1
|
Phelps DW, Connors AM, Ferrero G, DeWitt JC, Yoder JA. Per- and polyfluoroalkyl substances alter innate immune function: evidence and data gaps. J Immunotoxicol 2024; 21:2343362. [PMID: 38712868 PMCID: PMC11249028 DOI: 10.1080/1547691x.2024.2343362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/10/2024] [Indexed: 05/08/2024] Open
Abstract
Per- and polyfluoroalkyl substances (PFASs) are a large class of compounds used in a variety of processes and consumer products. Their unique chemical properties make them ubiquitous and persistent environmental contaminants while also making them economically viable and socially convenient. To date, several reviews have been published to synthesize information regarding the immunotoxic effects of PFASs on the adaptive immune system. However, these reviews often do not include data on the impact of these compounds on innate immunity. Here, current literature is reviewed to identify and incorporate data regarding the effects of PFASs on innate immunity in humans, experimental models, and wildlife. Known mechanisms by which PFASs modulate innate immune function are also reviewed, including disruption of cell signaling, metabolism, and tissue-level effects. For PFASs where innate immune data are available, results are equivocal, raising additional questions about common mechanisms or pathways of toxicity, but highlighting that the innate immune system within several species can be perturbed by exposure to PFASs. Recommendations are provided for future research to inform hazard identification, risk assessment, and risk management practices for PFASs to protect the immune systems of exposed organisms as well as environmental health.
Collapse
Affiliation(s)
- Drake W. Phelps
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC
- Center for Environmental and Health Effects of PFAS, North Carolina State University, Raleigh, NC
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC
| | - Ashley M. Connors
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC
- Center for Environmental and Health Effects of PFAS, North Carolina State University, Raleigh, NC
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC
- Toxicology Program, North Carolina State University, Raleigh, NC
- Genetics and Genomics Academy, North Carolina State University, Raleigh, NC
| | - Giuliano Ferrero
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC
- Center for Environmental and Health Effects of PFAS, North Carolina State University, Raleigh, NC
| | - Jamie C. DeWitt
- Center for Environmental and Health Effects of PFAS, North Carolina State University, Raleigh, NC
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR
| | - Jeffrey A. Yoder
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC
- Center for Environmental and Health Effects of PFAS, North Carolina State University, Raleigh, NC
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC
- Toxicology Program, North Carolina State University, Raleigh, NC
- Genetics and Genomics Academy, North Carolina State University, Raleigh, NC
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC
| |
Collapse
|
2
|
Villeneuve DL, Blackwell BR, Cavallin JE, Collins J, Hoang JX, Hofer RN, Houck KA, Jensen KM, Kahl MD, Kutsi RN, Opseth AS, Santana Rodriguez KJ, Schaupp CM, Stacy EH, Ankley GT. Verification of In Vivo Estrogenic Activity for Four Per- and Polyfluoroalkyl Substances (PFAS) Identified as Estrogen Receptor Agonists via New Approach Methodologies. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:3794-3803. [PMID: 36800546 PMCID: PMC10898820 DOI: 10.1021/acs.est.2c09315] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Given concerns about potential toxicological hazards of the thousands of data-poor per- and polyfluorinated alkyl substances (PFAS) currently in commerce and detected in the environment, tiered testing strategies that employ high-throughput in vitro screening as an initial testing tier have been implemented. The present study evaluated the effectiveness of previous in vitro screening for identifying PFAS capable, or incapable, of inducing estrogenic responses in fish exposed in vivo. Fathead minnows (Pimephales promelas) were exposed for 96 h to five PFAS (perfluorooctanoic acid [PFOA]; 1H,1H,8H,8H-perfluorooctane-1,8-diol [FC8-diol]; 1H,1H,10H,10H-perfluorodecane-1,10-diol [FC10-diol]; 1H,1H,8H,8H-perfluoro-3,6-dioxaoctane-1,8-diol [FC8-DOD]; and perfluoro-2-methyl-3-oxahexanoic acid [HFPO-DA]) that showed varying levels of in vitro estrogenic potency. In agreement with in vitro screening results, exposure to FC8-diol, FC10-diol, and FC8-DOD caused concentration-dependent increases in the expression of transcript coding for vitellogenin and estrogen receptor alpha and reduced expression of insulin-like growth factor and apolipoprotein eb. Once differences in bioconcentration were accounted for, the rank order of potency in vivo matched that determined in vitro. These results provide a screening level benchmark for worst-case estimates of potential estrogenic hazards of PFAS and a basis for identifying structurally similar PFAS to scrutinize for putative estrogenic activity.
