1
|
Cen N, Wang H, Zhou Y, Gong R, Sui D, Chen W. Catalyst-free electrochemical trifluoromethylation of coumarins using CF 3SO 2NHNHBoc as the CF 3 source. Org Biomol Chem 2023; 21:1883-1887. [PMID: 36786673 DOI: 10.1039/d2ob01925f] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
An efficient electrochemical trifluoromethylation of coumarins using CF3SO2NHNHBoc as the source of the trifluoromethyl group was developed. Under catalyst-free and external oxidant-free electrolysis conditions, a range of 3-trifluoromethyl coumarins were obtained in moderate to good yields. The method could be easily scaled up with moderate efficiency.
Collapse
Affiliation(s)
- Nannan Cen
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai 200090, China.
| | - Han Wang
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai 200090, China.
| | - YiCheng Zhou
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai 200090, China.
| | - Ruoqu Gong
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai 200090, China.
| | - Dandan Sui
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai 200090, China.
| | - Wenbo Chen
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai 200090, China. .,CAS Key Laboratory of Energy Regulation Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
2
|
Mohamadpour F. Carbazole-based photocatalyst (4CzIPN) as a novel donor-acceptor (D-A) fluorophore catalyzed gram-scale 2-amino-4H-chromene scaffolds photosynthesis via a proton-coupled electron transfer (PCET) process. J Taiwan Inst Chem Eng 2023. [DOI: 10.1016/j.jtice.2023.104699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
3
|
Yan CY, Wu ZW, He XY, Ma YH, Peng XR, Wang L, Yang QQ. Visible-Light-Induced Tandem Radical Brominative Addition/Cyclization of Activated Alkynes with CBr 4 for the Synthesis of 3-Bromocoumarins. J Org Chem 2023; 88:647-652. [PMID: 36480338 DOI: 10.1021/acs.joc.2c01721] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A visible-light-induced tandem radical brominative addition/spiro-cyclization/1,2-ester migration of activated alkynes with CBr4 is developed. This protocol features good functional group tolerance, operational simplicity, and mild reaction conditions without the use of catalysts and external additives, providing easy access to valuable 3-bromocoumarins in generally high yields.
Collapse
Affiliation(s)
- Chen-Yang Yan
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, 8 Daxue Road, Yichang, Hubei 443002, P. R. China
| | - Zheng-Wei Wu
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, 8 Daxue Road, Yichang, Hubei 443002, P. R. China
| | - Xiao-Yu He
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, 8 Daxue Road, Yichang, Hubei 443002, P. R. China
| | - Yu-Hong Ma
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, 8 Daxue Road, Yichang, Hubei 443002, P. R. China
| | - Xiao-Rong Peng
- GongAn County People's Hospital, No. 119, Chanling Avenue, Douhudi Town, Gongan County, Jingzhou, Hubei 434300, P. R. China
| | - Long Wang
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, 8 Daxue Road, Yichang, Hubei 443002, P. R. China.,Hubei Three Gorges Laboratory, Yichang, Hubei 443007, P. R. China
| | - Qing-Qing Yang
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, 8 Daxue Road, Yichang, Hubei 443002, P. R. China.,Hubei Three Gorges Laboratory, Yichang, Hubei 443007, P. R. China
| |
Collapse
|
4
|
Maddahi M, Asghari S, Pasha GF. A facile one-pot green synthesis of novel 2-amino-4H-chromenes: antibacterial and antioxidant evaluation. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04893-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
5
|
Mohamadpour F. The development of knoevenagel-michael cyclocondensation through a single-electron transfer (SET)/energy transfer (EnT) pathway in the use of methylene blue (MB+) as a photo-redox catalyst. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Mohamadpour F. New Role for Photoexcited Na 2 Eosin Y via the Direct Hydrogen Atom Transfer Process in Photochemical Visible-Light-Induced Synthesis of 2-Amino-4 H-Chromene Scaffolds Under Air Atmosphere. Front Chem 2022; 10:880257. [PMID: 35755253 PMCID: PMC9218595 DOI: 10.3389/fchem.2022.880257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 03/25/2022] [Indexed: 11/13/2022] Open
Abstract
The Knoevenagel-Michael cyclocondensation of malononitrile, aryl aldehydes, and resorcinol was used as a multicomponent green tandem strategy for the metal-free synthesis of 2-amino-4H-chromene scaffolds. Through a visible-light-induced process, the photo-excited state functions derived from Na2 eosin Y were used as direct hydrogen atom transfer catalysts in aqueous ethanol at ambient temperature. The purpose of this study was to examine the further use of an organic dye that does not contain metal and is inexpensive and commercially available. Na2 eosin Y is synthesized by photochemical means using the least amount of catalyst, which results in excellent yields, energy efficiency, and environmental friendliness, high atom economy, time-saving features, and ease of operation. As a result, some properties of green and sustainable chemistry are met. This kind of cyclization can be performed on a gram scale, indicating the potential utility of this reaction in industry.
