1
|
Inoue M, Nakagawa Y, Azuma M, Akahane H, Chimori R, Mano Y, Takasawa R. The PKM2 inhibitor shikonin enhances piceatannol-induced apoptosis of glyoxalase I-dependent cancer cells. Genes Cells 2024; 29:52-62. [PMID: 37963646 PMCID: PMC11448369 DOI: 10.1111/gtc.13084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 11/06/2023] [Accepted: 11/06/2023] [Indexed: 11/16/2023]
Abstract
Glyoxalase I (GLO I), a major enzyme involved in the detoxification of the anaerobic glycolytic byproduct methylglyoxal, is highly expressed in various tumors, and is regarded as a promising target for cancer therapy. We recently reported that piceatannol potently inhibits human GLO I and induces the death of GLO I-dependent cancer cells. Pyruvate kinase M2 (PKM2) is also a potential therapeutic target for cancer treatment, so we evaluated the combined anticancer efficacy of piceatannol plus low-dose shikonin, a potent and specific plant-derived PKM2 inhibitor, in two GLO I-dependent cancer cell lines, HL-60 human myeloid leukemia cells and NCI-H522 human non-small-cell lung cancer cells. Combined treatment with piceatannol and low-dose shikonin for 48 h synergistically reduced cell viability, enhanced apoptosis rate, and increased extracellular methylglyoxal accumulation compared to single-agent treatment, but did not alter PKM1, PKM2, or GLO I protein expression. Taken together, these results indicate that concomitant use of low-dose shikonin potentiates piceatannol-induced apoptosis of GLO I-dependent cancer cells by augmenting methylglyoxal accumulation.
Collapse
Affiliation(s)
- Manami Inoue
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Japan
| | - Yuki Nakagawa
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Japan
| | - Miku Azuma
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Japan
| | - Haruka Akahane
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Japan
| | - Ryusei Chimori
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Japan
| | - Yasunari Mano
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Japan
| | - Ryoko Takasawa
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Japan
| |
Collapse
|
2
|
Zhang Y, Zhang J, Li M, Qiao Y, Wang W, Ma L, Liu K. Target discovery of bioactive natural products with native-compound-coupled CNBr-activated Sepharose 4B beads (NCCB): Applications, mechanisms and outlooks. Bioorg Med Chem 2023; 96:117483. [PMID: 37951136 DOI: 10.1016/j.bmc.2023.117483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/19/2023] [Accepted: 09/22/2023] [Indexed: 11/13/2023]
Abstract
Natural products (NPs) represent a treasure trove for drug discovery and development due to their chemical structural diversity and a broad spectrum of biological activities. Uncovering the biological targets and understanding their molecular mechanism of actions are crucial steps in the development of clinical therapeutics. However, the structural complexity of NPs and intricate nature of biological system present formidable challenges in target identification of NPs. Although significant advances have been made in the development of new chemical tools, these methods often require high levels of synthetic skills for preparing chemical probes. This can be costly and time-consuming relaying on operationally complicated procedures and instruments. In recent efforts, we and others have successfully developed an operationally simple and practical chemical tool known as native-compound-coupled CNBr-activated Sepharose 4B beads (NCCB) for NP target identification. In this approach, a native compound readily reacts with commercial CNBr-activated Sepharose 4B beads with a process that is easily performed in any biology laboratory. Based on NCCB, our group has identified the direct targets of more than 60 NPs. In this review, we will elucidate the application scopes, including flavonoids, quinones, terpenoids and others, characteristics, chemical mechanisms, procedures, advantages, disadvantages, and future directions of NCCB in specific target discovery.
Collapse
Affiliation(s)
- Yueteng Zhang
- Basic Medical Research Center, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Junjie Zhang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Menglong Li
- Basic Medical Research Center, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Yan Qiao
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Wei Wang
- Departments of Pharmacology & Toxicology and Chemistry & Biochemistry, and BIO5 Institute, University of Arizona, Tucson, AZ 85721, United States
| | - Lu Ma
- Basic Medical Research Center, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China.
| | - Kangdong Liu
- Basic Medical Research Center, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China; Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China.
| |
Collapse
|
3
|
Laus MN, Blando F, Soccio M. Glyoxalase I Assay as a Possible Tool for Evaluation of Biological Activity of Antioxidant-Rich Plant Extracts. PLANTS (BASEL, SWITZERLAND) 2023; 12:1150. [PMID: 36904010 PMCID: PMC10005046 DOI: 10.3390/plants12051150] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/23/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
The health-promoting properties of natural plant bioactive compounds are mainly attributable to their ability to counteract oxidative stress. This is considered a major causative factor in aging and aging-related human diseases, in which a causal role is also ascribed to dicarbonyl stress. This is due to accumulation of methylglyoxal (MG) and other reactive dicarbonyl species, leading to macromolecule glycation and cell/tissue dysfunction. The glyoxalase (GLYI) enzyme, catalyzing the rate-limiting step of the GSH-dependent MG detoxification pathway, plays a key role in cell defense against dicarbonyl stress. Therefore, the study of GLYI regulation is of relevant interest. In particular, GLYI inducers are important for pharmacological interventions to sustain healthy aging and to improve dicarbonyl-related diseases; GLYI inhibitors, allowing increased MG levels to act as proapoptotic agents in tumor cells, are of special interest in cancer treatment. In this study, we performed a new in vitro exploration of biological activity of plant bioactive compounds by associating the measurement of their antioxidant capacity (AC) with the evaluation of their potential impact on dicarbonyl stress measured as capability to modulate GLYI activity. AC was evaluated using TEAC, ORAC, and LOX-FL methods. The GLYI assay was performed using a human recombinant isoform, in comparison with the recently characterized GLYI activity of durum wheat mitochondria. Different plant extracts were tested, obtained from plant sources with very high phytochemical content ('Sun Black' and wildtype tomatoes, black and 'Polignano' carrots, and durum wheat grain). Results showed high antioxidant properties of the tested extracts, associated with different modes (no effect, activation, and inhibition) and effectiveness in modulating both GLYI activity sources. Overall, results indicate the GLYI assay as an advisable and promising tool for researching plant foods as a source of natural antioxidant compounds acting as GLYI enzymatic regulators to be used for dietary management associated the treatment of oxidative/dicarbonyl-promoted diseases.
Collapse
Affiliation(s)
- Maura Nicoletta Laus
- Department of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, Via Napoli, 25, 71122 Foggia, Italy
| | - Federica Blando
- Institute of Sciences of Food Production, CNR, Via Prov.le Lecce-Monteroni, 73100 Lecce, Italy
| | - Mario Soccio
- Department of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, Via Napoli, 25, 71122 Foggia, Italy
| |
Collapse
|
4
|
The Luteolinidin and Petunidin 3- O-Glucoside: A Competitive Inhibitor of Tyrosinase. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27175703. [PMID: 36080469 PMCID: PMC9458148 DOI: 10.3390/molecules27175703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022]
Abstract
The enzyme tyrosinase plays a key role in the early stages of melanin biosynthesis. This study evaluated the inhibitory activity of anthocyanidin (1) and anthocyanins (2-6) on the catalytic reaction. Of the six derivatives examined, 1-3 showed inhibitory activity with IC50 values of 3.7 ± 0.1, 10.3 ± 1.0, and 41.3 ± 3.2 μM, respectively. Based on enzyme kinetics, 1-3 were confirmed to be competitive inhibitors with Ki values of 2.8, 9.0, and 51.9 μM, respectively. Molecular docking analysis revealed the formation of a binary encounter complex between 1-3 and the tyrosinase catalytic site. Luteolinidin (1) and petunidin 3-O-glucoside (2) may serve as tyrosinase inhibitors to block melanin production.