Collapse
Affiliation(s)
- Daniel L. Villeneuve
- US Environmental Protection Agency, Center for Computational Toxicology and Exposure, Great Lakes Toxicology and Ecology Division, Duluth, MN, USA
| | - Brett R. Blackwell
- US Environmental Protection Agency, Center for Computational Toxicology and Exposure, Great Lakes Toxicology and Ecology Division, Duluth, MN, USA
| | - Jenna E. Cavallin
- US Environmental Protection Agency, Center for Computational Toxicology and Exposure, Great Lakes Toxicology and Ecology Division, Duluth, MN, USA
| | - Jacob Collins
- Oak Ridge Institute for Science and Education, US EPA, Great Lakes Toxicology and Ecology Division, Duluth, MN, USA
| | - John X. Hoang
- Oak Ridge Institute for Science and Education, US EPA, Great Lakes Toxicology and Ecology Division, Duluth, MN, USA
| | - Rachel N. Hofer
- Oak Ridge Institute for Science and Education, US EPA, Great Lakes Toxicology and Ecology Division, Duluth, MN, USA
| | - Keith A. Houck
- US Environmental Protection Agency, Center for Computational Toxicology and Exposure, Biomolecular and Computational Toxicology Division, Research Triangle Park, NC, USA
| | - Kathleen M. Jensen
- US Environmental Protection Agency, Center for Computational Toxicology and Exposure, Great Lakes Toxicology and Ecology Division, Duluth, MN, USA
| | - Michael D. Kahl
- US Environmental Protection Agency, Center for Computational Toxicology and Exposure, Great Lakes Toxicology and Ecology Division, Duluth, MN, USA
| | - Robin N. Kutsi
- Oak Ridge Institute for Science and Education, US EPA, Great Lakes Toxicology and Ecology Division, Duluth, MN, USA
| | - Anne S. Opseth
- US Environmental Protection Agency, Center for Computational Toxicology and Exposure, Great Lakes Toxicology and Ecology Division, Duluth, MN, USA
| | - Kelvin J. Santana Rodriguez
- Oak Ridge Institute for Science and Education, US EPA, Great Lakes Toxicology and Ecology Division, Duluth, MN, USA
| | - Christopher M. Schaupp
- Oak Ridge Institute for Science and Education, US EPA, Great Lakes Toxicology and Ecology Division, Duluth, MN, USA
| | - Emma H. Stacy
- Oak Ridge Institute for Science and Education, US EPA, Great Lakes Toxicology and Ecology Division, Duluth, MN, USA
| | - Gerald T. Ankley
- US Environmental Protection Agency, Center for Computational Toxicology and Exposure, Great Lakes Toxicology and Ecology Division, Duluth, MN, USA
| |
Collapse
|
3
|
Takakusagi Y, Takakusagi K, Sakaguchi K, Sugawara F. Phage display technology for target determination of small-molecule therapeutics: an update. Expert Opin Drug Discov 2020; 15:1199-1211. [DOI: 10.1080/17460441.2020.1790523] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Yoichi Takakusagi
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Chiba, Japan
- Institute of Quantum Life Science (iQLS), National Institutes of Quantum and Radiological Science and Technology (QST), Chiba, Japan
| | - Kaori Takakusagi
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Chiba, Japan
- Institute of Quantum Life Science (iQLS), National Institutes of Quantum and Radiological Science and Technology (QST), Chiba, Japan
| | - Kengo Sakaguchi
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Chiba, Japan
| | - Fumio Sugawara
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Chiba, Japan
| |
Collapse
|
4
|
Kuramochi K, Matsushita T, Tsubaki K. Catch and release of concanavalin A by a mannose-immobilized photoaffinity PEGA resin coupled with a cleavable disulfide linker. Biosci Biotechnol Biochem 2015; 79:1946-53. [PMID: 26115105 DOI: 10.1080/09168451.2015.1060848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
A photoaffinity PEGA resin containing mannose as a ligand and disulfide as a cleavable linker was prepared. The resin was crosslinked to concanavalin A, a binding protein of mannose, by UV irradiation, and the protein was subsequently released by cleavage of the disulfide linker.
