1
|
Stalin A, Kandhasamy S, Kannan BS, Verma RS, Ignacimuthu S, Kim Y, Shao Q, Chen Y, Palani P. Synthesis of a 1,2,3-bistriazole derivative of embelin and evaluation of its effect on high-fat diet fed-streptozotocin-induced type 2 diabetes in rats and molecular docking studies. Bioorg Chem 2020; 96:103579. [DOI: 10.1016/j.bioorg.2020.103579] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 12/19/2019] [Accepted: 01/10/2020] [Indexed: 12/27/2022]
|
2
|
Riaz MB, Khan AU, Qazi NG. Pharmacological and computational evaluation of Sapodilla and its constituents for therapeutic potential in hyperactive gastrointestinal disorders. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2020; 23:224-235. [PMID: 32405366 PMCID: PMC7211360 DOI: 10.22038/ijbms.2019.35595.8488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVES This study was designed to investigate various gastrointestinal effects of Manilkara zapota (Sapodilla), exploring its anti-diarrheal, anti-secretary, anti-spasmodic, anti-ulcer and anti-motility potential. MATERIALS AND METHODS Antidiarrheal and anti-secretary activities were investigated using castor oil induced diarrhea and castor oil induced fluid accumulation. Isolated rabbit jejunum tissues (antispasmodic) were employed for in vitro experiments. Antiulcer, antimotility and molecular docking were performed using ethanol-HCl induced ulcer assay, charcoal meal transit time and Auto Doc Vina. RESULTS Mz.Cr exhibited protection against castor oil-induced diarrhea (P<0.05 vs. saline group) and dose-dependently inhibited intestinal fluid secretions (P<0.001 vs. castor oil group). Mz.Cr caused relaxation of spontaneous and K+ (80 Mm)-induced contractions with EC50 values of 0.11mg/ml (0.08-0.1, n=4) and 0.16 mg/ml (0.09-0.2, n=4) respectively (* P<0.05** P<0.01 *** P<0.001). It showed protective effect against gastric ulcers induced by ethanol-HCl (P<0.001 vs. saline group). Mz.Cr reduced distance travelled by charcoal meal (P<0.001 vs. saline group). Plant constituents: caffeoylquinic acid and methyl 4-O-galloylchlorogenate showed high binding affinities (E-value≥-6.5 Kcal/mol) against histaminergic H2 receptors, H+/K+ ATPase pump and voltage gated L-type calcium channels, while possesses moderate affinities (E-value≥8 Kcal/mol) against histaminergic H1, muscarinic M1, M3 and mu-opioid, whereas lower affinities (E-value≥9.5 Kcal/mol) vs. calmodulin, adrenergic α1, phosphodiesterase enzyme and dopaminergic D2 receptors. Lupeol-3-acetate and β-amyrin-3-(3'-dimethyl) butyrate observed weak affinities. CONCLUSION In present study, M. zapota is reported to exhibits anti-diarrheal, anti-secretory, anti-spasmodic, anti-motility, anti-ulcer effects and computational binding affinities against gastrointestinal targets.
Collapse
Affiliation(s)
- Muhammad Bilal Riaz
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad
| | - Arif-Ullah Khan
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad
| | - Neelam Gul Qazi
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad
| |
Collapse
|
3
|
Synthesis, cytotoxic activity and quantum chemical calculations of new 7-thioxopyrazolo[1,5-f]pyrimidin-2-one derivatives. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127261] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Gadow H, Farghaly TA, Eldesoky A. Experimental and theoretical investigations for some spiropyrazoles derivatives as corrosion inhibitors for copper in 2 M HNO3 solutions. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111614] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
5
|
Bano S, Khan AU, Asghar F, Usman M, Badshah A, Ali S. Computational and Pharmacological Evaluation of Ferrocene-Based Acyl Ureas and Homoleptic Cadmium Carboxylate Derivatives for Anti-diabetic Potential. Front Pharmacol 2018; 8:1001. [PMID: 29387011 PMCID: PMC5776112 DOI: 10.3389/fphar.2017.01001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 12/29/2017] [Indexed: 02/03/2023] Open
