic resistance among bacterial pathogens underlies the fear that standard treatments for infectious disease will soon be largely ineffective. Resistance has evolved against nearly every clinically used antibiotic, and in the near future, we may be hard-pressed to treat bacterial infections previously conquered by "magic bullet" drugs. While traditional antibiotics kill or slow bacterial growth, an important emerging strategy to combat pathogens seeks to block the ability of bacteria to harm the host by inhibiting bacterial virulence factors. One such virulence factor, the type three secretion system (T3SS), is found in over two dozen Gram-negative pathogens and functions by injecting effector proteins directly into the cytosol of host cells. Without T3SSs, many pathogenic bacteria are unable to cause disease, making the T3SS an attractive target for novel antimicrobial drugs. Interdisciplinary efforts between chemists and microbiologists have yielded several T3SS inhibitors, including the relatively well-studied salicylidene acylhydrazides. This review highlights the discovery and characterization of T3SS inhibitors in the primary literature over the past 10 years and discusses the future of these drugs as both research tools and a new class of therapeutic agents.
Collapse
|
39
|
In vitro anti-HIV-1 activity of salicylidene acylhydrazide compounds. Int J Antimicrob Agents 2012; 40:354-60. [PMID: 22819150 DOI: 10.1016/j.ijantimicag.2012.05.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 05/10/2012] [Accepted: 05/24/2012] [Indexed: 12/26/2022]
Abstract
Salicylidene acylhydrazide compounds have been shown to inhibit bacterial pathogens, including Chlamydia and Neisseria gonorrhoeae. If such compounds could also target HIV-1, their potential use as topical microbicides to prevent sexually transmitted infections would be considerable. In this study, the in vitro anti-HIV-1 activity, cytotoxicity and mechanism of action of several salicylidene acylhydrazides were determined. Inhibitory activity was assessed using TZM-bl cells and primary peripheral blood mononuclear cells (PBMCs) as targets for HIV-1 infection. Antiviral activity was measured against cell-free and cell-associated virus and in vaginal fluid and semen simulants. Since the antibacterial activity of salicylidene acylhydrazides is reversible by Fe(2+), the ability of Fe(2+) and other cations to reverse the anti-HIV-1 activity of the compounds was determined. Real-time PCR was also employed to determine the stage affected in the HIV-1 replication cycle. Four compounds with 50% inhibitory concentrations against HIV-1 of 1-7 μM were identified. In vitro toxicity varied but was generally limited. Activity was similar against three R5 clade B primary isolates and whether the target for virus replication was TZM-bl cells or PBMCs. Compounds inhibited cell-free and cell-associated virus and were active in vaginal fluid and semen simulants. Fe(2+), but not other cations, reversed the anti-HIV-1 effect. Finally, the inhibitory effect of the compounds occurred at a post-integration step. In conclusion, salicylidene acylhydrazides were identified with in vitro anti-HIV-1 activity in the micromolar range. The activity of these compounds against other sexually transmitted pathogens makes them potential candidates to formulate for use as a broad-spectrum topical genital microbicide.
Collapse
|
40
|
Ur-Rehman T, Slepenkin A, Chu H, Blomgren A, Dahlgren MK, Zetterström CE, Peterson EM, Elofsson M, Gylfe A. Pre-clinical pharmacokinetics and anti-chlamydial activity of salicylidene acylhydrazide inhibitors of bacterial type III secretion. J Antibiot (Tokyo) 2012; 65:397-404. [PMID: 22669447 PMCID: PMC3428607 DOI: 10.1038/ja.2012.43] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Salicylidene acylhydrazides belong to a class of compounds shown to inhibit bacterial type III secretion (T3S) in pathogenic Gram-negative bacteria. This class of compounds also inhibits growth and replication of Chlamydiae, strict intracellular bacteria that possess a T3S system. In this study a library of 58 salicylidene acylhydrazides was screened to identify inhibitors of Chlamydia growth. Compounds inhibiting growth of both Chlamydia trachomatis and Chlamydophila pneumoniae were tested for cell toxicity and seven compounds were selected for preliminary pharmacokinetic analysis in mice using cassette dosing. Two compounds, ME0177 and ME0192, were further investigated by individual pharmacokinetic analysis. Compound ME0177 had a relatively high peak plasma concentration (Cmax) and area under curve and therefore may be considered for systemic treatment of Chlamydia infections. The other compound, ME0192, had poor pharmacokinetic properties but the highest anti-chlamydial activity in vitro and therefore was tested for topical treatment in a mouse vaginal infection model. ME0192 administered vaginally significantly reduced the infectious burden of C. trachomatis and the number of infected mice.
