1
|
Zhou X. Recent advances of tryptanthrin and its derivatives as potential anticancer agents. RSC Med Chem 2024; 15:1127-1147. [PMID: 38665827 PMCID: PMC11042161 DOI: 10.1039/d3md00698k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 01/03/2024] [Indexed: 04/28/2024] Open
Abstract
Tryptanthrin is one of the well-known natural alkaloids with a broad spectrum of biological activities and can act as anti-inflammatory, anticancer, antibacterial, antifungal, antiviral, antitubercular, and other agents. Owing to its potent anticancer activity, tryptanthrin has been widely explored for the therapy of various cancers besides being effective against other diseases. Tryptanthrin with a pharmacological indoloquinazoline moiety can not only be modified by different functional groups to achieve various tryptanthrin derivatives, which may realize the improvement of anticancer activity, but also bind with different metal ions to obtain varied tryptanthrin metal complexes as potential anticancer agents, due to their higher anticancer activities in comparison with tryptanthrin (or its derivatives) and cisplatin. This review outlines the recent advances in the syntheses, structures, and anticancer activities of tryptanthrin derivatives and their metal complexes, trying to reveal their structure-activity relationships and to provide a helpful way for medicinal chemists in the development of new and effective tryptanthrin-based anticancer agents.
Collapse
Affiliation(s)
- Xiaofeng Zhou
- Second Clinical Medicine College of Lanzhou University Lanzhou China
| |
Collapse
|
2
|
Hou BL, Wu K, Liu R, Liu J, Wang J, Wang C, Liang Y, Wang Z. Natural products fragment-based design and synthesis of a novel pentacyclic ring system as potential MAPK inhibitor. Bioorg Med Chem Lett 2024; 99:129598. [PMID: 38169246 DOI: 10.1016/j.bmcl.2023.129598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/14/2023] [Accepted: 12/30/2023] [Indexed: 01/05/2024]
Abstract
The synthesis of compounds based on fragments derived from natural products (NPs) serves as a source of inspiration for the design of pseudo-natural products (PNPs), to identify bioactive molecules that exhibit similar characteristics to NPs. These novel molecular scaffolds exhibit previously unexplored biological activities as well. This study reports the development and synthesis of a novel pentacyclic ring system, the indole-pyrimidine-quinoline (IPQ) scaffold. The design of this scaffold was based on the structural characteristics of four natural products, namely tryptanthrin, luotonin A, rutaecarpine, and camptothecin. Several successive steps accomplished the effective synthesis of the IPQ scaffold. The constituent components of the pentacycle, containing the indole, quinazolinone, pyrimidone, and quinoline units, possess significant biological significance. Compound 1a demonstrated noteworthy anti-tumor activity efficacy against A549 cell lines among the tested compounds. The compound 1a was observed to elicit cell cycle arrest in both the G2/M and S phases, as well as trigger apoptosis in A549 cells. These effects were attributed to its ability to modulate the activation of mitochondrial-related mitogen-activated protein kinase (MAPK) signaling pathways.
Collapse
Affiliation(s)
- Bao-Long Hou
- Collaborative Innovation Center of Chinese Medicine Resources Industrialization, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Innovative Drug Research Center, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, China
| | - Kenan Wu
- Collaborative Innovation Center of Chinese Medicine Resources Industrialization, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Innovative Drug Research Center, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, China
| | - Rongrong Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an 710069, China
| | - Jianli Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an 710069, China; Xi'an Peihua University, Xi'an 710125, China
| | - Jinrui Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an 710069, China
| | - Cuiling Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an 710069, China.
| | - Yanni Liang
- Collaborative Innovation Center of Chinese Medicine Resources Industrialization, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Innovative Drug Research Center, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, China.
| | - Zheng Wang
- Collaborative Innovation Center of Chinese Medicine Resources Industrialization, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Innovative Drug Research Center, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, China.
| |
Collapse
|
3
|
Zhang X, Pan Y, Liu T, Wang Y. Synthesis of 4-Aryl-1,3,4-benzotriazepinones from Isatoic Anhydrides and Hydrazonyl Chlorides. J Org Chem 2023. [PMID: 37167531 DOI: 10.1021/acs.joc.3c00307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
An efficient synthesis of 4-aryl-1,3,4-benzotriazepinones from readily available isatoic anhydrides and hydrazonyl chlorides was developed. In this facile protocol, a series of functionalized 1,3,4-benzotriazepinones were conveniently obtained with broad substrate scope and excellent functional group tolerance.