Collapse
|
5
|
Husain A, Chanana H, Khan SA, Dhanalekshmi UM, Ali M, Alghamdi AA, Ahmad A. Chemistry and Pharmacological Actions of Delphinidin, a Dietary Purple Pigment in Anthocyanidin and Anthocyanin Forms. Front Nutr 2022; 9:746881. [PMID: 35369062 PMCID: PMC8969030 DOI: 10.3389/fnut.2022.746881] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 01/31/2022] [Indexed: 12/22/2022] Open
Abstract
Anthocyanins are naturally occurring water-soluble flavonoids abundantly present in fruits and vegetables. They are polymethoxyderivatives of 2-phenyl-benzopyrylium or flavylium salts. Delphinidin (Dp) is a purple-colored plant pigment, which occurs in a variety of berries, eggplant, roselle, and wine. It is found in a variety of glycosidic forms ranging from glucoside to arabinoside. Dp is highly active in its aglycone form, but the presence of a sugar moiety is vital for its bioavailability. Several animal and human clinical studies have shown that it exerts beneficial effects on gut microbiota. Dp exhibits a variety of useful biological activities by distinct and complex mechanisms. This manuscript highlights the basic characteristics, chemistry, biosynthesis, stability profiling, chemical synthesis, physicochemical parameters along with various analytical methods developed for extraction, isolation and characterization, diverse biological activities and granted patents to this lead anthocyanin molecule, Dp. This review aims to open pathways for further exploration and research investigation on the true potential of the naturally occurring purple pigment (Dp) in its anthocyanidin and anthocyanin forms beyond nutrition.
Collapse
Affiliation(s)
- Asif Husain
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Harshit Chanana
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Shah Alam Khan
- College of Pharmacy, National University of Science and Technology, Muscat, Oman
| | - U M Dhanalekshmi
- College of Pharmacy, National University of Science and Technology, Muscat, Oman
| | - M Ali
- Department of Pharmacognosy, College of Pharmacy, Jazan University, Jizan, Saudi Arabia
| | - Anwar A Alghamdi
- Department of Health Information Technology, Faculty of Applied Studies, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Aftab Ahmad
- Department of Health Information Technology, Faculty of Applied Studies, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
6
|
Usami M, Ando K, Shibuya A, Takasawa R, Yokoyama H. Crystal structures of human glyoxalase I and its complex with TLSC702 reveal inhibitor binding mode and substrate preference. FEBS Lett 2022; 596:1458-1467. [PMID: 35363883 DOI: 10.1002/1873-3468.14344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/25/2022] [Accepted: 03/25/2022] [Indexed: 11/11/2022]
Abstract
Human glyoxalase I (hGLO I) is an enzyme for detoxification of methylglyoxal (MG), and has been considered an attractive target for the development of new anti-cancer drugs. In our previous report, the GLO I inhibitor TLSC702 induced apoptosis in tumor cells. Here, we determined the crystal structures of hGLO I and its complex with TLSC702. In the complex, the carboxy O atom of TLSC702 is coordinated to Zn2+ , and TLSC702 mainly shows van der Waals interaction with hydrophobic residues. In the inhibitor-unbound structure, glycerol, which has similar functional groups to MG, was bound to Zn2+ , indicating that GLO I can easily bind to MG. This study provides a structural basis to develop better anticancer drugs.
Collapse
Affiliation(s)
- Midori Usami
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Koki Ando
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Asuka Shibuya
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Ryoko Takasawa
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Hideshi Yokoyama
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| |
Collapse
|
7
|
Bilawal A, Ishfaq M, Gantumur MA, Qayum A, Shi R, Fazilani SA, Anwar A, Jiang Z, Hou J. A review of the bioactive ingredients of berries and their applications in curing diseases. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101407] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
8
|
Sharma A, Choi HK, Kim YK, Lee HJ. Delphinidin and Its Glycosides' War on Cancer: Preclinical Perspectives. Int J Mol Sci 2021; 22:11500. [PMID: 34768930 PMCID: PMC8583959 DOI: 10.3390/ijms222111500] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 12/24/2022] Open
Abstract
Until now, several studies have looked at the issue of anthocyanin and cancer, namely the preventive and inhibitory effects of anthocyanins, as well as the underlying molecular processes. However, no targeted review is available regarding the anticarcinogenic effects of delphinidin and its glycosides on various cancers and their plausible molecular mechanisms. Considerable evidence shows significant anticancer properties of delphinidin-rich preparations and delphinidin alone both in vitro and in vivo. This review covers the in vitro and preclinical implications of delphinidin-mediated cell protection and cancer prevention; thus, we strongly recommend that delphinidin-rich preparations be further investigated as potential functional food, dietary antioxidant supplements, and natural health products targeting specific chronic diseases, including cancer. In addition to in vitro investigations, future research should focus on more animal and human studies to determine the true potential of delphinidin.
Collapse
Affiliation(s)
- Anshul Sharma
- Department of Food and Nutrition, College of Bionanotechnology, Gachon University, Seongnam-si 13120, Gyeonggi-do, Korea;
| | - Hyo-Kyoung Choi
- Korea Food Research Institute, Wanju-gun 55365, Jeollabuk-do, Korea;
| | - Yeon-Kye Kim
- Food Safety and Processing Research Division, National Institute of Fisheries Science, Gijang-eup, Busan 46083, Korea;
| | - Hae-Jeung Lee
- Department of Food and Nutrition, College of Bionanotechnology, Gachon University, Seongnam-si 13120, Gyeonggi-do, Korea;
- Institute for Aging and Clinical Nutrition Research, Gachon University, Seongnam-si 13120, Gyeonggi-do, Korea
| |
Collapse
|
9
|
Addition of hydrophobic side chains improve the apoptosis inducibility of the human glyoxalase I inhibitor, TLSC702. Bioorg Med Chem Lett 2021; 40:127918. [PMID: 33711442 DOI: 10.1016/j.bmcl.2021.127918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 11/22/2022]
Abstract
Glyoxalase I (GLO I) is a known therapeutic target in cancer. Even though TLSC702, a GLO I inhibitor that we discovered, induces apoptosis in tumor cells, exceptionally higher doses are required compared with those needed to inhibit GLO I activity in vitro. In this work, structure-activity optimization studies were conducted on four sections of the TLSC702 molecule to determine the partial structural features necessary for the inhibition of GLO I. Herein, we found that the carboxy group in TLSC702 was critical for binding with the divalent zinc at the active site of GLO I. In contrast, the side chain substituents in the meta- and para- positions of the benzene ring had little influence on the in vitro inhibition of GLO I. The CLogP values of the TLSC702 derivatives showed a positive correlation with the antiproliferative effects on NCI-H522 cells. Thus, two derivatives of TLSC702, which displayed either high or low lipophilicity due to the types of substituents at the phenyl position, were selected. Even though both derivatives showed comparable inhibitory effects as that of their parent compound, the derivative with the high CLogP value was distinctly more antiproliferative than TLSC702. In contrast, the derivative with the low CLogP value did not decrease cell viability in NCI-H522 and HL-60 cells. These findings suggested that structural improvements, such as the addition of hydrophobic moieties to the phenyl group, enhanced the ability of TLSC702 to induce apoptosis by increasing cell membrane permeability.
