1
|
Chambers C, Chitwood B, Smith CJ, Miao Y. Elevating theranostics: The emergence and promise of radiopharmaceutical cell-targeting heterodimers in human cancers. IRADIOLOGY 2024; 2:128-155. [PMID: 38708130 PMCID: PMC11067702 DOI: 10.1002/ird3.62] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 01/30/2024] [Indexed: 05/07/2024]
Abstract
Optimal therapeutic and diagnostic efficacy is essential for healthcare's global mission of advancing oncologic drug development. Accurate diagnosis and detection are crucial prerequisites for effective risk stratification and personalized patient care in clinical oncology. A paradigm shift is emerging with the promise of multi-receptor-targeting compounds. While existing detection and staging methods have demonstrated some success, the traditional approach of monotherapy is being reevaluated to enhance therapeutic effectiveness. Heterodimeric site-specific agents are a versatile solution by targeting two distinct biomarkers with a single theranostic agent. This review describes the innovation of dual-targeting compounds, examining their design strategies, therapeutic implications, and the promising path they present for addressing complex diseases.
Collapse
Affiliation(s)
- Claudia Chambers
- Molecular Imaging and Theranostics Center, Columbia, Missouri, USA
- Research Division, Harry S. Truman Memorial Veterans’ Hospital, Columbia, Missouri, USA
- Department of Chemistry, University of Missouri, Columbia, Missouri, USA
| | - Broc Chitwood
- Molecular Imaging and Theranostics Center, Columbia, Missouri, USA
| | - Charles J. Smith
- Molecular Imaging and Theranostics Center, Columbia, Missouri, USA
- Research Division, Harry S. Truman Memorial Veterans’ Hospital, Columbia, Missouri, USA
- Department of Radiology, University of Missouri School of Medicine, Columbia, Missouri, USA
- University of Missouri Research Reactor Center, University of Missouri, Columbia, Missouri, USA
| | - Yubin Miao
- Department of Radiology, University of Colorado Denver, Aurora, Colorado, USA
| |
Collapse
|
2
|
Szabó I, Biri-Kovács B, Vári B, Ranđelović I, Vári-Mező D, Juhász É, Halmos G, Bősze S, Tóvári J, Mező G. Targeting the Melanocortin 1 Receptor in Melanoma: Biological Activity of α-MSH-Peptide Conjugates. Int J Mol Sci 2024; 25:1095. [PMID: 38256168 PMCID: PMC10816934 DOI: 10.3390/ijms25021095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/12/2024] [Accepted: 01/14/2024] [Indexed: 01/24/2024] Open
Abstract
Malignant melanoma is one of the most aggressive and resistant tumor types, with high metastatic properties. Because of the lack of suitable chemotherapeutic agents for treatment, the 5-year survival rate of melanoma patients with regional and distant metastases is lower than 10%. Targeted tumor therapy that provides several promising results might be a good option for the treatment of malignant melanomas. Our goal was to develop novel melanoma-specific peptide-drug conjugates for targeted tumor therapy. Melanocortin-1-receptor (MC1R) is a cell surface receptor responsible for melanogenesis and it is overexpressed on the surface of melanoma cells, providing a good target. Its native ligand, α-MSH (α-melanocyte-stimulating hormone) peptide, or its derivatives, might be potential homing devices for this purpose. Therefore, we prepared three α-MSH derivative-daunomycin (Dau) conjugates and their in vitro and in vivo antitumor activities were compared. Dau has an autofluorescence property; therefore, it is suitable for preparing conjugates for in vitro (e.g., cellular uptake) and in vivo experiments. Dau was attached to the peptides via a non-cleavable oxime linkage that was applied efficiently in our previous experiments, resulting in conjugates with high tumor growth inhibition activity. The results indicated that the most promising conjugate was the compound in which Dau was connected to the side chain of Lys (Ac-SYSNleEHFRWGK(Dau=Aoa)PV-NH2). The highest cellular uptake by melanoma cells was demonstrated using the compound, with the highest tumor growth inhibition detected both on mouse (38.6% on B16) and human uveal melanoma (55% on OMC-1) cells. The effect of the compound was more pronounced than that of the free drug.
Collapse
Affiliation(s)
- Ildikó Szabó
- HUN-REN–ELTE Research Group of Peptide Chemistry, 1117 Budapest, Hungary; (I.S.); (B.B.-K.); (D.V.-M.); (S.B.)