Collapse
Affiliation(s)
- Xinyu Zhang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Yuan Pan
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Tao Liu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Yang Wang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology (QNLM), Qingdao 266237, China
| |
Collapse
|
4
|
Zhang CY, Cao K, Liu D, Yang HB, Teng CC, Li B, Yang J. Iridium-catalyzed selective amination of B(4)-H for the synthesis of o-carborane-fused indolines. Dalton Trans 2023; 52:2933-2936. [PMID: 36815456 DOI: 10.1039/d3dt00316g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
An iridium-catalyzed selective amination of B(4)-H via dehydrogenative cross-coupling of B-H/N-H bonds for the synthesis of o-carborane-fused indolines has been developed for the first time. Various types of unprecedented o-carborane-fused indolines have been synthesized, which would be potential candidates for applications in drug discovery, pharmaceutical chemistry and functional materials. This work offers a valuable reference for the designing and synthesis of o-carborane-fused heterocycles.
Collapse
Affiliation(s)
- Cai-Yan Zhang
- State Key Laboratory of Environment-friendly Energy Materials & School of Materials and Chemistry, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang, Sichuan, P. R. China.
| | - Ke Cao
- State Key Laboratory of Environment-friendly Energy Materials & School of Materials and Chemistry, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang, Sichuan, P. R. China.
| | - Dechun Liu
- State Key Laboratory of Environment-friendly Energy Materials & School of Materials and Chemistry, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang, Sichuan, P. R. China.
| | - Han-Bo Yang
- State Key Laboratory of Environment-friendly Energy Materials & School of Materials and Chemistry, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang, Sichuan, P. R. China.
| | - Chao-Chao Teng
- State Key Laboratory of Environment-friendly Energy Materials & School of Materials and Chemistry, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang, Sichuan, P. R. China.
| | - Bo Li
- Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, Sichuan 621900, P. R. China
| | - Junxiao Yang
- State Key Laboratory of Environment-friendly Energy Materials & School of Materials and Chemistry, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang, Sichuan, P. R. China.
| |
Collapse
|
5
|
Markosyan AI, Ayvazyan AS, Gabrielyan SH, Mamyan SS, Arsenyan FH, Safaryan AS, Arakelyan HH. Synthesis and Antibacterial and Antitumor Activity of 2-Sulfanyl-Substituted 3H-Spiro[Benzo[H]Quinazoline-5,1′-Cycloheptane]-4(6H)-Ones. Pharm Chem J 2022. [DOI: 10.1007/s11094-022-02774-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
6
|
Tian HZ, Wu SF, Lin GQ, Sun XW. Asymmetric synthesis of pyrrolo[2,3–b]indole scaffolds by organocatalytic [3 + 2] dearomative annulation. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
7
|
Tian HZ, Wu SF, Zhuang GW, Lin GQ, Sun XW. Base-controlled dearomative [3 + 2] cycloadditions between 3-nitro-indoles and fumaric acid amide esters. Org Biomol Chem 2022; 20:3072-3075. [PMID: 35352074 DOI: 10.1039/d2ob00296e] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The base-controlled dearomative [3 + 2] cycloaddition reaction between 3-nitroindoles and fumaric acid amide esters has been disclosed by using the dearomatization and aromatization strategy. Three kinds of diverse functionalized pyrrolo[2,3-b]indole derivatives were obtained respectively with excellent chemoselectivities and good diastereoselectivities using different bases.
