1
|
Liu F, Kaplan AL, Levring J, Einsiedel J, Tiedt S, Distler K, Omattage NS, Kondratov IS, Moroz YS, Pietz HL, Irwin JJ, Gmeiner P, Shoichet BK, Chen J. Structure-based discovery of CFTR potentiators and inhibitors. Cell 2024; 187:3712-3725.e34. [PMID: 38810646 PMCID: PMC11262615 DOI: 10.1016/j.cell.2024.04.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 03/19/2024] [Accepted: 04/29/2024] [Indexed: 05/31/2024]
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) is a crucial ion channel whose loss of function leads to cystic fibrosis, whereas its hyperactivation leads to secretory diarrhea. Small molecules that improve CFTR folding (correctors) or function (potentiators) are clinically available. However, the only potentiator, ivacaftor, has suboptimal pharmacokinetics and inhibitors have yet to be clinically developed. Here, we combine molecular docking, electrophysiology, cryo-EM, and medicinal chemistry to identify CFTR modulators. We docked ∼155 million molecules into the potentiator site on CFTR, synthesized 53 test ligands, and used structure-based optimization to identify candidate modulators. This approach uncovered mid-nanomolar potentiators, as well as inhibitors, that bind to the same allosteric site. These molecules represent potential leads for the development of more effective drugs for cystic fibrosis and secretory diarrhea, demonstrating the feasibility of large-scale docking for ion channel drug discovery.
Collapse
Affiliation(s)
- Fangyu Liu
- Laboratory of Membrane Biology and Biophysics, The Rockefeller University, New York, NY 10065, USA; Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Anat Levit Kaplan
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jesper Levring
- Laboratory of Membrane Biology and Biophysics, The Rockefeller University, New York, NY 10065, USA
| | - Jürgen Einsiedel
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander University Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, D-91058 Erlangen, Germany
| | - Stephanie Tiedt
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander University Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, D-91058 Erlangen, Germany
| | - Katharina Distler
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander University Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, D-91058 Erlangen, Germany
| | - Natalie S Omattage
- Laboratory of Membrane Biology and Biophysics, The Rockefeller University, New York, NY 10065, USA
| | - Ivan S Kondratov
- Enamine Ltd., Chervonotkatska Street 78, 02094 Kyïv, Ukraine; V.P. Kukhar Institute of Bioorganic Chemistry & Petrochemistry, National Academy of Sciences of Ukraine, Murmanska Street 1, 02660 Kyïv, Ukraine
| | - Yurii S Moroz
- Chemspace, Chervonotkatska Street 85, 02094 Kyïv, Ukraine; Taras Shevchenko National University of Kyïv, Volodymyrska Street 60, 01601 Kyïv, Ukraine
| | - Harlan L Pietz
- Laboratory of Membrane Biology and Biophysics, The Rockefeller University, New York, NY 10065, USA
| | - John J Irwin
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Peter Gmeiner
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander University Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, D-91058 Erlangen, Germany.
| | - Brian K Shoichet
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94143, USA.
| | - Jue Chen
- Laboratory of Membrane Biology and Biophysics, The Rockefeller University, New York, NY 10065, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| |
Collapse
|
2
|
Tan C, Yang SJ, Zhao DH, Li J, Yin LQ. Antihypertensive activity of indole and indazole analogues: A review. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
3
|
Uppulapu SK, Alam MJ, Kumar S, Banerjee SK. Indazole and its Derivatives in Cardiovascular Diseases: Overview, Current Scenario, and Future Perspectives. Curr Top Med Chem 2022; 22:1177-1188. [PMID: 34906057 PMCID: PMC10782885 DOI: 10.2174/1568026621666211214151534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 11/12/2021] [Accepted: 11/22/2021] [Indexed: 11/22/2022]
Abstract
Indazoles are a class of heterocyclic compounds with a bicyclic ring structure composed of a pyrazole ring and a benzene ring. Indazole-containing compounds with various functional groups have important pharmacological activities and can be used as structural motifs in designing novel drug molecules. Some of the indazole-containing molecules are approved by FDA and are already in the market. However, very few drugs with indazole rings have been developed against cardiovascular diseases. This review aims to summarize the structural and pharmacological functions of indazole derivatives which have shown efficacy against cardiovascular pathologies in experimental settings.