- MTA-TTK “Momentum” Peptide-Based Vaccines Research Group, Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences, 1117 Budapest, Hungary
| | - Beáta Biri-Kovács
- HUN-REN–ELTE Research Group of Peptide Chemistry, 1117 Budapest, Hungary; (I.S.); (B.B.-K.); (D.V.-M.); (S.B.)
| | - Balázs Vári
- National Tumor Biology Laboratory, Department of Experimental Pharmacology, National Institute of Oncology, 1122 Budapest, Hungary; (B.V.); (I.R.); (J.T.)
- School of Ph.D. Studies, Doctoral School of Pathological Sciences, Semmelweis University, 1085 Budapest, Hungary
| | - Ivan Ranđelović
- National Tumor Biology Laboratory, Department of Experimental Pharmacology, National Institute of Oncology, 1122 Budapest, Hungary; (B.V.); (I.R.); (J.T.)
| | - Diána Vári-Mező
- HUN-REN–ELTE Research Group of Peptide Chemistry, 1117 Budapest, Hungary; (I.S.); (B.B.-K.); (D.V.-M.); (S.B.)
- National Tumor Biology Laboratory, Department of Experimental Pharmacology, National Institute of Oncology, 1122 Budapest, Hungary; (B.V.); (I.R.); (J.T.)
- School of Ph.D. Studies, Doctoral School of Pathological Sciences, Semmelweis University, 1085 Budapest, Hungary
| | - Éva Juhász
- Department of Pediatrics, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
| | - Gábor Halmos
- Department of Biopharmacy, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary;
| | - Szilvia Bősze
- HUN-REN–ELTE Research Group of Peptide Chemistry, 1117 Budapest, Hungary; (I.S.); (B.B.-K.); (D.V.-M.); (S.B.)
| | - József Tóvári
- National Tumor Biology Laboratory, Department of Experimental Pharmacology, National Institute of Oncology, 1122 Budapest, Hungary; (B.V.); (I.R.); (J.T.)
- School of Ph.D. Studies, Doctoral School of Pathological Sciences, Semmelweis University, 1085 Budapest, Hungary
| | - Gábor Mező
- HUN-REN–ELTE Research Group of Peptide Chemistry, 1117 Budapest, Hungary; (I.S.); (B.B.-K.); (D.V.-M.); (S.B.)
- Institute of Chemistry, Eötvös Loránd University, 1117 Budapest, Hungary
| |
Collapse
|
3
|
Zhang C, Lin KS, Bénard F. Molecular Imaging and Radionuclide Therapy of Melanoma Targeting the Melanocortin 1 Receptor. Mol Imaging 2018; 16:1536012117737919. [PMID: 29182034 PMCID: PMC5714078 DOI: 10.1177/1536012117737919] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Melanoma is a deadly disease at late metastatic stage, and early diagnosis and accurate staging remain the key aspects for managing melanoma. The melanocortin 1 receptor (MC1 R) is overexpressed in primary and metastatic melanomas, and its endogenous ligand, the α-melanocyte-stimulating hormone (αMSH), has been extensively studied for the development of MC1 R-targeted molecular imaging and therapy of melanoma. Natural αMSH is not well suited for this purpose due to low stability in vivo. Unnatural amino acid substitutions substantially stabilized the peptide, while cyclization via lactam bridge and metal coordination further improved binding affinity and stability. In this study, we summarized the development and the in vitro and in vivo characteristics of the radiolabeled αMSH analogues, including 99mTc-, 111In-, 67 Ga-, or 125I-labeled αMSH analogues for imaging with single-photon emission computed tomography; 68Ga-, 64Cu-, or 18F-labeled αMSH analogues for imaging with positron emission tomography; and 188Re-, 177Lu-, 90Y-, or 212Pb-labeled αMSH analogues for radionuclide therapy. These radiolabeled αMSH analogues showed promising results with high tumor uptake and rapid normal tissue activity clearance in the preclinical model of B16F1 and B16F10 mouse melanomas. These results highlight the potential of using radiolabeled αMSH analogues in clinical applications for molecular imaging and radionuclide therapy of melanoma.