Collapse
|
10
|
Leone A, Nigro C, Nicolò A, Prevenzano I, Formisano P, Beguinot F, Miele C. The Dual-Role of Methylglyoxal in Tumor Progression - Novel Therapeutic Approaches. Front Oncol 2021; 11:645686. [PMID: 33869040 PMCID: PMC8044862 DOI: 10.3389/fonc.2021.645686] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/01/2021] [Indexed: 12/12/2022] Open
Abstract
One of the hallmarks of cancer cells is their metabolic reprogramming, which includes the preference for the use of anaerobic glycolysis to produce energy, even in presence of normal oxygen levels. This phenomenon, known as “Warburg effect”, leads to the increased production of reactive intermediates. Among these Methylglyoxal (MGO), a reactive dicarbonyl known as the major precursor of the advanced glycated end products (AGEs), is attracting great attention. It has been well established that endogenous MGO levels are increased in several types of cancer, however the MGO contribution in tumor progression is still debated. Although an anti-cancer role was initially attributed to MGO due to its cytotoxicity, emerging evidence has highlighted its pro-tumorigenic role in several types of cancer. These apparently conflicting results are explained by the hormetic potential of MGO, in which lower doses of MGO are able to establish an adaptive response in cancer cells while higher doses cause cellular apoptosis. Therefore, the extent of MGO accumulation and the tumor context are crucial to establish MGO contribution to cancer progression. Several therapeutic approaches have been proposed and are currently under investigation to inhibit the pro-tumorigenic action of MGO. In this review, we provide an overview of the early and latest evidence regarding the role of MGO in cancer, in order to define its contribution in tumor progression, and the therapeutic strategies aimed to counteract the tumor growth.
Collapse
Affiliation(s)
- Alessia Leone
- URT Genomics of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy.,Department of Translational Medicine, Federico II University of Naples, Naples, Italy
| | - Cecilia Nigro
- URT Genomics of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy.,Department of Translational Medicine, Federico II University of Naples, Naples, Italy
| | - Antonella Nicolò
- URT Genomics of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy.,Department of Translational Medicine, Federico II University of Naples, Naples, Italy
| | - Immacolata Prevenzano
- URT Genomics of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy.,Department of Translational Medicine, Federico II University of Naples, Naples, Italy
| | - Pietro Formisano
- URT Genomics of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy.,Department of Translational Medicine, Federico II University of Naples, Naples, Italy
| | - Francesco Beguinot
- URT Genomics of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy.,Department of Translational Medicine, Federico II University of Naples, Naples, Italy
| | - Claudia Miele
- URT Genomics of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy.,Department of Translational Medicine, Federico II University of Naples, Naples, Italy
| |
Collapse
|
11
|
Delphinidin Increases the Sensitivity of Ovarian Cancer Cell Lines to 3-Bromopyruvate. Int J Mol Sci 2021; 22:ijms22020709. [PMID: 33445795 PMCID: PMC7828231 DOI: 10.3390/ijms22020709] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/05/2021] [Accepted: 01/08/2021] [Indexed: 12/17/2022] Open
Abstract
3-Bromopyruvic acid (3-BP) is a promising anticancer compound. Two ovary cancer (OC) cell lines, PEO1 and SKOV3, showed relatively high sensitivity to 3-BP (half maximal inhibitory concentration (IC50) of 18.7 and 40.5 µM, respectively). However, the further sensitization of OC cells to 3-BP would be desirable. Delphinidin (D) has been reported to be cytotoxic for cancer cell lines. We found that D was the most toxic for PEO1 and SKOV3 cells from among several flavonoids tested. The combined action of 3-BP and D was mostly synergistic in PEO1 cells and mostly weakly antagonistic in SKOV3 cells. The viability of MRC-5 fibroblasts was not affected by both compounds at concentrations of up to 100 µM. The combined action of 3-BP and D decreased the level of ATP and of dihydroethidium (DHE)-detectable reactive oxygen species (ROS), cellular mobility and cell staining with phalloidin and Mitotracker Red in both cell lines but increased the 2’,7’-dichlorofluorescein (DCFDA)-detectable ROS level and decreased the mitochondrial membrane potential and mitochondrial mass only in PEO1 cells. The glutathione level was increased by 3-BP+D only in SKOV3 cells. These differences may contribute to the lower sensitivity of SKOV3 cells to 3-BP+D. Our results point to the possibility of sensitization of at least some OC cells to 3-BP by D.
Collapse
|
12
|
Teixeira RF, Benvenutti L, Burin VM, Gomes TM, Ferreira SRS, Zielinski AAF. An eco-friendly pressure liquid extraction method to recover anthocyanins from broken black bean hulls. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2020.102587] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
13
|
Pop R, Căta A, Ștefănuț MN, Carmen Ienașcu IM. A computational study of the interactions between anthocyans and cyclodextrins. ACTA ACUST UNITED AC 2020; 75:433-441. [PMID: 32681790 DOI: 10.1515/znc-2020-0072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/24/2020] [Indexed: 11/15/2022]
Abstract
The interactions between six anthocyans (cyanidin-3-O-glucoside, delphinidin-3-O-glucoside, malvidin-3-O-glucoside, cyanidin-3-O-rutinoside, delphinidin-3-O-rutinoside, malvidin-3-O-rutinoside) and cyclodextrins were investigated by means of computational techniques. Four different structures of the aforementioned anthocyans were considered, as a result of the dependence structure - pH value (flavylium cations in acidic medium, hemiketals in neutral solutions and two tautomeric quinones in alkaline environment). The results outlined that the anthocyanidin-3-O-rutinoside are favored for the obtaining of inclusion complexes with the cyclodextrins, mostly due to the larger number of OH groups involved in the formation of hydrogen bonds. For all the four types of structures, best results have been obtained for β- and γ-cyclodextrins.
Collapse
Affiliation(s)
- Raluca Pop
- Faculty of Pharmacy, University of Medicine and Pharmacy "Victor Babeş" Timisoara, Eftimie Murgu Square 2, 300041 Timişoara, Romania
| | - Adina Căta
- National Institute of Research and Development for Electrochemistry and Condensed Matter, 144 Dr. A. P. Podeanu Str., 300569, Timisoara, Romania
| | - Mariana Nela Ștefănuț
- National Institute of Research and Development for Electrochemistry and Condensed Matter, 144 Dr. A. P. Podeanu Str., 300569, Timisoara, Romania
| | - Ioana Maria Carmen Ienașcu
- National Institute of Research and Development for Electrochemistry and Condensed Matter, 144 Dr. A. P. Podeanu Str., 300569, Timisoara, Romania
- Faculty of Pharmacy, Vasile Goldis Western University of Arad, 86 Liviu Rebreanu, 310045, Arad, Romania
| |
Collapse
|
14
|
He Y, Zhou C, Huang M, Tang C, Liu X, Yue Y, Diao Q, Zheng Z, Liu D. Glyoxalase system: A systematic review of its biological activity, related-diseases, screening methods and small molecule regulators. Biomed Pharmacother 2020; 131:110663. [DOI: 10.1016/j.biopha.2020.110663] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/18/2020] [Accepted: 08/20/2020] [Indexed: 12/27/2022] Open
|
15
|
Terrazas-López M, Lobo-Galo N, Aguirre-Reyes LG, Cuen-Andrade JL, de la Rosa LA, Alvarez-Parrilla E, Martínez-Martínez A, Díaz-Sánchez ÁG. Interaction of N-succinyl-diaminopimelate desuccinylase with flavonoids. Biochimie 2020; 177:198-212. [DOI: 10.1016/j.biochi.2020.08.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 08/03/2020] [Accepted: 08/21/2020] [Indexed: 12/27/2022]
|
16
|
Jin T, Zhao L, Wang HP, Huang ML, Yue Y, Lu C, Zheng ZB. Recent advances in the discovery and development of glyoxalase I inhibitors. Bioorg Med Chem 2019; 28:115243. [PMID: 31879183 DOI: 10.1016/j.bmc.2019.115243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 11/25/2019] [Accepted: 11/26/2019] [Indexed: 12/17/2022]
Abstract
Glyoxalase I (GLO1) is a homodimeric Zn2+-metalloenzyme that catalyses the transformation of methylglyoxal (MG) to d-lacate through the intermediate S-d-lactoylglutathione. Growing evidence indicates that GLO1 has been identified as a potential target for the treatment cancer and other diseases. Various inhibitors of GLO1 have been discovered or developed over the past several decades including natural or natural product-based inhibitors, GSH-based inhibitors, non-GSH-based inhibitors, etc. The aim of this review is to summarize recent achievements of concerning discovery, design strategies, as well as pharmacological aspects of GLO1 inhibitors with the target of promoting their development toward clinical application.