Collapse
Affiliation(s)
- Heng-Zhi Tian
- Department of Chemistry, Fudan University, Shanghai 200433, China.
| | - Sheng-Feng Wu
- Department of Chemistry, Fudan University, Shanghai 200433, China.
| | - Guo-Wei Zhuang
- Department of Chemistry, Fudan University, Shanghai 200433, China.
| | - Guo-Qiang Lin
- Department of Chemistry, Fudan University, Shanghai 200433, China. .,Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Xing-Wen Sun
- Department of Chemistry, Fudan University, Shanghai 200433, China. .,Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
8
|
Teja C, Ramanathan K, Naresh K, Vidya R, Gomathi K, Nawaz FR. Design, Synthesis, and Biological Evaluation of Tryptanthrin Alkaloids as Potential anti-Diabetic and Anticancer Agents. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2021.2021257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Chitrala Teja
- Organic and Medicinal Chemistry Research Laboratory, School of Advanced Sciences, Vellore Institute of Technology, Vellore, India
| | - Karuppasamy Ramanathan
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Kondapalli Naresh
- Department of Pharmaceutical Chemistry, G. Pulla Reddy College of Pharmacy, Hyderabad, India
| | - R. Vidya
- VIT School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Vellore, India
| | - K. Gomathi
- Dr. MGR Educational Research Institute, Chennai, India
| | - Fazlur Rahman Nawaz
- Organic and Medicinal Chemistry Research Laboratory, School of Advanced Sciences, Vellore Institute of Technology, Vellore, India
| |
Collapse
|
9
|
Pinheiro D, Pineiro M, Seixas de Melo JS. Tryptanthrin derivatives as efficient singlet oxygen sensitizers. Photochem Photobiol Sci 2021; 21:645-658. [PMID: 34735707 DOI: 10.1007/s43630-021-00117-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 10/14/2021] [Indexed: 11/27/2022]
Abstract
Halogenated tryptanthrin and aminotryptanthrin were synthesized from indigo or isatin precursors. Dibromo- and tetrabromo-tryptanthrin were obtained from indigo dyes following green chemistry procedures, through microwave-assisted synthesis in mild oxidation conditions. Spectral and photophysical properties of the compounds, including quantitative determination of all the different deactivation pathways of S1 and T1, were obtained in different solvents and temperatures. The triplet state (T1) has a dominant role on the photophysical properties of these compounds, which is further enhanced by the halogens at the fused-phenyl rings. Substitution with an amino group, 2-aminotryptanthrin (TRYP-NH2), leads a dominance of the radiative decay channel. Moreover, with the sole exception of TRYP-NH2, S1 ~ ~ > T1 intersystem crossing constitutes the dominant route, with internal conversion playing a minor role in the deactivation of S1 in all the studied derivatives. In agreement with tryptanthrin, emission of the triplet state of tryptanthrin derivatives (with exception of TRYP-NH2), was observed together with an enhancement of the singlet oxygen sensitization quantum yield: from 70% in tryptanthrin to 92% in the iodine derivative. This strongly contrasts with indigo and its derivatives, where singlet oxygen sensitization is found inefficient.
Collapse
Affiliation(s)
- Daniela Pinheiro
- Department of Chemistry, CQC, University of Coimbra, Rua Larga, 3004-535, Coimbra, Portugal
| | - Marta Pineiro
- Department of Chemistry, CQC, University of Coimbra, Rua Larga, 3004-535, Coimbra, Portugal
| | - J Sérgio Seixas de Melo
- Department of Chemistry, CQC, University of Coimbra, Rua Larga, 3004-535, Coimbra, Portugal.
| |
Collapse
|
10
|
Pinheiro D, Pineiro M, de Melo JSS. Sulfonated tryptanthrin anolyte increases performance in pH neutral aqueous redox flow batteries. Commun Chem 2021; 4:89. [PMID: 36697575 PMCID: PMC9814137 DOI: 10.1038/s42004-021-00523-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/14/2021] [Indexed: 01/28/2023] Open
Abstract
Aqueous organic redox flow batteries (AORFBs) hold great promise as low-cost, environmentally friendly and safe alternative energy storage media. Here we present aqueous organometallic and all-organic active materials for RFBs with a water-soluble active material, sulfonated tryptanthrin (TRYP-SO3H), working at a neutral pH and showing long-term stability. Electrochemical measurements show that TRYP-SO3H displays reversible peaks at neutral pH values, allowing its use as an anolyte combined with potassium ferrocyanide or 4,5-dihydroxy-1,3-benzenedisulfonic acid disodium salt monohydrate as catholytes. Single cell tests show reproducible charge-discharge cycles for both catholytes, with significantly improved results for the aqueous all-organic RFB reaching high cell voltage (0.94 V) and high energy efficiencies, stabilized during at least 50 working cycles.