Collapse
Affiliation(s)
- Chengcheng Zhang
- 1 Department of Molecular Oncology, BC Cancer, Vancouver, British Columbia, Canada
| | - Kuo-Shyan Lin
- 1 Department of Molecular Oncology, BC Cancer, Vancouver, British Columbia, Canada.,2 Department of Radiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - François Bénard
- 1 Department of Molecular Oncology, BC Cancer, Vancouver, British Columbia, Canada.,2 Department of Radiology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
4
|
García MF, Gallazzi F, Junqueira MDS, Fernández M, Camacho X, Mororó JDS, Faria D, Carneiro CDG, Couto M, Carrión F, Pritsch O, Chammas R, Quinn T, Cabral P, Cerecetto H. Synthesis of hydrophilic HYNIC-[1,2,4,5]tetrazine conjugates and their use in antibody pretargeting with99mTc. Org Biomol Chem 2018; 16:5275-5285. [DOI: 10.1039/c8ob01255e] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Pretargeted imaging is shown to be an attractive strategy to overcome disadvantages associated with traditional radioimmunoconjugates.
Collapse
|
5
|
Wei W, Ehlerding EB, Lan X, Luo Q, Cai W. PET and SPECT imaging of melanoma: the state of the art. Eur J Nucl Med Mol Imaging 2018; 45:132-150. [PMID: 29085965 PMCID: PMC5700861 DOI: 10.1007/s00259-017-3839-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 09/18/2017] [Indexed: 12/12/2022]
Abstract
Melanoma represents the most aggressive form of skin cancer, and its incidence continues to rise worldwide. 18F-FDG PET imaging has transformed diagnostic nuclear medicine and has become an essential component in the management of melanoma, but still has its drawbacks. With the rapid growth in the field of nuclear medicine and molecular imaging, a variety of promising probes that enable early diagnosis and detection of melanoma have been developed. The substantial preclinical success of melanin- and peptide-based probes has recently resulted in the translation of several radiotracers to clinical settings for noninvasive imaging and treatment of melanoma in humans. In this review, we focus on the latest developments in radiolabeled molecular imaging probes for melanoma in preclinical and clinical settings, and discuss the challenges and opportunities for future development.
Collapse
Affiliation(s)
- Weijun Wei
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600# Yishan Road, Shanghai, 200233, China
- Department of Radiology, University of Wisconsin-Madison, Room 7137, 1111 Highland Avenue, Madison, WI, 53705-2275, USA
| | - Emily B Ehlerding
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Xiaoli Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology; Hubei Key Laboratory of Molecular Imaging, No. 1277 Jiefang Ave, Wuhan, 430022, China.
| | - Quanyong Luo
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600# Yishan Road, Shanghai, 200233, China.
| | - Weibo Cai
- Department of Radiology, University of Wisconsin-Madison, Room 7137, 1111 Highland Avenue, Madison, WI, 53705-2275, USA.
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, 53705, USA.
- University of Wisconsin Carbone Cancer Center, Madison, WI, 53705, USA.
| |
Collapse
|
6
|
Bapst JP, Eberle AN. Receptor-Mediated Melanoma Targeting with Radiolabeled α-Melanocyte-Stimulating Hormone: Relevance of the Net Charge of the Ligand. Front Endocrinol (Lausanne) 2017; 8:93. [PMID: 28491052 PMCID: PMC5405074 DOI: 10.3389/fendo.2017.00093] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 04/10/2017] [Indexed: 12/03/2022] Open
Abstract
A majority of melanotic and amelanotic melanomas overexpress melanocortin type 1 receptors (MC1Rs) for α-melanocyte-stimulating hormone. Radiolabeled linear or cyclic analogs of α-MSH have a great potential as diagnostic or therapeutic tools for the management of malignant melanoma. Compounds such as [111In]DOTA-NAP-amide exhibit high affinity for the MC1R in vitro, good tumor uptake in vivo, but they may suffer from relatively high kidney uptake and retention in vivo. We have shown previously that the introduction of negative charges into radiolabeled DOTA-NAP-amide peptide analogs may enhance their excretion and reduce kidney retention. To address the question of where to place negative charges within the ligand, we have extended these studies by designing two novel peptides, Ac-Nle-Asp-His-d-Phe-Arg-Trp-Gly-Lys(DOTA)-d-Asp-d-Asp-OH (DOTA-NAP-d-Asp-d-Asp) with three negative charges at the C-terminal end (overall net charge of the molecule -2) and DOTA-Gly-Tyr(P)-Nle-Asp-His-d-Phe-Arg-Trp-NH2 (DOTA-Phospho-MSH2-9) with two negative charges in the N-terminal region (net charge -1). The former peptide showed markedly reduced receptor affinity and biological activity by >10-fold compared to DOTA-NAP-amide as reference compound, and the latter peptide displayed similar bioactivity and receptor affinity as the reference compound. The uptake by melanoma tumor tissue of [111In]DOTA-Phospho-MSH2-9 was 7.33 ± 0.47 %ID/g 4 h after injection, i.e., almost equally high as with [111In]DOTA-NAP-amide. The kidney retention was 2.68 ± 0.18 %ID/g 4 h after injection and hence 44% lower than that of [111In]DOTA-NAP-amide. Over an observation period from 4 to 48 h, the tumor-to-kidney ratio of [111In]DOTA-Phospho-MSH2-9 was 35% more favorable than that of the reference compound. In a comparison of DOTA-NAP-d-Asp-d-Asp, DOTA-Phospho-MSH2-9 and DOTA-NAP-amide with five previously published analogs of DOTA-NAP-amide that altogether cover a range of peptides with an overall net charge between +2 and -2, we now demonstrate that a net charge of -1, with the extra negative charges preferably placed in the N-terminal region, has led to the lowest kidney uptake and retention. Charges of +2 or -2 markedly increased kidney uptake and retention. In conclusion, the novel DOTA-Phospho-MSH2-9 may represent a new lead compound for negatively charged linear MC1R ligands that can be further developed into a clinically relevant melanoma targeting radiopeptide.