Collapse
Affiliation(s)
- Shravan Kumar Uppulapu
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati 781101, India
| | - Md. Jahangir Alam
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati 781101, India
| | - Santosh Kumar
- Department of Cardiovascular Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Sanjay Kumar Banerjee
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati 781101, India
| |
Collapse
|
4
|
Schultz KJ, Colby SM, Lin VS, Wright AT, Renslow RS. Ligand- and Structure-Based Analysis of Deep Learning-Generated Potential α2a Adrenoceptor Agonists. J Chem Inf Model 2021; 61:481-492. [PMID: 33404240 DOI: 10.1021/acs.jcim.0c01019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The α2a adrenoceptor is a medically relevant subtype of the G protein-coupled receptor family. Unfortunately, high-throughput techniques aimed at producing novel drug leads for this receptor have been largely unsuccessful because of the complex pharmacology of adrenergic receptors. As such, cutting-edge in silico ligand- and structure-based assessment and de novo deep learning methods are well positioned to provide new insights into protein-ligand interactions and potential active compounds. In this work, we (i) collect a dataset of α2a adrenoceptor agonists and provide it as a resource for the drug design community; (ii) use the dataset as a basis to generate candidate-active structures via deep learning; and (iii) apply computational ligand- and structure-based analysis techniques to gain new insights into α2a adrenoceptor agonists and assess the quality of the computer-generated compounds. We further describe how such assessment techniques can be applied to putative chemical probes with a case study involving proposed medetomidine-based probes.
Collapse
Affiliation(s)
- Katherine J Schultz
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Sean M Colby
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Vivian S Lin
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Aaron T Wright
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States.,The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington 99163, United States
| | - Ryan S Renslow
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States.,The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington 99163, United States
| |
Collapse
|
5
|
Wang G, Sun J, Wang K, Han J, Li H, Duan G, You G, Li F, Xia C. Palladium-catalyzed direct C–H nitration and intramolecular C–H functionalization for the synthesis of 3-nitro-1-(phenylsulfonyl)-1H-indazole derivatives. Org Chem Front 2019. [DOI: 10.1039/c9qo00367c] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Various 3-nitro-1-(phenylsulfonyl)-1H-indazole derivatives have been obtained in moderate to high yields using palladium catalysis.
Collapse
Affiliation(s)
- Guodong Wang
- Pharmacy College
- Taishan Medical University
- Tai'an 271016
- China
| | - Jian Sun
- Pharmacy College
- Taishan Medical University
- Tai'an 271016
- China
| | - Kai Wang
- Pharmacy College
- Taishan Medical University
- Tai'an 271016
- China
| | - Junfen Han
- Pharmacy College
- Taishan Medical University
- Tai'an 271016
- China
| | - Hongshuang Li
- Pharmacy College
- Taishan Medical University
- Tai'an 271016
- China
| | - Guiyun Duan
- Pharmacy College
- Taishan Medical University
- Tai'an 271016
- China
| | - Guirong You
- Pharmacy College
- Taishan Medical University
- Tai'an 271016
- China
| | - Furong Li
- Pharmacy College
- Taishan Medical University
- Tai'an 271016
- China
| | - Chengcai Xia
- Pharmacy College
- Taishan Medical University
- Tai'an 271016
- China
| |
Collapse
|
6
|
Cobos-Puc L, Aguayo-Morales H. Cardiovascular Effects Mediated by Imidazoline Drugs: An Update. Cardiovasc Hematol Disord Drug Targets 2019; 19:95-108. [PMID: 29962350 DOI: 10.2174/1871529x18666180629170336] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 05/05/2017] [Accepted: 04/18/2018] [Indexed: 06/08/2023]
Abstract