Collapse
Affiliation(s)
- Tian Jin
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu 610052, People's Republic of China.
| | - Lu Zhao
- Sichuan Institute for Food and Drug Control, Chengdu 611731, People's Republic of China.
| | - Hong-Ping Wang
- Sichuan Institute for Food and Drug Control, Chengdu 611731, People's Republic of China
| | - Mao-Lin Huang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu 610052, People's Republic of China
| | - Yan Yue
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu 610052, People's Republic of China
| | - Chichong Lu
- Department of Chemistry, School of Science, Beijing Technology and Business University, Beijing 100048, People's Republic of China.
| | - Zhe-Bin Zheng
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu 610052, People's Republic of China.
| |
Collapse
|
17
|
Chen Z, Zhang R, Shi W, Li L, Liu H, Liu Z, Wu L. The Multifunctional Benefits of Naturally Occurring Delphinidin and Its Glycosides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:11288-11306. [PMID: 31557009 DOI: 10.1021/acs.jafc.9b05079] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Delphinidin (Del) and its glycosides are water-soluble pigments, belonging to a subgroup of flavonoids. They are health-promoting candidates for pharmaceutical and nutraceutical uses, as indicated by exhibiting antioxidation, anti-inflammation, antimicroorganism, antidiabetes, antiobesity, cardiovascular protection, neuroprotection, and anticancer properties. Glycosylation modification of Del is associated with increased stability and reduced biological activity. Del and its glycosides can be the alternative inhibitors of CBRs, ERα/β, EGFR, BCRP, and SGLT-1, and virtual docking indicates that the sugar moiety may not effectively interact with the active sites of the targets. Structure-based characteristics confer the multifunctional properties of Del and its glycosides. Because of their health-promoting effects, Del and its glycosides are promising and have been developed as potential pharmaceuticals. However, more investigation on the underlying mechanisms of Del and its glycosides in mediating cellular processes with high specificity are still needed. The research progression of Del and its glycosides over the last 10 years is comprehensively reviewed in this article.
Collapse
Affiliation(s)
- Zhixi Chen
- College of Pharmacy , Gannan Medical University , Ganzhou 341000 , China
| | - Rui Zhang
- College of Pharmacy , Gannan Medical University , Ganzhou 341000 , China
| | - Weimei Shi
- College of Pharmacy , Gannan Medical University , Ganzhou 341000 , China
| | - Linfu Li
- College of Pharmacy , Gannan Medical University , Ganzhou 341000 , China
| | - Hai Liu
- College of Pharmacy , Gannan Medical University , Ganzhou 341000 , China
| | - Zhiping Liu
- School of Basic Medicine , Gannan Medical University , Ganzhou 341000 , China
| | - Longhuo Wu
- College of Pharmacy , Gannan Medical University , Ganzhou 341000 , China
| |
Collapse
|
18
|
Multi-Armed 1,2,3-Selenadiazole and 1,2,3-Thiadiazole Benzene Derivatives as Novel Glyoxalase-I Inhibitors. Molecules 2019; 24:molecules24183210. [PMID: 31487813 PMCID: PMC6766947 DOI: 10.3390/molecules24183210] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 08/30/2019] [Accepted: 09/01/2019] [Indexed: 02/07/2023] Open
Abstract
Glyoxalase-I (Glo-I) enzyme was established to be a valid target for anticancer drug design. It performs the essential detoxification step of harmful byproducts, especially methylglyoxal. A robust computer-aided drug design approach was used to design and validate a series of compounds with selenium or sulfur based heterorings. A series of in-house multi-armed 1,2,3-selenadiazole and 1,2,3-thiadiazole benzene derivatives were tested for their Glo-I inhibitory activity. Results showed that these compounds bind Glo-I active sites competitively with strong potential to inhibit this enzyme with IC50 values in micro-molar concentration. Docking poses revealed that these compounds interact with the zinc atom at the bottom of the active site, which plays an essential role in its viability.
Collapse
|
19
|
Chen AY, Adamek RN, Dick BL, Credille CV, Morrison CN, Cohen SM. Targeting Metalloenzymes for Therapeutic Intervention. Chem Rev 2019; 119:1323-1455. [PMID: 30192523 PMCID: PMC6405328 DOI: 10.1021/acs.chemrev.8b00201] [Citation(s) in RCA: 161] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Metalloenzymes are central to a wide range of essential biological activities, including nucleic acid modification, protein degradation, and many others. The role of metalloenzymes in these processes also makes them central for the progression of many diseases and, as such, makes metalloenzymes attractive targets for therapeutic intervention. Increasing awareness of the role metalloenzymes play in disease and their importance as a class of targets has amplified interest in the development of new strategies to develop inhibitors and ultimately useful drugs. In this Review, we provide a broad overview of several drug discovery efforts focused on metalloenzymes and attempt to map out the current landscape of high-value metalloenzyme targets.
Collapse
Affiliation(s)
- Allie Y Chen
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| | - Rebecca N Adamek
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| | - Benjamin L Dick
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| | - Cy V Credille
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| | - Christine N Morrison
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| | - Seth M Cohen
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| |
Collapse
|
20
|
Tamori S, Nozaki Y, Motomura H, Nakane H, Katayama R, Onaga C, Kikuchi E, Shimada N, Suzuki Y, Noike M, Hara Y, Sato K, Sato T, Yamamoto K, Hanawa T, Imai M, Abe R, Yoshimori A, Takasawa R, Tanuma SI, Akimoto K. Glyoxalase 1 gene is highly expressed in basal-like human breast cancers and contributes to survival of ALDH1-positive breast cancer stem cells. Oncotarget 2018; 9:36515-36529. [PMID: 30559934 PMCID: PMC6284866 DOI: 10.18632/oncotarget.26369] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 11/01/2018] [Indexed: 12/13/2022] Open
Abstract
Glyoxalase 1 (GLO1) is a ubiquitous enzyme involved in the detoxification of methylglyoxal, a cytotoxic byproduct of glycolysis that induces apoptosis. In this study, we found that GLO1 gene expression correlates with neoplasm histologic grade (χ 2 test, p = 0.002) and is elevated in human basal-like breast cancer tissues. Approximately 90% of basal-like cancers were grade 3 tumors highly expressing both GLO1 and the cancer stem cell marker ALDH1A3. ALDH1high cells derived from the MDA-MB 157 and MDA-MB 468 human basal-like breast cancer cell lines showed elevated GLO1 activity. GLO1 inhibition using TLSC702 suppressed ALDH1high cell viability as well as the formation of tumor-spheres by ALDH1high cells. GLO1 knockdown using specific siRNAs also suppressed ALDH1high cell viability, and both TLSC702 and GLO1 siRNA induced apoptosis in ALDH1high cells. These results suggest GLO1 is essential for the survival of ALDH1-positive breast cancer stem cells. We therefore conclude that GLO1 is a potential therapeutic target for treatment of basal-like breast cancers.