Collapse
Affiliation(s)
- Daniela Pinheiro
- University of Coimbra, CQC, Department of Chemistry, Rua Larga, Coimbra, Portugal
| | - Marta Pineiro
- University of Coimbra, CQC, Department of Chemistry, Rua Larga, Coimbra, Portugal
| | | |
Collapse
|
11
|
Degradation Products of Tryptophan in Cell Culture Media: Contribution to Color and Toxicity. Int J Mol Sci 2021; 22:ijms22126221. [PMID: 34207579 PMCID: PMC8228365 DOI: 10.3390/ijms22126221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/03/2021] [Accepted: 06/05/2021] [Indexed: 12/02/2022] Open
Abstract
Biomanufacturing processes may be optimized by storing cell culture media at room temperature, but this is currently limited by their instability and change in color upon long-term storage. This study demonstrates that one of the critical contributing factors toward media browning is tryptophan. LC-MS technology was utilized to identify tryptophan degradation products, which are likely formed primarily from oxidation reactions. Several of the identified compounds were shown to contribute significantly to color in solutions but also to exhibit toxicity against CHO cells. A cell-culture-compatible antioxidant, a-ketoglutaric acid, was found to be an efficient cell culture media additive for stabilizing components against degradation, inhibiting the browning of media formulations, and decreasing ammonia production, thus providing a viable method for developing room-temperature stable cell culture media.
Collapse
|
12
|
Brandão P, Marques C, Pinto E, Pineiro M, Burke AJ. Petasis adducts of tryptanthrin – synthesis, biological activity evaluation and druglikeness assessment. NEW J CHEM 2021. [DOI: 10.1039/d1nj02079j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The first example of a tryptanthrin-based Petasis multicomponent reaction is reported, with one of the new derivatives showing moderate fungicidal activity.
Collapse
Affiliation(s)
- Pedro Brandão
- Department of Chemistry
- University of Coimbra
- CQC
- Coimbra
- Portugal
| | | | - Eugénia Pinto
- Laboratório de Microbiologia
- Departamento de Ciências Biológicas
- Faculdade de Farmácia
- Universidade do Porto
- 4050-313 Porto
| | - Marta Pineiro
- Department of Chemistry
- University of Coimbra
- CQC
- Coimbra
- Portugal
| | - Anthony J. Burke
- LAQV-REQUIMTE
- University of Évora
- Évora
- Portugal
- Department of Chemistry
| |
Collapse
|
13
|
Baglini E, Salerno S, Barresi E, Robello M, Da Settimo F, Taliani S, Marini AM. Multiple Topoisomerase I (TopoI), Topoisomerase II (TopoII) and Tyrosyl-DNA Phosphodiesterase (TDP) inhibitors in the development of anticancer drugs. Eur J Pharm Sci 2021; 156:105594. [DOI: 10.1016/j.ejps.2020.105594] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 10/07/2020] [Accepted: 10/08/2020] [Indexed: 02/08/2023]
|
14
|
Lin CJ, Chang YL, Yang YL, Chen YL. Natural alkaloid tryptanthrin exhibits novel anticryptococcal activity. Med Mycol 2020; 59:myaa074. [PMID: 32823278 DOI: 10.1093/mmy/myaa074] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/30/2020] [Accepted: 08/01/2020] [Indexed: 12/15/2022] Open
Abstract
Cryptococcal meningitis is a prevalent invasive fungal infection that causes around 180 000 deaths annually. Currently, treatment for cryptococcal meningitis is limited and new therapeutic options are needed. Historically, medicinal plants are used to treat infectious and inflammatory skin infections. Tryptanthrin is a natural product commonly found in these plants. In this study, we demonstrated that tryptanthrin had antifungal activity with minimum inhibitory concentration (MIC) of 2 μg/ml against Cryptococcus species and of 8 μg/ml against Trichophyton rubrum. Further analysis demonstrated that tryptanthrin exerted fungistatic and potent antifungal activity at elevated temperature. In addition, tryptanthrin exhibited a synergistic effect with the calcineurin inhibitors FK506 and cyclosporine A against Cryptococcus neoformans. Furthermore, our data showed that tryptanthrin induced cell cycle arrest at the G1/S phase by regulating the expression of genes encoding cyclins and the SBF/MBF complex (CLN1, MBS1, PCL1, and WHI5) in C. neoformans. Screening of a C. neoformans mutant library further revealed that tryptanthrin was associated with various transporters and signaling pathways such as the calcium transporter (Pmc1) and protein kinase A signaling pathway. In conclusion, tryptanthrin exerted novel antifungal activity against Cryptococcus species through a mechanism that interferes with the cell cycle and signaling pathways. LAY SUMMARY The natural product tryptanthrin had antifungal activity against Cryptococcus species by interfering cell cycle and exerted synergistic effects with immunosuppressants FK506 and cyclosporine A. Our findings suggest that tryptanthrin may be a potential drug or adjuvant for the treatment of cryptococcosis.