OBJECTIVE Clonidine is a centrally acting antihypertensive drug. Hypotensive effect of clonidine is mediated mainly by central α2-adrenoceptors and/or imidazoline receptors located in a complex network of the brainstem. Unfortunately, clonidine produces side effects such as sedation, mouth dry, and depression. Moxonidine and rilmenidine, compounds of the second generation of imidazoline drugs, with fewer side effects, display a higher affinity for the imidazoline receptors compared with α2-adrenoceptors. The antihypertensive action of these drugs is due to inhibition of the sympathetic outflow primarily through central I1-imidazoline receptors in the RVLM, although others anatomical sites and mechanisms/receptors are involved. Agmatine is regarded as the endogenous ligand for imidazoline receptors. This amine modulates the cardiovascular function. Indeed, when administered in the RVLM mimics the hypotension of clonidine. RESULTS Recent findings have shown that imidazoline drugs also exert biological response directly on the cardiovascular tissues, which can contribute to their antihypertensive response. Currently, new imidazoline receptors ligands are in development. CONCLUSION In the present review, we provide a brief update on the cardiovascular effects of clonidine, moxonidine, rilmenidine, and the novel imidazoline agents since representing an important therapeutic target for some cardiovascular diseases.
Collapse
Affiliation(s)
- Luis Cobos-Puc
- Department of Pharmacology, Faculty of Chemistry, Autonomous University of Coahuila, Saltillo, Mexico
| | - Hilda Aguayo-Morales
- Department of Pharmacology, Faculty of Chemistry, Autonomous University of Coahuila, Saltillo, Mexico
| |
Collapse
|
7
|
Comparative pharmacodynamic analysis of imidazoline compounds using rat model of ocular mydriasis with a test of quantitative structure–activity relationships. J Pharm Biomed Anal 2017; 144:122-128. [DOI: 10.1016/j.jpba.2017.03.053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 03/08/2017] [Accepted: 03/26/2017] [Indexed: 11/23/2022]
|
8
|
Raczak-Gutknecht J, Frąckowiak T, Nasal A, Kornicka A, Sączewski F, Kaliszan R. Are Alpha-2D Adrenoceptor Subtypes Involved in Rat Mydriasis Evoked by New Imidazoline Derivatives: Marsanidine and 7-Methylmarsanidine? Dose Response 2017; 15:1559325817701213. [PMID: 28491012 PMCID: PMC5405787 DOI: 10.1177/1559325817701213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The imidazoline compounds may produce mydriasis after systemic administration to some species (rats, cats, and mice). In mydriatic activity of imidazolines, α2D-adrenoceptors subtype(s) seems to be involved. In this study, the pupil dilatory effect evoked by 2 newly synthesized imidazoline derivatives—α2-adrenoceptor agonists: marsanidine and 7-methylmarsanidine—was compared. The compounds were tested alone as well as in the presence of α2-adrenoceptor antagonists (nonselective, yohimbine, and selective toward the following α2-adrenoceptor subtypes—α2A-2-[(4,5-dihydro-1H-imidazol-2-yl)methyl]-2,3-dihydro-1-methyl-1H-isoindole maleate (BRL44408), α2B-2-[2-(4-(2-methoxyphenyl)piperazin-1-yl)ethyl]-4,4-dimethyl-1,3-(2H,4H)-isoquinolindione dihydrochloride (ARC239), α2C-JP1302, α2D-2-(2,3-dihydro-2-methoxy-1,4-benzodioxin-2-yl)-4,5-dihydro-1H-imidazole hydrochloride [RX821002]). The agonists were studied in male Wistar rats and were administered intravenously in cumulative doses. The antagonistic compounds were given in a single dose before the experiment with marsanidine or 7-methylmarsanidine. Pupil diameter was measured with stereoscopic microscope equipped in green light filter. Marsanidine and 7-methylmarsanidine exerted marked mydriatic effects. BRL44408, JP1302, and ARC239 did not cause significant parallel shift to the right of the dose–effect curves obtained for both imidazolines. In case of yohimbine and RX821002, the marked parallel shifts of dose–response curves were observed, with the antagonistic effects of RX821002 more pronounced. In vivo pharmacodynamics experiment suggests that α2D-adrenoceptor subtype is mainly engaged in mydriatic effects evoked in rats by imidazoline derivatives, in particular by clonidine.