Collapse
Affiliation(s)
- Shoma Tamori
- Department of Medicinal and Life Science, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
- Translational Research Center, Research Institute for Science and Technology, Tokyo University of Science, Chiba, Japan
| | - Yuka Nozaki
- Department of Medicinal and Life Science, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
- Translational Research Center, Research Institute for Science and Technology, Tokyo University of Science, Chiba, Japan
| | - Hitomi Motomura
- Department of Medicinal and Life Science, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
- Translational Research Center, Research Institute for Science and Technology, Tokyo University of Science, Chiba, Japan
| | - Hiromi Nakane
- Department of Medicinal and Life Science, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Reika Katayama
- Department of Medicinal and Life Science, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Chotaro Onaga
- Department of Medicinal and Life Science, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Eriko Kikuchi
- Department of Medicinal and Life Science, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Nami Shimada
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Yuhei Suzuki
- Department of Medicinal and Life Science, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Mei Noike
- Department of Medicinal and Life Science, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Yasushi Hara
- Research Institute for Biochemical Sciences, Tokyo University of Science, Chiba, Japan
| | - Keiko Sato
- Department of Information Sciences, Faculty of Science and Technology, Tokyo University of Science, Chiba, Japan
- Translational Research Center, Research Institute for Science and Technology, Tokyo University of Science, Chiba, Japan
| | - Tsugumichi Sato
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
- Translational Research Center, Research Institute for Science and Technology, Tokyo University of Science, Chiba, Japan
| | - Kouji Yamamoto
- Department of Biostatistics, Yokohama City University, School of Medicine, Yokohama, Japan
- Translational Research Center, Research Institute for Science and Technology, Tokyo University of Science, Chiba, Japan
| | - Takehisa Hanawa
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
- Translational Research Center, Research Institute for Science and Technology, Tokyo University of Science, Chiba, Japan
| | - Misa Imai
- Department of Hematology, Juntendo University School of Medicine, Tokyo, Japan
- Leading Center for the Development and Research of Cancer Medicine, Juntendo University School of Medicine, Tokyo, Japan
| | - Ryo Abe
- Research Institute for Biochemical Sciences, Tokyo University of Science, Chiba, Japan
- Strategic Innovation and Research Center, Teikyo University, Tokyo, Japan
| | | | - Ryoko Takasawa
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Sei-Ichi Tanuma
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
- Laboratory of Genomic Medicinal Science, Research Institute for Science and Technology, Tokyo University of Science, Chiba, Japan
| | - Kazunori Akimoto
- Department of Medicinal and Life Science, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
- Translational Research Center, Research Institute for Science and Technology, Tokyo University of Science, Chiba, Japan
| |
Collapse
|
21
|
Yang H, Tian T, Wu D, Guo D, Lu J. Prevention and treatment effects of edible berries for three deadly diseases: Cardiovascular disease, cancer and diabetes. Crit Rev Food Sci Nutr 2018; 59:1903-1912. [DOI: 10.1080/10408398.2018.1432562] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Hua Yang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, P. R. China
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, P. R. China
- School of Biotechnology, Jiangnan University, Wuxi, P. R. China
| | - Tiantian Tian
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, P. R. China
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, P. R. China
- School of Biotechnology, Jiangnan University, Wuxi, P. R. China
| | - Dianhui Wu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, P. R. China
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, P. R. China
- School of Biotechnology, Jiangnan University, Wuxi, P. R. China
| | - Dejun Guo
- School of Food Engineering, Qinzhou University, Qinzhou, China
| | - Jian Lu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, P. R. China
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, P. R. China
- School of Biotechnology, Jiangnan University, Wuxi, P. R. China
| |
Collapse
|
22
|
Al-Balas QA, Hassan MA, Al-Shar'i NA, El-Elimat T, Almaaytah AM. Computational and experimental exploration of the structure-activity relationships of flavonoids as potent glyoxalase-I inhibitors. Drug Dev Res 2017; 79:58-69. [PMID: 29285772 DOI: 10.1002/ddr.21421] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 12/12/2017] [Accepted: 12/16/2017] [Indexed: 11/06/2022]
Abstract
Hit, Lead & Candidate Discovery Glyoxalase-I (Glo-I) enzyme has emerged as a potential target for cancer treatment. Several classes of natural products including coumarins and flavonoids have shown remarkable Glo-I inhibitory activity. In the present study, computational and experimental approaches were used to explore the structure-activity relationships of a panel of 24 flavonoids as inhibitors of the Glo-1 enzyme. Scutellarein with an IC50 value of 2.04 μM was identified as the most potent inhibitor among the series studied. Di- or tri-hydroxylation of the benzene rings A and B accompanied with a C2/C3 double bond in ring C were identified as essential structural features for enzyme inhibition. Moreover, the ketol system showed a minor role in the inhibitory power of these compounds. The structure-activity relationships revealed in this study had deepened our understanding of the Glo-I inhibitory activities of flavonoids and opened the door for further exploration of this promising compound class.
Collapse
Affiliation(s)
- Qosay A Al-Balas
- Department of Medicinal Chemistry and Pharmacognosy, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Mohammad A Hassan
- Department of Medicinal Chemistry and Pharmacognosy, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Nizar A Al-Shar'i
- Department of Medicinal Chemistry and Pharmacognosy, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Tamam El-Elimat
- Department of Medicinal Chemistry and Pharmacognosy, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Ammar M Almaaytah
- Department of Pharmaceutical Technology, Jordan University of Science and Technology, Irbid, 22110, Jordan
| |
Collapse
|
23
|
Piceatannol, a natural trans-stilbene compound, inhibits human glyoxalase I. Bioorg Med Chem Lett 2017; 27:1169-1174. [PMID: 28169168 DOI: 10.1016/j.bmcl.2017.01.070] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 01/17/2017] [Accepted: 01/24/2017] [Indexed: 11/20/2022]
Abstract
Human glyoxalase I (GLO I), a rate-limiting enzyme for detoxification of methylglyoxal (MG), a by-product of glycolysis, is known to be a potential therapeutic target for cancer. Here, we searched new scaffolds from natural compounds for designing novel GLO I inhibitors and found trans-stilbene scaffold. We examined the inhibitory abilities to human GLO I of commercially available trans-stilbene compounds. Among them, piceatannol was found to have the most potent inhibitory activity against human GLO I. Piceatannol could inhibit the proliferation of human lung cancer NCI-H522 cells, which are dependent on GLO I for survival, in a dose- and time-dependent manner. In addition, piceatannol more significantly inhibited the proliferation of NCI-H522 cells than that of NCI-H460 cells, which are less dependent on GLO I. Importantly, overexpression of GLO I in NCI-H522 cells resulted in less sensitive to the antiproliferative activity of piceatannol. Taken together, this is the first report demonstrating that piceatannol inhibits GLO I activity and the GLO I-dependent proliferation of cancer cells. Furthermore, we determined a pharmacophore for novel inhibitors of human GLO I by computational simulation analyses of the binding mode of piceatannol to the enzyme hot spot in the active site. We suggest that piceatannol is a possible lead compound for the development of novel GLO I inhibitory anticancer drugs.