Collapse
Affiliation(s)
- Chi-Jan Lin
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, 10617, Taiwan
| | - Ya-Lin Chang
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, 10617, Taiwan
| | - Yu-Liang Yang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Ying-Lien Chen
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, 10617, Taiwan
| |
Collapse
|
15
|
Saha M, Das AR. Nanocrystalline ZnO: A Competent and Reusable Catalyst for the Preparation of Pharmacology Relevant Heterocycles in the Aqueous Medium. CURRENT GREEN CHEMISTRY 2020. [DOI: 10.2174/2213346107666200218122718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
:Nanoparticle catalyzed synthesis is a green and convenient method to achieve most of the chemical transformations in water or other green solvents. Nanoparticle ensures an easy isolation process of catalyst as well as products from the reaction mixture avoiding the hectic work up procedure. Zinc oxide is a biocompatible, environmentally benign and economically viable nanocatalyst with effectivity comparable to the other metal nanocatalyst employed in several reaction strategies. This review mainly focuses on the recent applications of zinc oxide in the synthesis of biologically important heterocyclic molecules under sustainable reaction conditions.:Application of zinc oxide in organic synthesis: Considering the achievable advantages of this nanocatalyst, presently several research groups are paying attention in anchoring zincoxide or its modified structure in several types of organic conversions e.g. multicomponent reactions, ligand-free coupling reactions, cycloaddition reaction, etc. The advantages and limitations of this nanocatalyst are also demonstrated. The present study aims to highlight the recent multifaceted applications of ZnO towards the synthesis of diverse heterocyclic motifs. Being a promising biocompatible nanoparticle, this catalyst has an important contribution in the fields of synthetic chemistry and medicinal chemistry.
Collapse
Affiliation(s)
- Moumita Saha
- Department of Chemistry, University of Calcutta, Kolkata-700009, India
| | - Asish R. Das
- Department of Chemistry, University of Calcutta, Kolkata-700009, India
| |
Collapse
|
16
|
Markosyan AI, Airapetyan KK, Gabrielyan SA, Mamyan SS, Shirinyan VZ, Zakharov AV, Arsenyan FG, Avakimyan DA, Stepanyan GM. Synthesis and Antitumor and Antibacterial Activity of Novel Dihydronaphthaline and Dihydrobenzo[H]Quinazoline Derivatives. Pharm Chem J 2019. [DOI: 10.1007/s11094-019-01948-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
17
|
Kogawa C, Fujiwara A, Sekiguchi R, Shoji T, Kawakami J, Okazaki M, Ito S. Synthesis and photophysical properties of azuleno[1′,2′:4,5]pyrrolo[2,1-b]quinazoline-6,14-diones: Azulene analogs of tryptanthrin. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.10.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Mane AH, Patil AD, Kamat SR, Salunkhe RS. Biocatalyst Mediated Synthesis of Tryptanthrins Performed Under Ultrasonication. ChemistrySelect 2018. [DOI: 10.1002/slct.201800677] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Ananda H. Mane
- Department of ChemistryShivaji University Kolhapur 416004, M.S. India
| | - Audumbar D. Patil
- Department of ChemistryShivaji University Kolhapur 416004, M.S. India
| | | | | |
Collapse
|
19
|
Markosyan AI, Hayrapetyan KK, Gabrielyan SH, Shirinyan VZ, Mamyan SS, Avakimyan JA, Stepanyan GM. Some Transformations of 2-(Chloromethyl)-5,5-dimethyl-5,6-dihydrobenzo[h]quinazolin-4(3H)-one. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2018. [DOI: 10.1134/s1070428018040152] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
20
|
Liao H, Peng X, Hu D, Xu X, Huang P, Liu Q, Liu L. CoCl2-promoted TEMPO oxidative homocoupling of indoles: access to tryptanthrin derivatives. Org Biomol Chem 2018; 16:5699-5706. [DOI: 10.1039/c8ob01216d] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The first example of one-step synthesis of tryptanthrin derivatives using indoles as the only substratesviadirect C–H transformation.