Collapse
Affiliation(s)
- Joanna Raczak-Gutknecht
- Department of Biopharmaceutics and Pharmacodynamics, Medical University of Gdańsk, Gdańsk, Poland
| | - Teresa Frąckowiak
- Department of Biopharmaceutics and Pharmacodynamics, Medical University of Gdańsk, Gdańsk, Poland
| | - Antoni Nasal
- Department of Biopharmaceutics and Pharmacodynamics, Medical University of Gdańsk, Gdańsk, Poland
- Antoni Nasal, Department of Biopharmaceutics and Pharmacodynamics, Medical University of Gdańsk, Al. Gen. J. Hallera 107, 80-416 Gdańsk, Poland.
| | - Anita Kornicka
- Department of Chemical Technology of Drugs, Medical University of Gdańsk, Gdańsk, Poland
| | - Franciszek Sączewski
- Department of Chemical Technology of Drugs, Medical University of Gdańsk, Gdańsk, Poland
| | - Roman Kaliszan
- Department of Biopharmaceutics and Pharmacodynamics, Medical University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
9
|
Kornicka A, Wasilewska A, Sączewski J, Hudson AL, Boblewski K, Lehmann A, Gzella K, Belka M, Sączewski F, Gdaniec M, Rybczyńska A, Bączek T. 1-[(Imidazolidin-2-yl)imino]-1H-indoles as new hypotensive agents: synthesis andin vitroandin vivobiological studies. Chem Biol Drug Des 2016; 89:400-410. [DOI: 10.1111/cbdd.12846] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 07/13/2016] [Accepted: 08/19/2016] [Indexed: 11/28/2022]
Affiliation(s)
- Anita Kornicka
- Department of Chemical Technology of Drugs; Medical University of Gdańsk; Gdańsk Poland
| | - Aleksandra Wasilewska
- Department of Chemical Technology of Drugs; Medical University of Gdańsk; Gdańsk Poland
| | - Jarosław Sączewski
- Department of Organic Chemistry; Medical University of Gdańsk; Gdańsk Poland
| | - Alan L. Hudson
- Department of Pharmacology; University of Alberta; Edmonton Canada
| | - Konrad Boblewski
- Department of Pathophysiology; Medical University of Gdańsk; Gdańsk Poland
| | - Artur Lehmann
- Department of Pathophysiology; Medical University of Gdańsk; Gdańsk Poland
| | - Karol Gzella
- Department of Chemical Technology of Drugs; Medical University of Gdańsk; Gdańsk Poland
| | - Mariusz Belka
- Department of Pharmaceutical Chemistry; Medical University of Gdańsk; Gdańsk Poland
| | - Franciszek Sączewski
- Department of Chemical Technology of Drugs; Medical University of Gdańsk; Gdańsk Poland
| | - Maria Gdaniec
- Faculty of Chemistry; A. Mickiewicz University; Poznań Poland
| | | | - Tomasz Bączek
- Department of Pharmaceutical Chemistry; Medical University of Gdańsk; Gdańsk Poland
| |
Collapse
|
10
|
Sączewski F, Kornicka A, Balewski Ł. Imidazoline scaffold in medicinal chemistry: a patent review (2012–2015). Expert Opin Ther Pat 2016; 26:1031-48. [DOI: 10.1080/13543776.2016.1210128] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
11
|
Sączewski J, Hudson A, Scheinin M, Wasilewska A, Sączewski F, Rybczyńska A, Ferdousi M, Laurila JM, Boblewski K, Lehmann A, Watts H, Ma D. Transfer of SAR information from hypotensive indazole to indole derivatives acting at α-adrenergic receptors: In vitro and in vivo studies. Eur J Med Chem 2016; 115:406-15. [PMID: 27031216 DOI: 10.1016/j.ejmech.2016.03.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 03/09/2016] [Accepted: 03/10/2016] [Indexed: 12/24/2022]