Collapse
Affiliation(s)
- Jean-Philippe Bapst
- Laboratory of Endocrinology, Department of Biomedicine, University Hospital and University Children’s Hospital, University of Basel, Basel, Switzerland
| | - Alex N. Eberle
- Laboratory of Endocrinology, Department of Biomedicine, University Hospital and University Children’s Hospital, University of Basel, Basel, Switzerland
- Collegium Helveticum, ETH Zurich, Zurich, Switzerland
- *Correspondence: Alex N. Eberle,
| |
Collapse
|
7
|
Gao F, Sihver W, Jurischka C, Bergmann R, Haase-Kohn C, Mosch B, Steinbach J, Carta D, Bolzati C, Calderan A, Pietzsch J, Pietzsch HJ. Radiopharmacological characterization of ⁶⁴Cu-labeled α-MSH analogs for potential use in imaging of malignant melanoma. Amino Acids 2016; 48:833-847. [PMID: 26643502 DOI: 10.1007/s00726-015-2131-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 11/04/2015] [Indexed: 10/22/2022]
Abstract
The melanocortin-1 receptor (MC1R) plays an important role in melanoma growth, angiogenesis and metastasis, and is overexpressed in melanoma cells. α-Melanocyte stimulating hormone (α-MSH) and derivatives are known to bind with high affinity at this receptor that provides the potential for selective targeting of melanoma. In this study, one linear α-MSH-derived peptide Nle-Asp-His-D-Phe-Arg-Trp-Gly-NH2 (NAP-NS1) without linker and with εAhx-β-Ala linker, and a cyclic α-MSH derivative, [Lys-Glu-His-D-Phe-Arg-Trp-Glu]-Arg-Pro-Val-NH2 (NAP-NS2) with εAhx-β-Ala linker were conjugated with p-SCN-Bn-NOTA and labeled with (64)Cu. Radiochemical and radiopharmacological investigations were performed with regard to transchelation, stability, lipophilicity and in vitro binding assays as well as biodistribution in healthy rats. No transchelation reactions, but high metabolic stability and water solubility were demonstrated. The linear derivatives showed higher affinity than the cyclic one. [(64)Cu]Cu-NOTA-εAhx-β-Ala-NAP-NS1 ([(64)Cu]Cu-2) displayed rapid cellular association and dissociation in murine B16F10 cell homogenate. All [(64)Cu]Cu-labeled conjugates exhibited affinities in the low nanomolar range in B16F10. [(64)Cu]Cu-2 showed also high affinity in human MeWo and TXM13 cell homogenate. In vivo studies suggested that [(64)Cu]Cu-2 was stable, with about 85 % of intact peptide in rat plasma at 2 h p.i. Biodistribution confirmed the renal pathway as the major elimination route. The uptake of [(64)Cu]Cu-2 in the kidney was 5.9 % ID/g at 5 min p.i. and decreased to 2.0 % ID/g at 60 min p.i. Due to the prospective radiochemical and radiopharmacological properties of the linear α-MSH derivative [(64)Cu]Cu-2, this conjugate is a promising candidate for tracer development in human melanoma imaging.