Abstract
We investigated possible anti-diabetic effect of ferrocene-based acyl ureas: 4-ferrocenyl aniline (PFA), 1-(4-chlorobenzoyl)-3-(4-ferrocenylphenyl) urea (DPC1), 1-(3-chlorobenzoyl)-3-(4-ferrocenylphenyl) urea (DMC1), 1-(2-chlorobenzoyl)-3-(4-ferrocenylphenyl) urea (DOC1) and homoleptic cadmium carboxylates: bis (diphenylacetato) cadmium (II) (DPAA), bis (4-chlorophenylacetato) cadmium (II) (CPAA), using in silico and in vivo techniques. PFA, DPC1, DMC1, DOC1, DPAA and CPAA exhibited high binding affinities (ACE ≥ −350 Kcal/mol) against targets: aldose reductase, peroxisome proliferator-activated receptor γ, 11β-hydroxysteroid dehydrogenase-1, C-alpha glucosidase and glucokinase, while showed moderate affinities (ACE ≥ −250 Kcal/mol) against N-alpha glucosidase, dipeptidyl peptidase-IV, phosphorylated-Akt, glycogen synthase kinase-3β, fructose-1,6-bisphosphatase and phosphoenolpyruvate carboxykinase, whereas revealed lower affinities (ACE < −250 Kcal/mol) vs. alpha amylase, protein tyrosine phosphatases 1B, glycogen phosphorylase and phosphatidylinositol 3 kinase. In alloxan (300 mg/Kg)-induced diabetic mice, DPAA and DPC1 (1–10 mg/Kg) at day 1, 5, 10, 15, and 20th decreased blood glucose levels, compared to diabetic control group and improved the treated animals body weight. DPAA (10 mg/Kg) and DPC1 (5 mg/Kg) in time-dependent manner (30–120 min.) enhanced tolerance of oral glucose overload in mice. DPAA and DPCI dose-dependently at 1, 5, and 10 mg/Kg decreased glycosylated hemoglobin levels in diabetic animals, as caused by metformin. These results indicate that aforementioned derivatives of ferrocene and cadmium possess anti-diabetic potential.
Collapse
Affiliation(s)
- Shahar Bano
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Arif-Ullah Khan
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Faiza Asghar
- Department of Chemistry, Quaid-e-Azam University, Islamabad, Pakistan.,Department of Chemistry, University of Wah, Wah, Pakistan
| | - Muhammad Usman
- Department of Chemistry, Quaid-e-Azam University, Islamabad, Pakistan
| | - Amin Badshah
- Department of Chemistry, Quaid-e-Azam University, Islamabad, Pakistan
| | - Saqib Ali
- Department of Chemistry, Quaid-e-Azam University, Islamabad, Pakistan
| |
Collapse
|
6
|
Karrouchi K, Radi S, Ramli Y, Taoufik J, Mabkhot YN, Al-Aizari FA, Ansar M. Synthesis and Pharmacological Activities of Pyrazole Derivatives: A Review. Molecules 2018; 23:molecules23010134. [PMID: 29329257 PMCID: PMC6017056 DOI: 10.3390/molecules23010134] [Citation(s) in RCA: 458] [Impact Index Per Article: 76.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 01/03/2018] [Accepted: 01/05/2018] [Indexed: 12/31/2022] Open
Abstract
Pyrazole and its derivatives are considered a pharmacologically important active scaffold that possesses almost all types of pharmacological activities. The presence of this nucleus in pharmacological agents of diverse therapeutic categories such as celecoxib, a potent anti-inflammatory, the antipsychotic CDPPB, the anti-obesity drug rimonabant, difenamizole, an analgesic, betazole, a H2-receptor agonist and the antidepressant agent fezolamide have proved the pharmacological potential of the pyrazole moiety. Owing to this diversity in the biological field, this nucleus has attracted the attention of many researchers to study its skeleton chemically and biologically. This review highlights the different synthesis methods and the pharmacological properties of pyrazole derivatives. Studies on the synthesis and biological activity of pyrazole derivatives developed by many scientists around the globe are reported.
Collapse
Affiliation(s)
- Khalid Karrouchi
- Medicinal Chemistry Laboratory, Faculty of Medicine and Pharmacy, Mohammed V University, 10100 Rabat, Morocco.
- LCAE, Department of Chemistry, Faculty of Sciences, University Mohamed I, 60000 Oujda, Morocco.