Abstract
In a search for novel antihypertensive drugs we applied scaffold hopping from the previously described α1-adrenergic receptor antagonists, 1-[(imidazolin-2-yl)methyl]indazoles. The aim was to investigate whether the α-adrenergic properties of the indazole core were transferable to the indole core. The newly obtained 1-[(imidazolin-2-yl)methyl]indole analogues were screened in vitro for their binding affinities for α1-and α2-adrenoceptors, which allowed the identification of the target-based SAR transfer (T_SAR transfer) as well as structure-based SAR transfer (S_SAR transfer) events. However, when screened in vivo with use of anaesthetized male Wistar rats, the new indole ligands showed a different hemodynamic profile than expected. Instead of the immediate hypotensive effect characteristic of peripheral vasodilatator α1 blockers, a biphasic effect was observed, reminiscent of clonidine-like centrally acting antihypertensive agents. This was supported by subsequent in vitro functional studies in [(35)S]GTPγS binding assay, where the indole analogues displayed partial agonist properties at α2-adrenergic receptors. Since no correlation was found between the in vitro binding to α-adrenoceptors and the in vivo hemodynamic effects of the two series of indazole and indole bioisosteric compounds, in a search for new imidazoline-containing adrenergic drugs, the structure-based SAR transfer information obtained from in vitro binding studies should be treated with caution.
Collapse
Affiliation(s)
- Jaroslaw Sączewski
- Department of Organic Chemistry, Medical University of Gdańsk, 80-416, Gdańsk, Poland.
| | - Alan Hudson
- Department of Pharmacology, 9-47 Medical Sciences Building, University of Alberta, Edmonton, T6G 2H7, Canada
| | - Mika Scheinin
- Department of Pharmacology, Drug Development and Therapeutics, University of Turku, and Turku University Hospital, FI-20014 Turku, Finland
| | - Aleksandra Wasilewska
- Department of Chemical Technology of Drugs, Medical University of Gdańsk, 80-416, Gdańsk, Poland
| | - Franciszek Sączewski
- Department of Chemical Technology of Drugs, Medical University of Gdańsk, 80-416, Gdańsk, Poland
| | | | - Mehnaz Ferdousi
- Department of Pharmacology, 9-47 Medical Sciences Building, University of Alberta, Edmonton, T6G 2H7, Canada
| | - Jonne M Laurila
- Department of Pharmacology, Drug Development and Therapeutics, University of Turku, and Turku University Hospital, FI-20014 Turku, Finland
| | - Konrad Boblewski
- Department of Pathophysiology, Medical University of Gdansk, Poland
| | - Artur Lehmann
- Department of Pathophysiology, Medical University of Gdansk, Poland
| | - Helena Watts
- Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Imperial College London, Chelsea and Westminster Hospital, London, UK
| | - Daqing Ma
- Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Imperial College London, Chelsea and Westminster Hospital, London, UK
| |
Collapse
|
12
|
Ferdousi M, Lalies M, Wasilewska A, Sączewski F, Hudson A. The effect of 7-fluoro-marsanidine, a novel α2-adrenoceptor agonist, on extracellular noradrenaline in rat frontal cortex: A microdialysis study. Neurosci Lett 2015; 590:47-51. [DOI: 10.1016/j.neulet.2015.01.062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 01/22/2015] [Accepted: 01/23/2015] [Indexed: 10/24/2022]