Collapse
Affiliation(s)
- Feng Gao
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328, Dresden, Germany
- Department of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany
| | - Wiebke Sihver
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328, Dresden, Germany.
| | - Christoph Jurischka
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328, Dresden, Germany
- Brandenburg University of Technology Cottbus-Senftenberg, Cottbus, Germany
| | - Ralf Bergmann
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Cathleen Haase-Kohn
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Birgit Mosch
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Jörg Steinbach
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328, Dresden, Germany
- Department of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany
| | - Davide Carta
- Department of Pharmacological and Pharmaceutical Sciences, University of Padua, 35131, Padua, Italy
| | | | | | - Jens Pietzsch
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328, Dresden, Germany
- Department of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany
| | - Hans-Jürgen Pietzsch
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328, Dresden, Germany
- Department of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany
| |
Collapse
|
8
|
Xu J, Yang J, Miao Y. Dual receptor-targeting ⁹⁹mTc-labeled Arg-Gly-Asp-conjugated Alpha-Melanocyte stimulating hormone hybrid peptides for human melanoma imaging. Nucl Med Biol 2015; 42:369-74. [PMID: 25577037 PMCID: PMC4361317 DOI: 10.1016/j.nucmedbio.2014.11.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Revised: 10/29/2014] [Accepted: 11/03/2014] [Indexed: 11/28/2022]
Abstract
INTRODUCTION The aim of this study was to examine whether the substitution of the Lys linker with the aminooctanoic acid (Aoc) and polyethylene glycol (PEG) linker could substantially decrease the non-specific renal uptake of (99m)Tc-labeled Arg-Gly-Asp-conjugated α-melanocyte stimulating hormone (α-MSH) hybrid peptides. METHODS The RGD motif {Arg-Gly-Asp-DTyr-Asp} was coupled to [Cys(3,4,10), D-Phe(7), Arg(11)]α-MSH₃₋₁₃ via the Aoc or PEG₂ linker to generate RGD-Aoc-(Arg(11))CCMSH and RGD-PEG-(Arg(11))CCMSH. The biodistribution results of (99m)Tc-RGD-Aoc-(Arg(11))CCMSH and (99m)Tc-RGD-PEG₂-(Arg(11))CCMSH were examined in M21 human melanoma-xenografted nude mice. RESULTS The substitution of Lys linker with Aoc and PEG₂ linker significantly reduced the renal uptake of (99m)Tc-RGD-Aoc-(Arg(11))CCMSH and (99m)Tc-RGD-PEG₂-(Arg(11))CCMSH by 58% and 63% at 2h post-injection. The renal uptake of (99m)Tc-RGD-Aoc-(Arg(11))CCMSH and (99m)Tc-RGD-PEG₂-(Arg(11))CCMSH was 27.93 ± 3.98 and 22.01 ± 9.89% ID/g at 2 h post-injection. (99m)Tc-RGD-Aoc-(Arg(11))CCMSH displayed higher tumor uptake than (99m)Tc-RGD-PEG₂-(Arg(11))CCMSH (2.35 ± 0.12 vs. 1.71 ± 0.25% ID/g at 2 h post-injection). The M21 human melanoma lesions could be clearly visualized by SPECT/CT using (99m)Tc-RGD-Aoc-(Arg(11))CCMSH as an imaging probe. CONCLUSIONS The favorable effect of Aoc and PEG₂ linker in reducing the renal uptake provided a new insight into the design of novel dual receptor-targeting radiolabeled peptides.
Collapse
Affiliation(s)
- Jingli Xu
- College of Pharmacy, University of New Mexico, Albuquerque, NM 87131, USA
| | - Jianquan Yang
- College of Pharmacy, University of New Mexico, Albuquerque, NM 87131, USA
| | - Yubin Miao
- College of Pharmacy, University of New Mexico, Albuquerque, NM 87131, USA; Cancer Research and Treatment Center, University of New Mexico, Albuquerque, NM 87131, USA; Department of Dermatology, University of New Mexico, Albuquerque, NM 87131, USA.