- Physicochemical service, Drugs Quality Control Laboratory, Division of Drugs and Pharmacy, Ministry of Health, 10100 Rabat, Morocco.
| | - Smaail Radi
- LCAE, Department of Chemistry, Faculty of Sciences, University Mohamed I, 60000 Oujda, Morocco.
| | - Youssef Ramli
- Medicinal Chemistry Laboratory, Faculty of Medicine and Pharmacy, Mohammed V University, 10100 Rabat, Morocco.
| | - Jamal Taoufik
- Medicinal Chemistry Laboratory, Faculty of Medicine and Pharmacy, Mohammed V University, 10100 Rabat, Morocco.
| | - Yahia N Mabkhot
- Department of Chemistry, Faculty of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
| | - Faiz A Al-Aizari
- Department of Chemistry, Faculty of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
| | - M'hammed Ansar
- Medicinal Chemistry Laboratory, Faculty of Medicine and Pharmacy, Mohammed V University, 10100 Rabat, Morocco.
| |
Collapse
|
7
|
Karrouchi K, Radi S, Ramli Y, Taoufik J, Mabkhot YN, Al-Aizari FA, Ansar M. Synthesis and Pharmacological Activities of Pyrazole Derivatives: A Review. Molecules 2018. [PMID: 29329257 DOI: 10.3390/molecules23010134k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023] Open
Abstract
Pyrazole and its derivatives are considered a pharmacologically important active scaffold that possesses almost all types of pharmacological activities. The presence of this nucleus in pharmacological agents of diverse therapeutic categories such as celecoxib, a potent anti-inflammatory, the antipsychotic CDPPB, the anti-obesity drug rimonabant, difenamizole, an analgesic, betazole, a H2-receptor agonist and the antidepressant agent fezolamide have proved the pharmacological potential of the pyrazole moiety. Owing to this diversity in the biological field, this nucleus has attracted the attention of many researchers to study its skeleton chemically and biologically. This review highlights the different synthesis methods and the pharmacological properties of pyrazole derivatives. Studies on the synthesis and biological activity of pyrazole derivatives developed by many scientists around the globe are reported.
Collapse
Affiliation(s)
- Khalid Karrouchi
- Medicinal Chemistry Laboratory, Faculty of Medicine and Pharmacy, Mohammed V University, 10100 Rabat, Morocco.
- LCAE, Department of Chemistry, Faculty of Sciences, University Mohamed I, 60000 Oujda, Morocco.
- Physicochemical service, Drugs Quality Control Laboratory, Division of Drugs and Pharmacy, Ministry of Health, 10100 Rabat, Morocco.
| | - Smaail Radi
- LCAE, Department of Chemistry, Faculty of Sciences, University Mohamed I, 60000 Oujda, Morocco.
| | - Youssef Ramli
- Medicinal Chemistry Laboratory, Faculty of Medicine and Pharmacy, Mohammed V University, 10100 Rabat, Morocco.
| | - Jamal Taoufik
- Medicinal Chemistry Laboratory, Faculty of Medicine and Pharmacy, Mohammed V University, 10100 Rabat, Morocco.
| | - Yahia N Mabkhot
- Department of Chemistry, Faculty of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
| | - Faiz A Al-Aizari
- Department of Chemistry, Faculty of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
| | - M'hammed Ansar
- Medicinal Chemistry Laboratory, Faculty of Medicine and Pharmacy, Mohammed V University, 10100 Rabat, Morocco.