Collapse
|
41
|
Derivatives of 8-hydroxyquinoline—antibacterial agents that target intra- and extracellular Gram-negative pathogens. Bioorg Med Chem Lett 2012; 22:3550-3. [DOI: 10.1016/j.bmcl.2012.03.096] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 03/09/2012] [Accepted: 03/10/2012] [Indexed: 01/07/2023]
|
42
|
Manchester JI, Buurman ET, Bisacchi GS, McLaughlin RE. Molecular Determinants of AcrB-Mediated Bacterial Efflux Implications for Drug Discovery. J Med Chem 2012; 55:2532-7. [DOI: 10.1021/jm201275d] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- John I. Manchester
- Department of Chemistry and ‡Department of Bioscience, Infection Innovative Medicines Unit, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Ed T. Buurman
- Department of Chemistry and ‡Department of Bioscience, Infection Innovative Medicines Unit, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Gregory S. Bisacchi
- Department of Chemistry and ‡Department of Bioscience, Infection Innovative Medicines Unit, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Robert E. McLaughlin
- Department of Chemistry and ‡Department of Bioscience, Infection Innovative Medicines Unit, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| |
Collapse
|
43
|
Ur-Rehman T, Nordfelth R, Blomgren A, Zetterström CE, Elofsson M, Gylfe A. Preliminary pharmacokinetics of the bacterial virulence inhibitor n'-(3,5-dibromo-2-hydroxy-benzylidenene)-nicotinic Acid hydrazide. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 954:349-56. [PMID: 22782781 DOI: 10.1007/978-1-4614-3561-7_42] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
44
|
Slepenkin A, Chu H, Elofsson M, Keyser P, Peterson EM. Protection of mice from a Chlamydia trachomatis vaginal infection using a Salicylidene acylhydrazide, a potential microbicide. J Infect Dis 2011; 204:1313-20. [PMID: 21933873 DOI: 10.1093/infdis/jir552] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The salicylidene acylhydrazide INP0341 inhibits growth of Chlamydia in HeLa cells, has negligible cell toxicity, and does not inhibit the growth of lactobacilli. The antichlamydial activity of INP0341 was retained when tested in vaginal and semen simulants. Vaginal tissue from INP0341-treated mice appeared similar to control sham-treated mice. To determine whether INP0341 can protect mice from a vaginal challenge, C3H/HeJ mice were either sham or INP0341 treated intravaginally pre- and postinoculation with 5 × 10(2) inclusion-forming units (IFUs) of Chlamydia trachomatis serovar D. Vaginal cultures taken over a month-long period showed a significant difference in the number of control mice that were culture positive versus the number in the INP0341-treated group, 100% (25/25) and 31% (8/26), respectively (P < .05). The quantity of IFUs shed and antibody titers to Chlamydia were significantly higher for the control group (P < .05). In summary, INP0341 is a promising compound to be considered for formulation as a vaginal microbicide.
Collapse
Affiliation(s)
- Anatoly Slepenkin
- Department of Pathology and Laboratory Medicine, University of California, Irvine, CA 92697-4800, USA
| | | | | | | | | |
Collapse
|
45
|
Liew CY, Lim YC, Yap CW. Mixed learning algorithms and features ensemble in hepatotoxicity prediction. J Comput Aided Mol Des 2011; 25:855-71. [DOI: 10.1007/s10822-011-9468-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Accepted: 08/23/2011] [Indexed: 12/22/2022]
|
46
|
Puiac S, Sem X, Negrea A, Rhen M. Small-molecular virulence inhibitors show divergent and immunomodulatory effects in infection models of Salmonella enterica serovar Typhimurium. Int J Antimicrob Agents 2011; 38:409-16. [PMID: 21821398 DOI: 10.1016/j.ijantimicag.2011.06.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 06/14/2011] [Accepted: 06/15/2011] [Indexed: 12/11/2022]
Abstract
The virulence-associated Salmonella pathogenicity island 2 (SPI2) type III secretion system supports intracellular replication of Salmonella enterica serovar Typhimurium in macrophage-like RAW264.7 cells. In contrast, the salicylidene acylhydrazide INP0010 and the benzimidazole omeprazole prevent virulence factor-mediated replication of S. Typhimurium in these cells. Here we show that INP0010 enhances expression of inducible nitric oxide synthase (iNOS), nitric oxide (NO) production, the oxidative burst and tumour necrosis factor-alpha (TNFα) release in infected RAW264.7 cells. INP0010 also inhibited SPI2 activity in RAW264.7 cells. The ability of INP0010 to suppress bacterial intracellular replication correlated with NO production. The iNOS inhibitor N-monomethyl-l-arginine restored SPI2 activity and antagonised the bacteriostatic effect of INP0010. Omeprazole, which inhibited iNOS expression in RAW264.7 cells, likewise antagonised INP0010. In infected epithelioid MDCK cells that did not express NO upon infection, INP0010 enhanced bacterial intracellular replication. In Caenorhabditis elegans, INP0010 significantly attenuated the virulence of S. Typhimurium. In this infection model, the attenuating effect of INP0010 was further enhanced by omeprazole. These results demonstrate that chemically unrelated virulence inhibitors may act in an antagonistic or additive manner, that their effect depends on the infection model applied, and that the attenuating effects of INP0010 in part relate to its ability to promote the SPI2 antagonist NO.