| |
Collapse
|
9
|
Tc-99m-labeled RGD-conjugated alpha-melanocyte stimulating hormone hybrid peptides with reduced renal uptake. Amino Acids 2015; 47:813-23. [PMID: 25557051 DOI: 10.1007/s00726-014-1911-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 12/24/2014] [Indexed: 10/24/2022]
Abstract
The purpose of this study was to examine whether the replacement of the positively-charged Lys or Arg linker with a neutral linker could reduce the renal uptake of Arg-Gly-Asp (RGD)-conjugated alpha-melanocyte stimulating hormone (α-MSH) hybrid peptide. The RGD motif {cyclic(Arg-Gly-Asp-DTyr-Asp)} was coupled to [Cys(3,4,10), D-Phe(7), Arg(11)]α-MSH3-13 {(Arg(11))CCMSH} through the neutral βAla or Ahx {aminohexanoic acid} linker (replacing the Lys or Arg linker) to generate novel RGD-βAla-(Arg(11))CCMSH and RGD-Ahx-(Arg(11))CCMSH hybrid peptides. The receptor-binding affinity and cytotoxicity of RGD-βAla-(Arg(11))CCMSH and RGD-Ahx-(Arg(11))CCMSH were determined in B16/F1 melanoma cells. The melanoma targeting and imaging properties of (99m)Tc-RGD-βAla-(Arg(11))CCMSH and (99m)Tc-RGD-Ahx-(Arg(11))CCMSH were determined in B16/F1 melanoma-bearing C57 mice. The replacement of the Lys or Arg linker with the βAla or Ahx linker retained nanomolar receptor-binding affinities and remarkable cytotoxicity of RGD-βAla-(Arg(11))CCMSH and RGD-Ahx-(Arg(11))CCMSH. The receptor-binding affinities of RGD-βAla-(Arg(11))CCMSH and RGD-Ahx-(Arg(11))CCMSH were 0.8 ± 0.05 and 1.3 ± 0.1 nM. Three-hour incubation with 0.1 µM of RGD-βAla-(Arg(11))CCMSH and RGD-Ahx-(Arg(11))CCMSH decreased the survival percentages of B16/F1 cells by 71 and 67 % as compared to the untreated control cells 5 days post the treatment. The replacement of the Arg linker with the βAla or Ahx linker reduced the non-specific renal uptake of (99m)Tc-RGD-βAla-(Arg(11))CCMSH and (99m)Tc-RGD-Ahx-(Arg(11))CCMSH by 62 and 61 % at 2 h post-injection. (99m)Tc-RGD-βAla-(Arg(11))CCMSH displayed higher melanoma uptake than (99m)Tc-RGD-Ahx-(Arg(11))CCMSH at 0.5, 2, 4, and 24 h post-injection. Enhanced tumor to kidney uptake ratio of (99m)Tc-RGD-βAla-(Arg(11))CCMSH warranted the further evaluation of (188)Re-labeled RGD-βAla-(Arg(11))CCMSH as a novel MC1 receptor-targeting therapeutic peptide for melanoma treatment in the future.
Collapse
|
10
|
Yang J, Flook AM, Feng C, Miao Y. Linker modification reduced the renal uptake of technetium-99m-labeled Arg-Ala-Asp-conjugated alpha-melanocyte stimulating hormone peptide. Bioorg Med Chem Lett 2014; 24:195-8. [PMID: 24316121 PMCID: PMC3889140 DOI: 10.1016/j.bmcl.2013.11.042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 11/13/2013] [Accepted: 11/15/2013] [Indexed: 11/30/2022]
Abstract
The purpose of this study was to examine the biodistribution of (99m)Tc-RAD-Arg-(Arg(11))CCMSH in B16/F1 melanoma-bearing C57 mice to determine whether the replacement of the Lys linker with an Arg linker could decrease the renal uptake of (99m)Tc-RAD-Arg-(Arg(11))CCMSH. (99m)Tc-RAD-Arg-(Arg(11))CCMSH exhibited rapid and high tumor uptake (17.98±4.96% ID/g at 2h post-injection) in B16/F1 melanoma-bearing C57 mice. As compared to (99m)Tc-RAD-Lys-(Arg(11))CCMSH, the replacement of the Lys linker with an Arg linker dramatically decreased the renal uptake of (99m)Tc-RAD-Arg-(Arg(11))CCMSH by 68%, 62%, 73% and 64% at 0.5, 2, 4 and 24h post-injection, respectively. Flank B16/F1 melanoma lesions were clearly imaged at 2h post-injection using (99m)Tc-RAD-Arg-(Arg(11))CCMSH as an imaging probe.