| |
Collapse
|
8
|
The therapeutic voyage of pyrazole and its analogs: A review. Eur J Med Chem 2016; 120:170-201. [DOI: 10.1016/j.ejmech.2016.04.077] [Citation(s) in RCA: 262] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 04/25/2016] [Accepted: 04/28/2016] [Indexed: 02/05/2023]
|
9
|
Identifying potential PPARγ agonist/partial agonist from plant molecules to control type 2 diabetes using in silico and in vivo models. Med Chem Res 2016. [DOI: 10.1007/s00044-016-1621-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
10
|
Stalin A, Irudayaraj SS, Gandhi GR, Balakrishna K, Ignacimuthu S, Al-Dhabi NA. Hypoglycemic activity of 6-bromoembelin and vilangin in high-fat diet fed-streptozotocin-induced type 2 diabetic rats and molecular docking studies. Life Sci 2016; 153:100-17. [PMID: 27091376 DOI: 10.1016/j.lfs.2016.04.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 04/06/2016] [Accepted: 04/13/2016] [Indexed: 12/14/2022]
Abstract
AIMS This paper investigates the hypoglycemic activity of two derivatives of embelin (1) viz. 6-bromoembelin (2) and vilangin (3), in high-fat diet - STZ induced diabetic rats. MAIN METHODS The effects of 6-bromoembelin (2) and vilangin (3) on insulin resistance, β-cell dysfunction and glucose transport in high-fat diet (HFD) fed-streptozotocin (STZ) (40mg/kg) induced type 2 diabetic rats were evaluated. The binding modes of 6-bromoembelin (2) and vilangin (3) into PPARγ, PI3K, Akt, and GLUT4 were also studied using Autodock 4.2 and ADT 1.5.6 programs. KEY FINDINGS At the dose of 30mg/kg, the plasma glucose, plasma insulin and body weight were reduced by both embelin derivatives in diabetic rats. Additionally the altered lipid profiles and hexokinase, glucose-6-phosphatase and fructose-1,6-bisphosphatase levels were brought to normal. Compared to diabetic control group, there was a significant increase in the expression of PPARγ in epididymal adipose tissue. Inhibition of adipogenic activity and mild activation of PPARγ levels in the skeletal muscle and liver were observed. In epididymal adipose tissue, the compounds increased the insulin-mediated glucose uptake through the activation and translocation of GLUT4 in PI3K/p-Akt signaling cascade. SIGNIFICANCE The derivatives of embelin such as 6-bromoembelin (2) and vilangin (3) may be useful in the prevention and treatment of obesity-linked type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Antony Stalin
- Division of Bioinformatics, Entomology Research Institute, Loyola College, Chennai 600034, India
| | | | - Gopalsamy Rajiv Gandhi
- Division of Ethnopharmacology, Entomology Research Institute, Loyola College, Chennai 600034, India
| | - Kedike Balakrishna
- Division of Ethnopharmacology, Entomology Research Institute, Loyola College, Chennai 600034, India
| | - Savarimuthu Ignacimuthu
- Division of Bioinformatics, Entomology Research Institute, Loyola College, Chennai 600034, India; Division of Ethnopharmacology, Entomology Research Institute, Loyola College, Chennai 600034, India; Visiting professor program, Deanship of Scientific Research, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Naif Abdullah Al-Dhabi
- Department of Botany and Microbiology, Addiriyah Chair for Environmental Studies, College of Science, King Saud University, Post box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
11
|
Dixit VA, Rathi PC, Bhagat S, Gohlke H, Petersen RK, Kristiansen K, Chakraborti AK, Bharatam PV. Design and synthesis of novel Y-shaped barbituric acid derivatives as PPARγ activators. Eur J Med Chem 2016; 108:423-435. [DOI: 10.1016/j.ejmech.2015.11.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 11/18/2015] [Accepted: 11/19/2015] [Indexed: 10/22/2022]
|
12
|
Lannan KL, Sahler J, Kim N, Spinelli SL, Maggirwar SB, Garraud O, Cognasse F, Blumberg N, Phipps RP. Breaking the mold: transcription factors in the anucleate platelet and platelet-derived microparticles. Front Immunol 2015; 6:48. [PMID: 25762994 PMCID: PMC4327621 DOI: 10.3389/fimmu.2015.00048] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 01/26/2015] [Indexed: 01/15/2023] Open
Abstract
Platelets are small anucleate blood cells derived from megakaryocytes. In addition to their pivotal roles in hemostasis, platelets are the smallest, yet most abundant, immune cells and regulate inflammation, immunity, and disease progression. Although platelets lack DNA, and thus no functional transcriptional activities, they are nonetheless rich sources of RNAs, possess an intact spliceosome, and are thus capable of synthesizing proteins. Previously, it was thought that platelet RNAs and translational machinery were remnants from the megakaryocyte. We now know that the initial description of platelets as "cellular fragments" is an antiquated notion, as mounting evidence suggests otherwise. Therefore, it is reasonable to hypothesize that platelet transcription factors are not vestigial remnants from megakaryocytes, but have important, if only partly understood functions. Proteins play multiple cellular roles to minimize energy expenditure for maximum cellular function; thus, the same can be expected for transcription factors. In fact, numerous transcription factors have non-genomic roles, both in platelets and in nucleated cells. Our lab and others have discovered the presence and non-genomic roles of transcription factors in platelets, such as the nuclear factor kappa β (NFκB) family of proteins and peroxisome proliferator-activated receptor gamma (PPARγ). In addition to numerous roles in regulating platelet activation, functional transcription factors can be transferred to vascular and immune cells through platelet microparticles. This method of transcellular delivery of key immune molecules may be a vital mechanism by which platelet transcription factors regulate inflammation and immunity. At the very least, platelets are an ideal model cell to dissect out the non-genomic roles of transcription factors in nucleated cells. There is abundant evidence to suggest that transcription factors in platelets play key roles in regulating inflammatory and hemostatic functions.