Collapse
Affiliation(s)
- Kouji Kuramochi
- a Graduate School of Life and Environmental Sciences , Kyoto Prefectural University , Kyoto , Japan
| | - Tomohisa Matsushita
- a Graduate School of Life and Environmental Sciences , Kyoto Prefectural University , Kyoto , Japan
| | - Kazunori Tsubaki
- a Graduate School of Life and Environmental Sciences , Kyoto Prefectural University , Kyoto , Japan
| |
Collapse
|
5
|
Bidlingmaier S, Liu B. Utilizing Yeast Surface Human Proteome Display Libraries to Identify Small Molecule-Protein Interactions. Methods Mol Biol 2015; 1319:203-14. [PMID: 26060077 PMCID: PMC4838597 DOI: 10.1007/978-1-4939-2748-7_11] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The identification of proteins that interact with small bioactive molecules is a critical but often difficult and time-consuming step in understanding cellular signaling pathways or molecular mechanisms of drug action. Numerous methods for identifying small molecule-interacting proteins have been developed and utilized, including affinity-based purification followed by mass spectrometry analysis, protein microarrays, phage display, and three-hybrid approaches. Although all these methods have been used successfully, there remains a need for additional techniques for analyzing small molecule-protein interactions. A promising method for identifying small molecule-protein interactions is affinity-based selection of yeast surface-displayed human proteome libraries. Large and diverse libraries displaying human protein fragments on the surface of yeast cells have been constructed and subjected to FACS-based enrichment followed by comprehensive exon microarray-based output analysis to identify protein fragments with affinity for small molecule ligands. In a recent example, a proteome-wide search has been successfully carried out to identify cellular proteins binding to the signaling lipids PtdIns(4,5)P2 and PtdIns(3,4,5)P3. Known phosphatidylinositide-binding proteins such as pleckstrin homology domains were identified, as well as many novel interactions. Intriguingly, many novel nuclear phosphatidylinositide-binding proteins were discovered. Although the existence of an independent pool of nuclear phosphatidylinositides has been known about for some time, their functions and mechanism of action remain obscure. Thus, the identification and subsequent study of nuclear phosphatidylinositide-binding proteins is expected to bring new insights to this important biological question. Based on the success with phosphatidylinositides, it is expected that the screening of yeast surface-displayed human proteome libraries will be of general use for the discovery of novel small molecule-protein interactions, thus facilitating the study of cellular signaling pathways and mechanisms of drug action or toxicity.
Collapse
Affiliation(s)
- Scott Bidlingmaier
- Department of Anesthesia, UCSF Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, 1001 Potrero Avenue, Box 1305, San Francisco, CA, 94110, USA
| | | |
Collapse
|
6
|
Kusayanagi T, Tsukuda S, Shimura S, Manita D, Iwakiri K, Kamisuki S, Takakusagi Y, Takeuchi T, Kuramochi K, Nakazaki A, Sakaguchi K, Kobayashi S, Sugawara F. The antitumor agent doxorubicin binds to Fanconi anemia group F protein. Bioorg Med Chem 2012; 20:6248-55. [DOI: 10.1016/j.bmc.2012.09.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 09/06/2012] [Accepted: 09/07/2012] [Indexed: 12/30/2022]
|
7
|
Tsukuda S, Kusayanagi T, Umeda E, Watanabe C, Tosaki YT, Kamisuki S, Takeuchi T, Takakusagi Y, Shiina I, Sugawara F. Ridaifen B, a tamoxifen derivative, directly binds to Grb10 interacting GYF protein 2. Bioorg Med Chem 2012. [PMID: 23199482 DOI: 10.1016/j.bmc.2012.10.037] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ridaifen B (RID-B) is a tamoxifen derivative that potently inhibits breast tumor growth. RID-B was reported to show anti-proliferating activity for a variety of estrogen receptor (ER)-positive human cancer cells. Interestingly, RID-B was also reported to possess higher potency than that of tamoxifen even for some ER-negative cells, suggesting an ER-independent mechanism of action. In this study, a T7 phage display screen and subsequent binding analyses have identified Grb10 interacting GYF protein 2 (GIGYF2) as a RID-B-binding protein. Using a cell-based assay, the Akt phosphorylation level mediated by GIGYF2 was found to have decreased in the presence of RID-B.
Collapse
Affiliation(s)
- Senko Tsukuda
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|