|
13
|
Gasparik V, Greney H, Schann S, Feldman J, Fellmann L, Ehrhardt JD, Bousquet P. Synthesis and Biological Evaluation of 2-Aryliminopyrrolidines as Selective Ligands for I1 Imidazoline Receptors: Discovery of New Sympatho-Inhibitory Hypotensive Agents with Potential Beneficial Effects in Metabolic Syndrome. J Med Chem 2014; 58:878-87. [DOI: 10.1021/jm501456p] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Vincent Gasparik
- Laboratoire
de Neurobiologie
et Pharmacologie Cardiovasculaire, Faculté de Médecine,
EA 7296, Fédération de Médecine Translationnelle, Université de Strasbourg, 11 rue Humann, 67000 Strasbourg, France
| | - Hugues Greney
- Laboratoire
de Neurobiologie
et Pharmacologie Cardiovasculaire, Faculté de Médecine,
EA 7296, Fédération de Médecine Translationnelle, Université de Strasbourg, 11 rue Humann, 67000 Strasbourg, France
| | - Stephan Schann
- Laboratoire
de Neurobiologie
et Pharmacologie Cardiovasculaire, Faculté de Médecine,
EA 7296, Fédération de Médecine Translationnelle, Université de Strasbourg, 11 rue Humann, 67000 Strasbourg, France
| | - Josiane Feldman
- Laboratoire
de Neurobiologie
et Pharmacologie Cardiovasculaire, Faculté de Médecine,
EA 7296, Fédération de Médecine Translationnelle, Université de Strasbourg, 11 rue Humann, 67000 Strasbourg, France
| | - Lyne Fellmann
- Laboratoire
de Neurobiologie
et Pharmacologie Cardiovasculaire, Faculté de Médecine,
EA 7296, Fédération de Médecine Translationnelle, Université de Strasbourg, 11 rue Humann, 67000 Strasbourg, France
| | - Jean-Daniel Ehrhardt
- Laboratoire
de Neurobiologie
et Pharmacologie Cardiovasculaire, Faculté de Médecine,
EA 7296, Fédération de Médecine Translationnelle, Université de Strasbourg, 11 rue Humann, 67000 Strasbourg, France
| | - Pascal Bousquet
- Laboratoire
de Neurobiologie
et Pharmacologie Cardiovasculaire, Faculté de Médecine,
EA 7296, Fédération de Médecine Translationnelle, Université de Strasbourg, 11 rue Humann, 67000 Strasbourg, France
| |
Collapse
|
14
|
Gaikwad DD, Chapolikar AD, Devkate CG, Warad KD, Tayade AP, Pawar RP, Domb AJ. Synthesis of indazole motifs and their medicinal importance: an overview. Eur J Med Chem 2014; 90:707-31. [PMID: 25506810 DOI: 10.1016/j.ejmech.2014.11.029] [Citation(s) in RCA: 221] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 11/03/2014] [Accepted: 11/15/2014] [Indexed: 01/16/2023]
Abstract
Indazoles is an important class of heterocyclic compounds having a wide range of biological and pharmaceutical applications. There is enormous potential in the synthesis of novel heterocyclic systems to be used as building blocks for the next generation of pharmaceuticals as anti-bacterial, anti-depressant and anti-inflammatory. Fused aromatic 1H and 2H-indazoles are well recognized for anti-hypertensive and anti-cancer properties. The present review focuses on novel routes of their synthesis and various biological activities.
Collapse
Affiliation(s)
- Digambar D Gaikwad
- Dept. of Chemistry, Govt. College of Arts & Science, Aurangabad 431001, India.