Collapse
Affiliation(s)
- Katie L Lannan
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry , Rochester, NY , USA
| | - Julie Sahler
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry , Rochester, NY , USA ; Department of Biological and Environmental Engineering, Cornell University , Ithaca, NY , USA
| | - Nina Kim
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry , Rochester, NY , USA
| | - Sherry L Spinelli
- Department of Pathology and Laboratory Medicine, University of Rochester School of Medicine and Dentistry , Rochester, NY , USA
| | - Sanjay B Maggirwar
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry , Rochester, NY , USA
| | - Olivier Garraud
- Faculté de Médecine, Université de Lyon , Saint-Etienne , France
| | - Fabrice Cognasse
- Faculté de Médecine, Université de Lyon , Saint-Etienne , France ; Etablissement Français du Sang Auvergne-Loire , Saint-Etienne , France
| | - Neil Blumberg
- Department of Pathology and Laboratory Medicine, University of Rochester School of Medicine and Dentistry , Rochester, NY , USA
| | - Richard P Phipps
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry , Rochester, NY , USA ; Department of Pathology and Laboratory Medicine, University of Rochester School of Medicine and Dentistry , Rochester, NY , USA ; Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry , Rochester, NY , USA
| |
Collapse
|
13
|
Wright MB, Bortolini M, Tadayyon M, Bopst M. Minireview: Challenges and opportunities in development of PPAR agonists. Mol Endocrinol 2014; 28:1756-68. [PMID: 25148456 PMCID: PMC5414793 DOI: 10.1210/me.2013-1427] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Accepted: 08/08/2014] [Indexed: 01/06/2023] Open
Abstract
The clinical impact of the fibrate and thiazolidinedione drugs on dyslipidemia and diabetes is driven mainly through activation of two transcription factors, peroxisome proliferator-activated receptors (PPAR)-α and PPAR-γ. However, substantial differences exist in the therapeutic and side-effect profiles of specific drugs. This has been attributed primarily to the complexity of drug-target complexes that involve many coregulatory proteins in the context of specific target gene promoters. Recent data have revealed that some PPAR ligands interact with other non-PPAR targets. Here we review concepts used to develop new agents that preferentially modulate transcriptional complex assembly, target more than one PPAR receptor simultaneously, or act as partial agonists. We highlight newly described on-target mechanisms of PPAR regulation including phosphorylation and nongenomic regulation. We briefly describe the recently discovered non-PPAR protein targets of thiazolidinediones, mitoNEET, and mTOT. Finally, we summarize the contributions of on- and off-target actions to select therapeutic and side effects of PPAR ligands including insulin sensitivity, cardiovascular actions, inflammation, and carcinogenicity.
Collapse
Affiliation(s)
- Matthew B Wright
- F. Hoffmann-La Roche Pharmaceuticals (M.B.W., M.Bor., M.Bop.), CH-4070 Basel, Switzerland; and MediTech Media (M.T.), London EC1V 9AZ, United Kingdom
| | | | | | | |
Collapse
|
14
|
Masumoto E, Maruoka H, Okabe F, Fujioka T, Yamagata K. A Divergent Synthesis of Spiropyrazole Derivatives Containing Iminolactone and/or Cyclic Imide Moiety. J Heterocycl Chem 2014. [DOI: 10.1002/jhet.1946] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Eiichi Masumoto
- Faculty of Pharmaceutical Sciences; Fukuoka University; Jonan-ku Fukuoka 814-0180 Japan
| | - Hiroshi Maruoka
- Faculty of Pharmaceutical Sciences; Fukuoka University; Jonan-ku Fukuoka 814-0180 Japan
| | - Fumi Okabe
- Faculty of Pharmaceutical Sciences; Fukuoka University; Jonan-ku Fukuoka 814-0180 Japan
| | - Toshihiro Fujioka
- Faculty of Pharmaceutical Sciences; Fukuoka University; Jonan-ku Fukuoka 814-0180 Japan