Collapse
Affiliation(s)
- Jianquan Yang
- 2502 Marble NE, MSC09 5360, College of Pharmacy, University of New Mexico, Albuquerque, NM 87131, USA
| | - Adam M Flook
- 2502 Marble NE, MSC09 5360, College of Pharmacy, University of New Mexico, Albuquerque, NM 87131, USA
| | - Changjian Feng
- 2502 Marble NE, MSC09 5360, College of Pharmacy, University of New Mexico, Albuquerque, NM 87131, USA
| | - Yubin Miao
- 2502 Marble NE, MSC09 5360, College of Pharmacy, University of New Mexico, Albuquerque, NM 87131, USA; Cancer Research and Treatment Center, University of New Mexico, Albuquerque, NM 87131, USA; Department of Dermatology, University of New Mexico, Albuquerque, NM 87131, USA.
| |
Collapse
|
11
|
Rosenkranz AA, Slastnikova TA, Durymanov MO, Sobolev AS. Malignant melanoma and melanocortin 1 receptor. BIOCHEMISTRY. BIOKHIMIIA 2013; 78:1228-37. [PMID: 24460937 PMCID: PMC4064721 DOI: 10.1134/s0006297913110035] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The conventional chemotherapeutic treatment of malignant melanoma still remains poorly efficient in most cases. Thus the use of specific features of these tumors for development of new therapeutic modalities is highly needed. Melanocortin 1 receptor (MC1R) overexpression on the cell surface of the vast majority of human melanomas, making MC1R a valuable marker of these tumors, is one of these features. Naturally, MC1R plays a key role in skin protection against damaging ultraviolet radiation by regulating eumelanin production. MC1R activation is involved in regulation of melanocyte cell division. This article reviews the peculiarities of regulation and expression of MC1R, melanocytes, and melanoma cells, along with the possible connection of MC1R with signaling pathways regulating proliferation of tumor cells. MC1R is a cell surface endocytic receptor, thus considered perspective for diagnostics and targeted drug delivery. A number of new therapeutic approaches that utilize MC1R, including endoradiotherapy with Auger electron and α- and β-particle emitters, photodynamic therapy, and gene therapy are now being developed.
Collapse
Affiliation(s)
- A. A. Rosenkranz
- Institute of Gene Biology, Russian Academy of Sciences, ul. Vavilova 34/5, 199334 Moscow, Russia; fax: +7 (499) 135-4105
- Faculty of Biology, Lomonosov Moscow State University, Leninsky Gory 1-12, 119234 Moscow, Russia; fax: +7 (495) 939-4309;
- Targeted Delivery of Pharmaceuticals “Translek” LLC, ul. Vavilova 34/5, 199334 Moscow, Russia;
| | - T. A. Slastnikova
- Institute of Gene Biology, Russian Academy of Sciences, ul. Vavilova 34/5, 199334 Moscow, Russia; fax: +7 (499) 135-4105
| | - M. O. Durymanov
- Institute of Gene Biology, Russian Academy of Sciences, ul. Vavilova 34/5, 199334 Moscow, Russia; fax: +7 (499) 135-4105
- Faculty of Biology, Lomonosov Moscow State University, Leninsky Gory 1-12, 119234 Moscow, Russia; fax: +7 (495) 939-4309;
| | - A. S. Sobolev
- Institute of Gene Biology, Russian Academy of Sciences, ul. Vavilova 34/5, 199334 Moscow, Russia; fax: +7 (499) 135-4105
- Faculty of Biology, Lomonosov Moscow State University, Leninsky Gory 1-12, 119234 Moscow, Russia; fax: +7 (495) 939-4309;
- Targeted Delivery of Pharmaceuticals “Translek” LLC, ul. Vavilova 34/5, 199334 Moscow, Russia;
| |
Collapse
|
12
|
Gene therapy for advanced melanoma: selective targeting and therapeutic nucleic acids. JOURNAL OF DRUG DELIVERY 2013; 2013:897348. [PMID: 23634303 PMCID: PMC3619548 DOI: 10.1155/2013/897348] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 02/24/2013] [Indexed: 12/21/2022]
Abstract
Despite recent advances, the treatment of malignant melanoma still results in the relapse of the disease, and second line treatment mostly fails due to the occurrence of resistance. A wide range of mutations are known to prevent effective treatment with chemotherapeutic drugs. Hence, approaches with biopharmaceuticals including proteins, like antibodies or cytokines, are applied. As an alternative, regimens with therapeutically active nucleic acids offer the possibility for highly selective cancer treatment whilst avoiding unwanted and toxic side effects. This paper gives a brief introduction into the mechanism of this devastating disease, discusses the shortcoming of current therapy approaches, and pinpoints anchor points which could be harnessed for therapeutic intervention with nucleic acids. We bring the delivery of nucleic acid nanopharmaceutics into perspective as a novel antimelanoma therapeutic approach and discuss the possibilities for melanoma specific targeting. The latest reports on preclinical and already clinical application of nucleic acids in melanoma are discussed.