| | | | | | - Khandu D Warad
- Dept. of Chemistry, Govt. College of Arts & Science, Aurangabad 431001, India
| | - Amit P Tayade
- Dept. of Chemistry, Govt. College of Arts & Science, Aurangabad 431001, India
| | | | - Abraham J Domb
- School of Pharmacy, Department of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| |
Collapse
|
15
|
Fluorinated analogues of marsanidine, a highly α2-AR/imidazoline I1 binding site-selective hypotensive agent. Synthesis and biological activities. Eur J Med Chem 2014; 87:386-97. [PMID: 25282262 DOI: 10.1016/j.ejmech.2014.09.083] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 09/25/2014] [Accepted: 09/26/2014] [Indexed: 01/25/2023]
Abstract
The aim of these studies was to establish the influence of fluorination of the indazole ring on the pharmacological properties of two selective α2-adrenoceptor (α2-AR) agonists: 1-[(imidazolidin-2-yl)imino]-1H-indazole (marsanidine, A) and its methylene analogue 1-[(4,5-dihydro-1H-imidazol-2-yl)methyl]-1H-indazole (B). Introduction of fluorine into the indazole ring of A and B reduced both binding affinity and α2-AR/I1 imidazoline binding site selectivity. The most α2-AR-selective ligands were 6-fluoro-1-[(imidazolidin-2-yl)imino]-1H-indazole (6c) and 7-fluoro-1-[(imidazolidin-2-yl)imino]-1H-indazole (6d). The in vivo cardiovascular properties of fluorinated derivatives of A and B revealed that in both cases the C-7 fluorination leads to compounds with the highest hypotensive and bradycardic activities. The α2-AR partial agonist 6c was prepared as a potential lead compound for development of a radiotracer for PET imaging of brain α2-ARs.
Collapse
|
16
|
Kornicka A, Gdaniec M. Synthesis, Structure of Zwitterionic 2-Amino-N′-(imidazolidin-2-ylidene)benzohydrazides, and Their Transformation into 3-(Imidazolidin-2-ylideneamino)quinazolin-4(1H)-one Derivatives. J Heterocycl Chem 2012. [DOI: 10.1002/jhet.940] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Anita Kornicka
- Department of Chemical Technology of Drugs; Medical University of Gdańsk; Gdańsk; Poland
| | - Maria Gdaniec
- Faculty of Chemistry; A. Mickiewicz University; Poznań; Poland
| |
Collapse
|
17
|
Synthesis and biological activities of 2-[(heteroaryl)methyl]imidazolines. Bioorg Med Chem 2012; 20:108-16. [DOI: 10.1016/j.bmc.2011.11.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Revised: 11/12/2011] [Accepted: 11/14/2011] [Indexed: 10/15/2022]
|
18
|
Bekö SL, Thoms SD, Schmidt MU, Bolte M. Tizanidine and tizanidine hydrochloride: on the correct tautomeric form of tizanidine. Acta Crystallogr C 2011; 68:o28-32. [DOI: 10.1107/s0108270111052012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 12/02/2011] [Indexed: 11/10/2022] Open
Abstract
A crystallization series of tizanidine hydrochloride, used as a muscle relaxant for spasticity acting centrally as an α2-adrenergic agonist, yielded single crystals of the free base and the hydrochloride salt. The crystal structures of tizanidine [systematic name: 5-chloro-N-(imidazolidin-2-ylidene)-2,1,3-benzothiadiazol-4-amine], C9H8ClN5S, (I), and tizanidine hydrochloride {systematic name: 2-[(5-chloro-2,1,3-benzothiadiazol-4-yl)amino]imidazolidinium chloride}, C9H9ClN5S+·Cl−, (II), have been determined. Tizanidine crystallizes with two almost identical molecules in the asymmetric unit (r.m.s. deviation = 0.179 Å for all non-H atoms). The molecules are connected by N—H...N hydrogen bonds forming chains running along [2\overline{1}1]. The present structure determination corrects the structure determination of tizanidine by Johnet al.[Acta Cryst.(2011), E67, o838–o839], which shows an incorrect tautomeric form. Tizanidine does not crystallize as the usually drawn 2-amino–imidazoline tautomer, but as the 2-imino–imidazolidine tautomer. This tautomer is present in solution as well, as shown by1H NMR analysis. In tizanidine hydrochloride, cations and anions are connected by N—H...Cl hydrogen bonds to form layers parallel to (100).
Collapse
|