Collapse
Affiliation(s)
- Huiwu Liao
- Department of Chemistry and Chemical Engineering
- Gannan Normal University
- Ganzhou
- P. R. China
| | - Xiangjun Peng
- School of Pharmaceutical Science
- Gannan Medical University
- Ganzhou
- P. R. China
| | - Dan Hu
- Department of Chemistry and Chemical Engineering
- Gannan Normal University
- Ganzhou
- P. R. China
| | - Xianyun Xu
- School of Pharmaceutical Science
- Gannan Medical University
- Ganzhou
- P. R. China
| | - Panpan Huang
- Department of Chemistry and Chemical Engineering
- Gannan Normal University
- Ganzhou
- P. R. China
| | - Qian Liu
- School of Pharmaceutical Science
- Gannan Medical University
- Ganzhou
- P. R. China
| | - Liangxian Liu
- Department of Chemistry and Chemical Engineering
- Gannan Normal University
- Ganzhou
- P. R. China
| |
Collapse
|
21
|
Ruvinskaya JO, Rostovskii NV, Filippov IP, Khlebnikov AF, Novikov MS. A novel approach to 5H-pyrazino[2,3-b]indolesviaannulation of 3-diazoindolin-2-imines with 2H-azirines or 5-alkoxyisoxazoles under Rh(ii) catalysis. Org Biomol Chem 2018; 16:38-42. [DOI: 10.1039/c7ob02637d] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The first example of rhodium carbenoid-mediated intermolecular annulation of cyclic diazo compounds with azirines and alkoxyisoxazoles is presented.
Collapse
Affiliation(s)
| | | | - Ilya P. Filippov
- St. Petersburg State University
- Institute of Chemistry
- St. Petersburg
- Russia
| | | | - Mikhail S. Novikov
- St. Petersburg State University
- Institute of Chemistry
- St. Petersburg
- Russia
| |
Collapse
|
22
|
Hou H, Li H, Han Y, Yan C. Synthesis of visible-light mediated tryptanthrin derivatives from isatin and isatoic anhydride under transition metal-free conditions. Org Chem Front 2018. [DOI: 10.1039/c7qo00740j] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Visible light mediated transition metal-free protocol for synthesis of tryptanthrin from isatin and isatoic anhydride in mild reaction conditions.
Collapse
Affiliation(s)
- Hong Hou
- College of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou
- China
| | - Hengxue Li
- College of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou
- China
| | - Ying Han
- College of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou
- China
| | - Chaoguo Yan
- College of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou
- China
| |
Collapse
|
23
|
Kaur R, Manjal SK, Rawal RK, Kumar K. Recent synthetic and medicinal perspectives of tryptanthrin. Bioorg Med Chem 2017; 25:4533-4552. [DOI: 10.1016/j.bmc.2017.07.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 06/19/2017] [Accepted: 07/03/2017] [Indexed: 12/11/2022]
|
24
|
Guo S, Zhai J, Fan X. An I 2-mediated cascade reaction of 2'-bromoacetophenones with benzohydrazides/benzamides leading to quinazolino[3,2-b]cinnoline or tryptanthrin derivatives. Org Biomol Chem 2017; 15:1521-1529. [PMID: 28116380 DOI: 10.1039/c6ob02699k] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient and facile protocol for the synthesis of quinazolinone-fused tetracyclic compounds through an iodine-mediated one-pot cascade reaction of 2'-bromoacetophenones with 2-aminobenzohydrazides or 2-aminobenzamides is reported. With 2-aminobenzohydrazides as the substrates, the reaction gave 5H-quinazolino[3,2-b]cinnoline-7,13-diones in moderate to good yields under metal-catalyst-free conditions. With 2-aminobenzamides as the substrates and CuBr as the catalyst, on the other hand, it afforded tryptanthrin derivatives with good efficiency. Mechanistically, the formation of the tetracyclic systems is initiated by iodination and oxidation of 2'-bromoacetophenones followed by a cascade procedure consisting of cyclocondensation, aromatization and intramolecular cyclization of the in situ formed 2-bromoarylglyoxals with 2-aminobenzohydrazides or 2-aminobenzamides, respectively.