Collapse
|
24
|
Jin T, Zhai J, Liu X, Yue Y, Huang M, Li Z, Ni C, Deng Q, Sang Y, Yao Z, Zhang H, Hu X, Zheng ZB. Design, Synthesis and Biological Evaluation of Potent Human Glyoxalase I Inhibitors. Chem Pharm Bull (Tokyo) 2017; 65:455-460. [DOI: 10.1248/cpb.c16-00800] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Tian Jin
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Insititute of Antibiotics, Chengdu University
| | - Jing Zhai
- School of Pharmaceutical Sciences & Centre for Cellular and Structural Biology of Sun Yet-Sen University
| | - Xiao Liu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Insititute of Antibiotics, Chengdu University
| | - Yan Yue
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Insititute of Antibiotics, Chengdu University
| | - Maolin Huang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Insititute of Antibiotics, Chengdu University
| | - Zonghe Li
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Insititute of Antibiotics, Chengdu University
| | - Caixia Ni
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Insititute of Antibiotics, Chengdu University
| | - Qishan Deng
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Insititute of Antibiotics, Chengdu University
| | - Yankui Sang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Insititute of Antibiotics, Chengdu University
| | - Zhongwei Yao
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Insititute of Antibiotics, Chengdu University
| | - Hong Zhang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Insititute of Antibiotics, Chengdu University
| | - Xiaopeng Hu
- School of Pharmaceutical Sciences & Centre for Cellular and Structural Biology of Sun Yet-Sen University
| | - Zhe-Bin Zheng
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Insititute of Antibiotics, Chengdu University
| |
Collapse
|
25
|
Al-Balas QA, Hassan MA, Al-Shar'i NA, Mhaidat NM, Almaaytah AM, Al-Mahasneh FM, Isawi IH. Novel glyoxalase-I inhibitors possessing a "zinc-binding feature" as potential anticancer agents. Drug Des Devel Ther 2016; 10:2623-9. [PMID: 27574401 PMCID: PMC4993257 DOI: 10.2147/dddt.s110997] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background The glyoxalase system including two thiol-dependent enzymes, glyoxalase I (Glo-I) and glyoxalase II, plays an important role in a ubiquitous metabolic pathway involved in cellular detoxification of cytotoxic 2-oxoaldehydes. Tumor cells have high glycolytic activity, leading to increased cellular levels of these toxic metabolites. The increased activity of the detoxification system in cancerous cells makes this pathway a viable target for developing novel anticancer agents. In this study, we examined the potential utility of non-glutathione-based inhibitors of the Glo-I enzyme as novel anticancer drugs. Methods Computer-aided drug design techniques, such as customized pharmacophoric features, virtual screening, and flexible docking, were used to achieve the project goals. Retrieved hits were extensively filtered and subsequently docked into the active site of the enzyme. The biological activities of retrieved hits were assessed using an in vitro assay against Glo-I. Results Since Glo-I is a zinc metalloenzyme, a customized Zn-binding pharmacophoric feature was used to search for selective inhibitors via virtual screening of a small-molecule database. Seven hits were selected, purchased, and biologically evaluated. Three of the seven hits inhibited Glo-I activity, the most effective of which exerted 76.4% inhibition at a concentration of 25 µM. Conclusion We successfully identified a potential Glo-I inhibitor that can serve as a lead compound for further optimization. Moreover, our in silico and experimental results were highly correlated. Hence, the docking protocol adopted in this study may be efficiently employed in future optimization steps.
Collapse
Affiliation(s)
| | | | | | | | - Ammar M Almaaytah
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | | | | |
Collapse
|
26
|
Lin JA, Wu CH, Lu CC, Hsia SM, Yen GC. Glycative stress from advanced glycation end products (AGEs) and dicarbonyls: An emerging biological factor in cancer onset and progression. Mol Nutr Food Res 2016; 60:1850-64. [DOI: 10.1002/mnfr.201500759] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 12/11/2015] [Accepted: 01/07/2016] [Indexed: 12/15/2022]
Affiliation(s)
- Jer-An Lin
- Department of Food Science and Biotechnology; National Chung Hsing University; Taichung Taiwan
| | - Chi-Hao Wu
- School of Nutrition and Health Sciences; Taipei Medical University; Taipei Taiwan
| | - Chi-Cheng Lu
- Department of Food Science and Biotechnology; National Chung Hsing University; Taichung Taiwan
- School of Nutrition and Health Sciences; Taipei Medical University; Taipei Taiwan
| | - Shih-Min Hsia
- School of Nutrition and Health Sciences; Taipei Medical University; Taipei Taiwan
| | - Gow-Chin Yen
- Department of Food Science and Biotechnology; National Chung Hsing University; Taichung Taiwan
- Agricultural Biotechnology Center; National Chung Hsing University; Taichung Taiwan
| |
Collapse
|
27
|
Takasawa R, Shimada N, Uchiro H, Takahashi S, Yoshimori A, Tanuma SI. TLSC702, a Novel Inhibitor of Human Glyoxalase I, Induces Apoptosis in Tumor Cells. Biol Pharm Bull 2016; 39:869-73. [DOI: 10.1248/bpb.b15-00710] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Ryoko Takasawa
- Faculty of Pharmaceutical Sciences, Tokyo University of Science
| | - Nami Shimada
- Faculty of Pharmaceutical Sciences, Tokyo University of Science
| | - Hiromi Uchiro
- Faculty of Pharmaceutical Sciences, Tokyo University of Science
| | | | | | - Sei-ichi Tanuma
- Faculty of Pharmaceutical Sciences, Tokyo University of Science
- Genome & Drug Research Center, Tokyo University of Science
| |
Collapse
|
28
|
Yadav A, Kumar R, Sunkaria A, Singhal N, Kumar M, Sandhir R. Evaluation of potential flavonoid inhibitors of glyoxalase-I based on virtual screening and in vitro studies. J Biomol Struct Dyn 2015; 34:993-1007. [PMID: 26108947 DOI: 10.1080/07391102.2015.1064830] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Glyoxalase-I (GLO-I) is a component of the ubiquitous detoxification system involved in the conversion of methylglyoxal (MG) to d-lactate in the glycolytic pathway. MG toxicity arises from its ability to form advanced glycation end products. GLO-I has been reported to be frequently overexpressed in various types of cancer cells. In this study, we performed structure-based virtual screening of focused flavonoids commercial library to identify potential and specific inhibitors of GLO-I. The compounds were ranked based on Glide extra precision docking score and five hits (curcumin, quercetin, morin, naringin and silibinin) were selected on the basis of their interaction with active site amino acid residues of GLO-I. Mixed mode QM/MM calculation was performed on the top-scoring hit to ascertain the role of zinc ion in ligand binding. In addition, the identified hits were subjected to MM/GBSA binding energy prediction, ADME prediction and similarity studies. The hits were tested in vitro for cell viability, and GLO-I inhibition. Naringin (ST072162) was found to be most potent inhibitor of GLO-I among the identified hits with highest glide XP dock score of -14.906. These findings suggest that naringin could be a new scaffold for designing inhibitors against GLO-I with potential application as anticancer agents.