| | - Kenji Yamagata
- Faculty of Pharmaceutical Sciences; Fukuoka University; Jonan-ku Fukuoka 814-0180 Japan
| |
Collapse
|
15
|
Joshi H, Pal T, Ramaa CS. A new dawn for the use of thiazolidinediones in cancer therapy. Expert Opin Investig Drugs 2014; 23:501-10. [DOI: 10.1517/13543784.2014.884708] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
16
|
SAR and Computer-Aided Drug Design Approaches in the Discovery of Peroxisome Proliferator-Activated Receptor γ Activators: A Perspective. ACTA ACUST UNITED AC 2013. [DOI: 10.1155/2013/406049] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Activators of PPARγ, Troglitazone (TGZ), Rosiglitazone (RGZ), and Pioglitazone (PGZ) were introduced for treatment of Type 2 diabetes, but TGZ and RGZ have been withdrawn from the market along with other promising leads due cardiovascular side effects and hepatotoxicity. However, the continuously improving understanding of the structure/function of PPARγ and its interactions with potential ligands maintain the importance of PPARγ as an antidiabetic target. Extensive structure activity relationship (SAR) studies have thus been performed on a variety of structural scaffolds by various research groups. Computer-aided drug discovery (CADD) approaches have also played a vital role in the search and optimization of potential lead compounds. This paper focuses on these approaches adopted for the discovery of PPARγ ligands for the treatment of Type 2 diabetes. Key concepts employed during the discovery phase, classification based on agonistic character, applications of various QSAR, pharmacophore mapping, virtual screening, molecular docking, and molecular dynamics studies are highlighted. Molecular level analysis of the dynamic nature of ligand-receptor interaction is presented for the future design of ligands with better potency and safety profiles. Recently identified mechanism of inhibition of phosphorylation of PPARγ at SER273 by ligands is reviewed as a new strategy to identify novel drug candidates.
Collapse
|
17
|
Identification of PPARgamma partial agonists of natural origin (I): development of a virtual screening procedure and in vitro validation. PLoS One 2012; 7:e50816. [PMID: 23226391 PMCID: PMC3511273 DOI: 10.1371/journal.pone.0050816] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 10/29/2012] [Indexed: 11/19/2022] Open
Abstract
Background Although there are successful examples of the discovery of new PPARγ agonists, it has recently been of great interest to identify new PPARγ partial agonists that do not present the adverse side effects caused by PPARγ full agonists. Consequently, the goal of this work was to design, apply and validate a virtual screening workflow to identify novel PPARγ partial agonists among natural products. Methodology/Principal Findings We have developed a virtual screening procedure based on structure-based pharmacophore construction, protein-ligand docking and electrostatic/shape similarity to discover novel scaffolds of PPARγ partial agonists. From an initial set of 89,165 natural products and natural product derivatives, 135 compounds were identified as potential PPARγ partial agonists with good ADME properties. Ten compounds that represent ten new chemical scaffolds for PPARγ partial agonists were selected for in vitro biological testing, but two of them were not assayed due to solubility problems. Five out of the remaining eight compounds were confirmed as PPARγ partial agonists: they bind to PPARγ, do not or only moderately stimulate the transactivation activity of PPARγ, do not induce adipogenesis of preadipocyte cells and stimulate the insulin-induced glucose uptake of adipocytes. Conclusions/Significance We have demonstrated that our virtual screening protocol was successful in identifying novel scaffolds for PPARγ partial agonists.