Collapse
Affiliation(s)
- Shenghai Guo
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Jianhui Zhai
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Xuesen Fan
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China.
| |
Collapse
|
25
|
Zhang J, Cheng P, Ma Y, Liu J, Miao Z, Ren D, Fan C, Liang M, Liu L. An efficient nano CuO-catalyzed synthesis and biological evaluation of quinazolinone Schiff base derivatives and bis-2,3-dihydroquinazolin-4(1H)-ones as potent antibacterial agents against Streptococcus lactis. Tetrahedron Lett 2016. [DOI: 10.1016/j.tetlet.2016.10.047] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
26
|
Li HY, Chen CY, Cheng HT, Chu YH. Exploiting 1,2,3-Triazolium Ionic Liquids for Synthesis of Tryptanthrin and Chemoselective Extraction of Copper(II) Ions and Histidine-Containing Peptides. Molecules 2016; 21:molecules21101355. [PMID: 27754392 PMCID: PMC6274210 DOI: 10.3390/molecules21101355] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 10/05/2016] [Accepted: 10/09/2016] [Indexed: 12/23/2022] Open
Abstract
Based on a common structural core of 4,5,6,7-tetrahydro[1,2,3]triazolo[1,5-a]pyridine, a number of bicyclic triazolium ionic liquids 1–3 were designed and successfully prepared. In our hands, this optimized synthesis of ionic liquids 1 and 2 requires no chromatographic separation. Also in this work, ionic liquids 1, 2 were shown to be efficient ionic solvents for fast synthesis of tryptanthrin natural product. Furthermore, a new affinity ionic liquid 3 was tailor-synthesized and displayed its effectiveness in chemoselective extraction of both Cu(II) ions and, for the first time, histidine-containing peptides.
Collapse
Affiliation(s)
- Hsin-Yi Li
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chiayi 62102, Taiwan.
| | - Chien-Yuan Chen
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chiayi 62102, Taiwan.
| | - Hui-Ting Cheng
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chiayi 62102, Taiwan.
| | - Yen-Ho Chu
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chiayi 62102, Taiwan.
| |
Collapse
|
27
|
Abbas SY, El-Bayouki KAM, Basyouni WM. Utilization of isatoic anhydride in the syntheses of various types of quinazoline and quinazolinone derivatives. SYNTHETIC COMMUN 2016. [DOI: 10.1080/00397911.2016.1177087] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Samir Y. Abbas
- Organometallic and Organometalloid Chemistry Department, National Research Centre, Dokki, Cairo, Egypt
| | - Khairy A. M. El-Bayouki
- Organometallic and Organometalloid Chemistry Department, National Research Centre, Dokki, Cairo, Egypt
| | - Wahid M. Basyouni
- Organometallic and Organometalloid Chemistry Department, National Research Centre, Dokki, Cairo, Egypt
| |
Collapse
|
28
|
Jia FC, Zhou ZW, Xu C, Wu YD, Wu AX. Divergent Synthesis of Quinazolin-4(3H)-ones and Tryptanthrins Enabled by a tert-Butyl Hydroperoxide/K3PO4-Promoted Oxidative Cyclization of Isatins at Room Temperature. Org Lett 2016; 18:2942-5. [DOI: 10.1021/acs.orglett.6b01291] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Feng-Cheng Jia
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Hubei, Wuhan 430079, P. R. China
| | - Zhi-Wen Zhou
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Hubei, Wuhan 430079, P. R. China
| | - Cheng Xu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Hubei, Wuhan 430079, P. R. China
| | - Yan-Dong Wu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Hubei, Wuhan 430079, P. R. China
| | - An-Xin Wu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Hubei, Wuhan 430079, P. R. China
- State
Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
29
|
El-Remaily MAEAAA, Elhady O. Cobalt(III)–porphyrin complex (CoTCPP) as an efficient and recyclable homogeneous catalyst for the synthesis of tryptanthrin in aqueous media. Tetrahedron Lett 2016. [DOI: 10.1016/j.tetlet.2015.12.052] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