Collapse
Affiliation(s)
- Aarti Yadav
- a Department of Biochemistry , Panjab University , Chandigarh , India
| | - Rajnish Kumar
- b University Institute of Pharmaceutical Sciences , Panjab University , Chandigarh , India
| | - Aditya Sunkaria
- a Department of Biochemistry , Panjab University , Chandigarh , India
| | - Nitin Singhal
- c Department of Food Science and Technology , National Agri-Food Biotechnology Institute , Mohali , India
| | - Manoj Kumar
- b University Institute of Pharmaceutical Sciences , Panjab University , Chandigarh , India
| | - Rajat Sandhir
- a Department of Biochemistry , Panjab University , Chandigarh , India
| |
Collapse
|
29
|
Duan D, Doak AK, Nedyalkova L, Shoichet BK. Colloidal aggregation and the in vitro activity of traditional Chinese medicines. ACS Chem Biol 2015; 10:978-88. [PMID: 25606714 DOI: 10.1021/cb5009487] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Traditional Chinese Medicines (TCMs) have been the sole source of therapeutics in China for two millennia. In recent drug discovery efforts, purified components of TCM formulations have shown activity in many in vitro assays, raising concerns of promiscuity. Here, we investigated 14 bioactive small molecules isolated from TCMs for colloidal aggregation. At concentrations commonly used in cell-based or biochemical assay conditions, eight of these compounds formed particles detectable by dynamic light scattering and showed detergent-reversible inhibition against β-lactamase and malate dehydrogenase, two counter-screening enzymes. When three of these compounds were tested against their literature-reported molecular targets, they showed similar reversal of their inhibitory activity in the presence of detergent. For three of the most potent aggregators, contributions to promiscuity via oxidative cycling were investigated; addition of 1 mM DTT had no effect on their activity, which is inconsistent with an oxidative mechanism. TCMs are often active at micromolar concentrations; this study suggests that care must be taken to control for artifactual activity when seeking their primary targets. Implications for the formulation of these molecules are considered.
Collapse
Affiliation(s)
- Da Duan
- Department
of Pharmaceutical Chemistry, University of California, San Francisco, 1700 Fourth Street, San Francisco, California 94158-2550, United States
- Leslie
Dan Faculty of Pharmacy, Donnelly Center, University of Toronto, 144 College Street, Toronto, Ontario M5S3M2, Canada
| | - Allison K. Doak
- Department
of Pharmaceutical Chemistry, University of California, San Francisco, 1700 Fourth Street, San Francisco, California 94158-2550, United States
| | - Lyudmila Nedyalkova
- Leslie
Dan Faculty of Pharmacy, Donnelly Center, University of Toronto, 144 College Street, Toronto, Ontario M5S3M2, Canada
| | - Brian K. Shoichet
- Department
of Pharmaceutical Chemistry, University of California, San Francisco, 1700 Fourth Street, San Francisco, California 94158-2550, United States
- Leslie
Dan Faculty of Pharmacy, Donnelly Center, University of Toronto, 144 College Street, Toronto, Ontario M5S3M2, Canada
| |
Collapse
|
30
|
Higgins JA, Zainol M, Brown K, Jones GDD. Anthocyans as tertiary chemopreventive agents in bladder cancer: anti-oxidant mechanisms and interaction with mitomycin C. Mutagenesis 2014; 29:227-35. [PMID: 24743948 DOI: 10.1093/mutage/geu009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Bladder cancer is associated with high rates of recurrence making tertiary chemoprevention an attractive intervention strategy. Anthocyanins have been shown to possess chemopreventive properties and are detectable in urine after oral ingestion, with higher concentrations achievable via intravesical administration alongside current chemotherapeutic regimens. Yet their apparent ability to protect against certain DNA damage may in turn interfere with cancer treatments. Our aim was therefore to determine the potential of anthocyanins as chemopreventive agents in bladder cancer, their mode of action and effects, both alone and in combination with mitomycin C (MMC). In this study we showed that mirtoselect, a standardised mixture of anthocyanins, possesses significant anti-proliferative activity, causing growth inhibition and apoptosis in bladder cancer cell lines. The anti-oxidative potential of mirtoselect was examined and revealed significantly fewer H2O2-induced DNA strand breaks, as well as oxidised DNA bases in pre-treated cells. In contrast, endogenous levels of oxidised DNA bases were unaltered. Investigations into the possible protective mechanisms associated with these anti-oxidant properties revealed that mirtoselect chelates metal ions. In mirtoselect/MMC combination studies, no adverse effects on measures of DNA damage were observed compared to treatment with MMC alone and there was evidence of enhanced cell death. Consistent with this, significantly more DNA crosslinks were formed in cells treated with the combination. These results show that mirtoselect exerts effects consistent with chemopreventive properties in bladder cancer cell lines and most importantly does so without adversely affecting the effects of drugs used in current treatment regimens. We also provide evidence that mirtoselect's anti-oxidative mechanism of action is via metal ion chelation. Overall these results suggest that mirtoselect could be an effective chemopreventive agent in bladder cancer and provides the necessary pre-clinical data for future in vivo animal studies and clinical trials.
Collapse
Affiliation(s)
- Jennifer A Higgins
- Department of Cancer Studies and Molecular Medicine, University of Leicester, University Road, Leicester LE1 7RH, UK
| | - Murizal Zainol
- Department of Cancer Studies and Molecular Medicine, University of Leicester, University Road, Leicester LE1 7RH, UK
| | - Karen Brown
- Department of Cancer Studies and Molecular Medicine, University of Leicester, University Road, Leicester LE1 7RH, UK
| | - George D D Jones
- Department of Cancer Studies and Molecular Medicine, University of Leicester, University Road, Leicester LE1 7RH, UK
| |
Collapse
|
31
|
Zhou Y, Guo T, Li X, Dong Y, Galatsis P, Johnson DS, Pan Z. Discovery of selective 2,4-diaminopyrimidine-based photoaffinity probes for glyoxalase I. MEDCHEMCOMM 2014. [DOI: 10.1039/c3md00286a] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
L1-Bpyne was discovered as a potent inhibitor and cell permeable probe of glyoxalase I.
Collapse
Affiliation(s)
- Yiqing Zhou
- Key laboratory of Chemical Genomics
- School of Chemical Biology and Biotechnology
- Peking University
- Xili University Town
- Shenzhen
| | - Tianlin Guo
- Key laboratory of Chemical Genomics
- School of Chemical Biology and Biotechnology
- Peking University
- Xili University Town
- Shenzhen
| | - Xitao Li
- Key laboratory of Chemical Genomics
- School of Chemical Biology and Biotechnology
- Peking University
- Xili University Town
- Shenzhen
| | - Yi Dong
- Key laboratory of Chemical Genomics
- School of Chemical Biology and Biotechnology
- Peking University
- Xili University Town
- Shenzhen
| | - Paul Galatsis
- Neuroscience Medicinal Chemistry and Chemical Biology
- Pfizer Worldwide Research and Development
- Cambridge
- USA
| | - Douglas S. Johnson
- Neuroscience Medicinal Chemistry and Chemical Biology
- Pfizer Worldwide Research and Development
- Cambridge
- USA
| | - Zhengying Pan
- Key laboratory of Chemical Genomics
- School of Chemical Biology and Biotechnology
- Peking University
- Xili University Town
- Shenzhen
| |
Collapse
|
32
|
Geng X, Ma J, Zhang F, Xu C. Glyoxalase I in Tumor Cell Proliferation and Survival and as a Potential Target for Anticancer Therapy. Oncol Res Treat 2014; 37:570-4. [DOI: 10.1159/000367800] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 08/08/2014] [Indexed: 11/19/2022]
|
33
|
Chandler SF, Senior M, Nakamura N, Tsuda S, Tanaka Y. Expression of flavonoid 3',5'-hydroxylase and acetolactate synthase genes in transgenic carnation: assessing the safety of a nonfood plant. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:11711-11720. [PMID: 23646984 DOI: 10.1021/jf4004384] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
For 16 years, genetically modified flowers of carnation ( Dianthus caryophyllus ) have been sold to the floristry industry. The transgenic carnation carries a herbicide tolerance gene (a mutant gene encoding acetolactate synthase (ALS)) and has been modified to produce delphinidin-based anthocyanins in flowers, which conventionally bred carnation cannot produce. The modified flower color has been achieved by introduction of a gene encoding flavonoid 3',5'-hydroxylase (F3'5'H). Transgenic carnation flowers are produced in South America and are primarily distributed to North America, Europe, and Japan. Although a nonfood crop, the release of the genetically modified carnation varieties required an environmental risk impact assessment and an assessment of the potential for any increased risk of harm to human or animal health compared to conventionally bred carnation. The results of the health safety assessment and the experimental studies that accompanied them are described in this review. The conclusion from the assessments has been that the release of genetically modified carnation varieties which express F3'5'H and ALS genes and which accumulate delphinidin-based anthocyanins do not pose an increased risk of harm to human or animal health.