Collapse
Affiliation(s)
- Speranta Puiac
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Nobels väg 16, SE-171 77 Stockholm, Sweden
| | | | | | | |
Collapse
|
47
|
Wang D, Zetterström CE, Gabrielsen M, Beckham KSH, Tree JJ, Macdonald SE, Byron O, Mitchell TJ, Gally DL, Herzyk P, Mahajan A, Uvell H, Burchmore R, Smith BO, Elofsson M, Roe AJ. Identification of bacterial target proteins for the salicylidene acylhydrazide class of virulence-blocking compounds. J Biol Chem 2011; 286:29922-31. [PMID: 21724850 PMCID: PMC3191033 DOI: 10.1074/jbc.m111.233858] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
A class of anti-virulence compounds, the salicylidene acylhydrazides, has been widely reported to block the function of the type three secretion system of several Gram-negative pathogens by a previously unknown mechanism. In this work we provide the first identification of bacterial proteins that are targeted by this group of compounds. We provide evidence that their mode of action is likely to result from a synergistic effect arising from a perturbation of the function of several conserved proteins. We also examine the contribution of selected target proteins to the pathogenicity of Yersinia pseudotuberculosis and to expression of virulence genes in Escherichia coli O157.
Collapse
Affiliation(s)
- Dai Wang
- Institute of Infection, Immunity, and Inflammation, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Yin S, Davis RA, Shelper T, Sykes ML, Avery VM, Elofsson M, Sundin C, Quinn RJ. Pseudoceramines A–D, new antibacterial bromotyrosine alkaloids from the marine sponge Pseudoceratina sp. Org Biomol Chem 2011; 9:6755-60. [DOI: 10.1039/c1ob05581j] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
49
|
Synthesis of [4-(2-hydroxyphenyl)thiazol-2-yl]methanones as potential bioisosteres of salicylidene acylhydrazides. Molecules 2010; 15:6019-34. [PMID: 20877207 PMCID: PMC6257736 DOI: 10.3390/molecules15096019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Revised: 08/26/2010] [Accepted: 08/30/2010] [Indexed: 12/24/2022] Open
Abstract
A focused library of [4-(2-hydroxyphenyl)thiazol-2-yl]methanones was prepared in a four-step synthesis with the aim to obtain potent inhibitors of type III secretion in Gram-negative bacteria. The compounds are potential bioisosteres of salicylidene acylhydrazides that are a known class of type III secretion inhibitors.
Collapse
|
50
|
Dahlgren MK, Öberg CT, Wallin EA, Janson PG, Elofsson M. Synthesis of 2-(2-aminopyrimidine)-2,2-difluoroethanols as potential bioisosters of salicylidene acylhydrazides. Molecules 2010; 15:4423-38. [PMID: 20657451 PMCID: PMC6264576 DOI: 10.3390/molecules15064423] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Revised: 06/11/2010] [Accepted: 06/17/2010] [Indexed: 01/06/2023] Open
Abstract
Salicylidene acylhydrazides are inhibitors of type III secretion in several Gram-negative pathogens. To further develop the salicylidene acylhydrazides, scaffold hopping was applied to replace the core fragment of the compounds. The novel 2-(2-amino-pyrimidine)-2,2-difluoroethanol scaffold was identified as a possible analog to the salicylidene acylhydrazide core structure. The synthesis of a library of 2-(2-amino-pyrimidine)-2,2-difluoro-ethanols is described in this paper.
Collapse
Affiliation(s)
| | | | | | | | - Mikael Elofsson
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +46-90-7869328
| |
Collapse
|