Collapse
|
18
|
Gandhi GR, Stalin A, Balakrishna K, Ignacimuthu S, Paulraj MG, Vishal R. Insulin sensitization via partial agonism of PPARγ and glucose uptake through translocation and activation of GLUT4 in PI3K/p-Akt signaling pathway by embelin in type 2 diabetic rats. Biochim Biophys Acta Gen Subj 2012; 1830:2243-55. [PMID: 23104384 DOI: 10.1016/j.bbagen.2012.10.016] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 10/16/2012] [Accepted: 10/18/2012] [Indexed: 12/25/2022]
Abstract
BACKGROUND The present study was aimed at isolating an antidiabetic molecule from a herbal source and assessing its mechanism of action. METHODS Embelin, isolated from Embelia ribes Burm. (Myrsinaceae) fruit, was evaluated for its potential to regulate insulin resistance, alter β-cell dysfunction and modulate key markers involved in insulin sensitivity and glucose transport using high-fat diet (HFD) fed-streptozotocin (STZ) (40mg/kg)-induced type 2 diabetic rats. Molecular-dockings were performed to investigate the binding modes of embelin into PPARγ, PI3K, p-Akt and GLUT4 active sites. RESULTS Embelin (50mg/kg b wt.) reduced body weight gain, blood glucose and plasma insulin in treated diabetic rats. It further modulated the altered lipid profiles and antioxidant enzymes with cytoprotective action on β-cell. Embelin significantly increased the PPARγ expression in epididymal adipose tissue compared to diabetic control group; it also inhibited adipogenic activity; it mildly activated PPARγ levels in the liver and skeletal muscle. It also regulated insulin mediated glucose uptake in epididymal adipose tissue through translocation and activation of GLUT4 in PI3K/p-Akt signaling cascade. Embelin bound to PPARγ; it disclosed stable binding affinities to the active sites of PI3K, p-Akt and GLUT4. CONCLUSIONS These findings show that embelin could improve adipose tissue insulin sensitivity without increasing weight gain, enhance glycemic control, protect β-cell from damage and maintain glucose homeostasis in adipose tissue. GENERAL SIGNIFICANCE Embelin can be used in the prevention and treatment of type 2 diabetes mellitus caused due to obesity.
Collapse
|
19
|
Dietz M, Mohr P, Kuhn B, Maerki HP, Hartman P, Ruf A, Benz J, Grether U, Wright MB. Comparative molecular profiling of the PPARα/γ activator aleglitazar: PPAR selectivity, activity and interaction with cofactors. ChemMedChem 2012; 7:1101-11. [PMID: 22489042 PMCID: PMC3504387 DOI: 10.1002/cmdc.201100598] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Revised: 03/02/2012] [Indexed: 12/13/2022]
Abstract
Peroxisome proliferator-activated receptors (PPARs) are a family of nuclear hormone receptors that control the expression of genes involved in a variety of physiologic processes, through heterodimerization with retinoid X receptor and complex formation with various cofactors. Drugs or treatment regimens that combine the beneficial effects of PPARα and γ agonism present an attractive therapeutic strategy to reduce cardiovascular risk factors. Aleglitazar is a dual PPARα/γ agonist currently in phase III clinical development for the treatment of patients with type 2 diabetes mellitus who recently experienced an acute coronary event. The potency and efficacy of aleglitazar was evaluated in a head-to-head comparison with other PPARα, γ and δ ligands. A comprehensive, 12-concentration dose-response analysis using a cell-based assay showed aleglitazar to be highly potent, with EC(50) values of 5 nM and 9 nM for PPARα and PPARγ, respectively. Cofactor recruitment profiles confirmed that aleglitazar is a potent and balanced activator of PPARα and γ. The efficacy and potency of aleglitazar are discussed in relation to other dual PPARα/γ agonists, in context with the published X-ray crystal structures of both PPARα and γ.
Collapse
Affiliation(s)
- Michel Dietz
- Discovery TechnologiesF. Hoffmann-La Roche AG, Grenzacherstrasse 124, Basel 4070 (Switzerland)
| | - Peter Mohr
- Discovery ChemistryF. Hoffmann-La Roche AG, Grenzacherstrasse 124, Basel 4070 (Switzerland)
| | - Bernd Kuhn
- Discovery ChemistryF. Hoffmann-La Roche AG, Grenzacherstrasse 124, Basel 4070 (Switzerland)
| | - Hans Peter Maerki
- Discovery ChemistryF. Hoffmann-La Roche AG, Grenzacherstrasse 124, Basel 4070 (Switzerland)
| | - Peter Hartman
- DTA CVM, F. Hoffmann-La Roche AGGrenzacherstrasse 124, Basel 4070 (Switzerland)
| | - Armin Ruf
- Discovery TechnologiesF. Hoffmann-La Roche AG, Grenzacherstrasse 124, Basel 4070 (Switzerland)
| | - Jörg Benz
- Discovery TechnologiesF. Hoffmann-La Roche AG, Grenzacherstrasse 124, Basel 4070 (Switzerland)
| | - Uwe Grether
- Discovery ChemistryF. Hoffmann-La Roche AG, Grenzacherstrasse 124, Basel 4070 (Switzerland)
| | - Matthew B Wright
- Pharma Research & Early Development (pRED), F. Hoffmann-La Roche AGGrenzacherstrasse 124, Basel 4070 (Switzerland)
| |
Collapse
|