Collapse
Affiliation(s)
- Stephen F Chandler
- School of Applied Sciences, RMIT University , P.O. Box 71, Bundoora, VIC 3083, Australia
| | | | | | | | | |
Collapse
|
34
|
Berry and Citrus Phenolic Compounds Inhibit Dipeptidyl Peptidase IV: Implications in Diabetes Management. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:479505. [PMID: 24069048 PMCID: PMC3773436 DOI: 10.1155/2013/479505] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2013] [Revised: 07/01/2013] [Accepted: 07/01/2013] [Indexed: 12/25/2022]
Abstract
Beneficial health effects of fruits and vegetables in the diet have been attributed to their high flavonoid content. Dipeptidyl peptidase IV (DPP-IV) is a serine aminopeptidase that is a novel target for type 2 diabetes therapy due to its incretin hormone regulatory effects. In this study, well-characterized anthocyanins (ANC) isolated from berry wine blends and twenty-seven other phenolic compounds commonly present in citrus, berry, grape, and soybean, were individually investigated for their inhibitory effects on DPP-IV by using a luminescence assay and computational modeling. ANC from blueberry-blackberry wine blends strongly inhibited DPP-IV activity (IC50, 0.07 ± 0.02 to >300 μM). Of the twenty-seven phenolics tested, the most potent DPP-IV inhibitors were resveratrol (IC50, 0.6 ± 0.4 nM), luteolin (0.12 ± 0.01 μM), apigenin (0.14 ± 0.02 μM), and flavone (0.17 ± 0.01 μM), with IC50 values lower than diprotin A (4.21 ± 2.01 μM), a reference standard inhibitory compound. Analyses of computational modeling showed that resveratrol and flavone were competitive inhibitors which could dock directly into all three active sites of DPP-IV, while luteolin and apigenin docked in a noncompetitive manner. Hydrogen bonding was the main binding mode of all tested phenolic compounds with DPP-IV. These results indicate that flavonoids, particularly luteolin, apigenin, and flavone, and the stilbenoid resveratrol can act as naturally occurring DPP-IV inhibitors.
Collapse
|
35
|
Elisabetta B, Flavia G, Paolo F, Giorgio L, Attilio SG, Fiorella LS, Juri N. Nutritional profile and productivity of bilberry (Vaccinium myrtillus L.) in different habitats of a protected area of the eastern Italian Alps. J Food Sci 2013; 78:C673-8. [PMID: 23573813 DOI: 10.1111/1750-3841.12120] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Accepted: 02/27/2013] [Indexed: 11/29/2022]
Abstract
Plant productivity and fruit quality in terms of occurrence of mineral elements and metabolites were determined on wild bilberry growing in open and forest stands in a protected area of N-Italy. Plant productivity was significantly higher in open stands (3 ± 2.5 compared with 0.03 ± 0.05 fruits per plant) suggesting that both collections in the wild and semi-wild cultivation should be planned in open habitats. Results obtained by ionomic and metabolomic analyses indicated that high quality fruits can be collected in the analyzed area and their nutritional profile did not differ between open and forest stands. Cyanidin and delphinidin proportion of bilberries from our study area was respectively 23.8% and 43.9% of total antocyanin and it is similar to that previously considered peculiar to bilberry fruits of high latitude regions of Europe and indicative of high quality food properties. A comparison between wild bilberry collected in the protected area and commercial blueberry was also performed and relevant differences between them detected, confirming the concept that wild bilberry has a better nutritional profile than blueberry.
Collapse
Affiliation(s)
- Barizza Elisabetta
- Univ. of Padova, Dept. of Biology, via Ugo Bassi 58/b, 35121, Padova, Italy
| | | | | | | | | | | | | |
Collapse
|
36
|
Medicinal significance, pharmacological activities, and analytical aspects of anthocyanidins ‘delphinidin’: A concise report. JOURNAL OF ACUTE DISEASE 2013. [DOI: 10.1016/s2221-6189(13)60123-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
37
|
Kausar H, Jeyabalan J, Aqil F, Chabba D, Sidana J, Singh IP, Gupta RC. Berry anthocyanidins synergistically suppress growth and invasive potential of human non-small-cell lung cancer cells. Cancer Lett 2012; 325:54-62. [DOI: 10.1016/j.canlet.2012.05.029] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Revised: 05/21/2012] [Accepted: 05/23/2012] [Indexed: 12/26/2022]
|
38
|
Al-Balas Q, Hassan M, Al-Oudat B, Alzoubi H, Mhaidat N, Almaaytah A. Generation of the first structure-based pharmacophore model containing a selective "zinc binding group" feature to identify potential glyoxalase-1 inhibitors. Molecules 2012; 17:13740-58. [PMID: 23174893 PMCID: PMC6268171 DOI: 10.3390/molecules171213740] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 11/15/2012] [Accepted: 11/19/2012] [Indexed: 11/22/2022] Open
Abstract
Within this study, a unique 3D structure-based pharmacophore model of the enzyme glyoxalase-1 (Glo-1) has been revealed. Glo-1 is considered a zinc metalloenzyme in which the inhibitor binding with zinc atom at the active site is crucial. To our knowledge, this is the first pharmacophore model that has a selective feature for a “zinc binding group” which has been customized within the structure-based pharmacophore model of Glo-1 to extract ligands that possess functional groups able to bind zinc atom solely from database screening. In addition, an extensive 2D similarity search using three diverse similarity techniques (Tanimoto, Dice, Cosine) has been performed over the commercially available “Zinc Clean Drug-Like Database” that contains around 10 million compounds to help find suitable inhibitors for this enzyme based on known inhibitors from the literature. The resultant hits were mapped over the structure based pharmacophore and the successful hits were further docked using three docking programs with different pose fitting and scoring techniques (GOLD, LibDock, CDOCKER). Nine candidates were suggested to be novel Glo-1 inhibitors containing the “zinc binding group” with the highest consensus scoring from docking.
Collapse
Affiliation(s)
- Qosay Al-Balas
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan; E-Mails: (M.H.); (B.A.-O.); (H.A.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +96-2-776337216; Fax: +962-2-7201075
| | - Mohammad Hassan
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan; E-Mails: (M.H.); (B.A.-O.); (H.A.)
| | - Buthina Al-Oudat
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan; E-Mails: (M.H.); (B.A.-O.); (H.A.)
| | - Hassan Alzoubi
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan; E-Mails: (M.H.); (B.A.-O.); (H.A.)
| | - Nizar Mhaidat
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan; E-Mail:
| | - Ammar Almaaytah
- Department of Pharmaceu tical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan; E-Mail:
| |
Collapse
|
39
|
Takasawa R, Tao A, Saeki K, Shionozaki N, Tanaka R, Uchiro H, Takahashi S, Yoshimori A, Tanuma SI. Discovery of a new type inhibitor of human glyoxalase I by myricetin-based 4-point pharmacophore. Bioorg Med Chem Lett 2011; 21:4337-42. [DOI: 10.1016/j.bmcl.2011.05.046] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Revised: 05/13/2011] [Accepted: 05/16/2011] [Indexed: 11/26/2022]
|