30
|
Reddy BVS, Reddy DM, Reddy GN, Reddy MR, Reddy VK. Domino Oxidative Cyclization of 2-Aminoacetophenones for the One-Pot Synthesis of Tryptanthrin Derivatives. European J Org Chem 2015. [DOI: 10.1002/ejoc.201501079] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
31
|
Wang C, Zhang H, Lang B, Ren A, Lu P, Wang Y. Rh-Catalyzed Reactions of 3-Diazoindolin-2-imines: Synthesis of Pyridoindoles and Tetrahydrofuropyrroloindoles. Org Lett 2015; 17:4412-5. [DOI: 10.1021/acs.orglett.5b01943] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Chen Wang
- Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Haojie Zhang
- Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Bo Lang
- Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Anni Ren
- Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Ping Lu
- Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Yanguang Wang
- Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| |
Collapse
|
32
|
Quercetin and Tryptanthrin: Two Broad Spectrum Anticancer Agents for Future Chemotherapeutic Interventions. Enzymes 2015; 37:43-72. [PMID: 26298455 DOI: 10.1016/bs.enz.2015.05.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The idea and practice of developing or identifying compounds capable of eliminating the transformed cells or cancer cells without being nontoxic to their normal counterparts deserves much importance. Since ages, plants have been considered and proven to be repertoires of chemicals possessing immense therapeutic potential. A proportion of these plant-derived compounds or phytochemicals were shown to be highly competent anticancer agents besides being effective against many other diseases. Representative compounds of different classes of phytochemicals are in clinical use against cancer. In this chapter, we discuss the anticancer potential of two compounds: quercetin, a flavonoid and tryptanthrin, an indoloquinazoline alkaloid, and the mechanisms behind their cytotoxic effects on cancers of different origin. The chapter also gives a brief mention of their properties that make them effective against cancer.
Collapse
|
33
|
Jun KY, Park SE, Liang JL, Jahng Y, Kwon Y. Benzo[b]tryptanthrin Inhibits MDR1, Topoisomerase Activity, and Reverses Adriamycin Resistance in Breast Cancer Cells. ChemMedChem 2015; 10:827-35. [DOI: 10.1002/cmdc.201500068] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Indexed: 11/09/2022]
|
34
|
Romanova IP, Yusupova GG, Latypov SK, Strelnik AG, Rizvanov IK, Bogdanov AV, Mironov VF, Sinyashin OG. Features of the synthesis of isatins and isoindigo derivatives bearing long-chain haloalkyl substituents. MONATSHEFTE FUR CHEMIE 2015. [DOI: 10.1007/s00706-014-1356-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
35
|
Verma C, Sharma S, Pathak A. A phosgene and peroxide-free one-pot tandem synthesis of isatoic anhydrides involving anthranilic acid, Boc anhydride, and 2-chloro-N-methyl pyridinium iodide. Tetrahedron Lett 2013. [DOI: 10.1016/j.tetlet.2013.10.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
36
|
Wang C, Zhang L, Ren A, Lu P, Wang Y. Cu-Catalyzed Synthesis of Tryptanthrin Derivatives from Substituted Indoles. Org Lett 2013; 15:2982-5. [DOI: 10.1021/ol401144m] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Chen Wang
- Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Lianpeng Zhang
- Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Anni Ren
- Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Ping Lu
- Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Yanguang Wang
- Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| |
Collapse
|
37
|
Jahng Y. Progress in the studies on tryptanthrin, an alkaloid of history. Arch Pharm Res 2013; 36:517-35. [DOI: 10.1007/s12272-013-0091-9] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 03/11/2013] [Indexed: 11/28/2022]
|