Collapse
|
13
|
Yang J, Lu J, Miao Y. Structural modification on the Lys linker enhanced tumor to kidney uptake ratios of 99mTc-labeled RGD-conjugated α-MSH hybrid peptides. Mol Pharm 2012; 9:1418-24. [PMID: 22452443 DOI: 10.1021/mp2006642] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The purpose of this study was to examine whether the structural modification on the positively charged Lys linker could reduce the kidney uptake of (99m)Tc-labeled Arg-Gly-Asp (RGD)-conjugated α-melanocyte stimulating hormone (α-MSH) hybrid peptides. The RGD motif {cyclic(Arg-Gly-Asp-D-Tyr-Asp)} was coupled to [Cys(3,4,10), D-Phe(7), Arg(11)]α-MSH(3-13) {(Arg(11))CCMSH} through a neutral glycine linker to eliminate the positively charged amino side chain of the Lys linker or without a linker to delete the Lys linker. The receptor binding affinity of RGD-Gly-(Arg(11))CCMSH and RGD-(Arg(11))CCMSH was determined in B16/F1 melanoma cells. The melanoma targeting and imaging properties of (99m)Tc-RGD-Gly-(Arg(11))CCMSH and (99m)Tc-RGD-(Arg(11))CCMSH were determined in B16/F1 melanoma-bearing C57 mice. The structural modification on the Lys linker retained a low nanomolar receptor binding affinity of RGD-Gly-(Arg(11))CCMSH and RGD-(Arg(11))CCMSH (1.5 and 1.0 nM, respectively). The structural modification on the Lys linker dramatically decreased the renal uptake of (99m)Tc-RGD-Gly-(Arg(11))CCMSH and (99m)Tc-RGD-(Arg(11))CCMSH by 79% and 77% at 4 h postinjection compared to (99m)Tc-RGD-Lys-(Arg(11))CCMSH. (99m)Tc-RGD-(Arg(11))CCMSH displayed a higher melanoma uptake (16.12 ± 3.09% ID/g) than (99m)Tc-RGD-Gly-(Arg(11))CCMSH (11.50 ± 1.01% ID/g) at 2 postinjection. The tumor uptake of (99m)Tc-RGD-(Arg(11))CCMSH was 1.4 times the tumor uptake of (99m)Tc-RGD-Gly-(Arg(11))CCMSH at 2 postinjection. A dramatically enhanced tumor-to-kidney uptake ratio of (99m)Tc-RGD-(Arg(11))CCMSH suggests that (188)Re-RGD-(Arg(11))CCMSH may behave in a similar fashion warranting future evaluation for melanoma treatment.
Collapse
Affiliation(s)
- Jianquan Yang
- College of Pharmacy, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | | | | |
Collapse
|
14
|
Baumhover NJ, Martin ME, Parameswarappa SG, Kloepping KC, O'Dorisio MS, Pigge FC, Schultz MK. Improved synthesis and biological evaluation of chelator-modified α-MSH analogs prepared by copper-free click chemistry. Bioorg Med Chem Lett 2011; 21:5757-61. [PMID: 21873053 DOI: 10.1016/j.bmcl.2011.08.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Revised: 07/30/2011] [Accepted: 08/02/2011] [Indexed: 01/23/2023]
Abstract
Radionuclide chelators (DOTA, NOTA) functionalized with a monofluorocyclooctyne group were prepared. These materials reacted rapidly and in high yield with a fully deprotected azide-modified peptide via Cu-free click chemistry under mild reaction conditions (aqueous solution, room temperature). The resulting bioconjugates bind with high affinity and specificity to their cell-surface receptor targets in vitro and appear stable to degradation in mouse serum over 3h of incubation at 37°C.
Collapse
Affiliation(s)
- Nicholas J Baumhover
- Department of Radiology, Carver College of Medicine, The University of Iowa, 500 Newton Road, ML B180, Iowa City, IA 52242, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Kimura S, Masunaga SI, Harada T, Kawamura Y, Ueda S, Okuda K, Nagasawa H. Synthesis and evaluation of cyclic RGD-boron cluster conjugates to develop tumor-selective boron carriers for boron neutron capture therapy. Bioorg Med Chem 2011; 19:1721-8. [DOI: 10.1016/j.bmc.2011.01.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 01/11/2011] [Accepted: 01/12/2011] [Indexed: 10/18/2022]
|