Collapse
|
7
|
Anchoring Cu (II) on Fe3O4@ SiO2/Schiff base: a green, recyclable, and extremely efficient magnetic nanocatalyst for the synthesis of 2-amino-4H-chromene derivatives. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04732-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
Mohamadpour F. Per-6-NH 2-β-CD as Supramolecular Host and Reusable Aminocyclodextrin Promoted Solvent-Free Synthesis of 2-Amino-4 H-Chromene Scaffolds at Room Temperature. Polycycl Aromat Compd 2021. [DOI: 10.1080/10406638.2021.1983615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
9
|
Mohamadpour F. Catalyst-free and solvent-free visible light irradiation-assisted Knoevenagel–Michael cyclocondensation of aryl aldehydes, malononitrile, and resorcinol at room temperature. MONATSHEFTE FUR CHEMIE 2021. [DOI: 10.1007/s00706-021-02763-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
10
|
Güngör T. One pot, multicomponent protocol for the synthesis of novel imidazo[1,2-a]pyrimidine-based pyran analogs: a potential biological scaffold. MONATSHEFTE FUR CHEMIE 2020. [DOI: 10.1007/s00706-020-02601-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
11
|
Synthesis and pharmacological properties of polysubstituted 2-amino-4H-pyran-3-carbonitrile derivatives. Mol Divers 2019; 24:1385-1431. [PMID: 31555954 DOI: 10.1007/s11030-019-09994-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 09/09/2019] [Indexed: 12/27/2022]
Abstract
2-Amino-3-cyano-4H-chromenes are structural core motifs that received increasing attention in the last years due to their interesting potential pharmacological properties. In this review, the synthetic methods for these compounds are classified based on the type of catalyst in the pertinent reactions. In addition, the wide range of pharmacological properties of these compounds is covered in a separate section.
Collapse
|
12
|
Kumari M, Jain Y, Yadav P, Laddha H, Gupta R. Synthesis of Fe3O4-DOPA-Cu Magnetically Separable Nanocatalyst: A Versatile and Robust Catalyst for an Array of Sustainable Multicomponent Reactions under Microwave Irradiation. Catal Letters 2019. [DOI: 10.1007/s10562-019-02794-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
13
|
Aminkhani A, Talati M, Sharifi R, Chalabian F, Katouzian F. Highly Efficient One‐Pot Three‐Component Synthesis and Antimicrobial Activity of 2‐Amino‐4
H
‐chromene Derivatives. J Heterocycl Chem 2019. [DOI: 10.1002/jhet.3555] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ali Aminkhani
- Department of ChemistryIslamic Azad University, Khoy Branch Khoy Iran
| | - Mina Talati
- Department of ChemistryIslamic Azad University, Khoy Branch Khoy Iran
| | - Roholah Sharifi
- Massachusetts Eye and Ear and Schepens Eye Research Institute, Department of OphthalmologyHarvard Medical School Boston MA USA
| | - Firouzeh Chalabian
- Department of BiologyIslamic Azad University, Tehran North Branch Tehran Iran
| | - Fatemeh Katouzian
- Department of Microbiology, Faculty of Advanced Sciences and TechnologyIslamic Azad University, Pharmaceutical Science Branch Tehran Iran
| |
Collapse
|
14
|
Ghalehshahi HG, Balalaie S, Sohbati HR, Azizian H, Alavijeh MS. Synthesis, CYP 450 evaluation, and docking simulation of novel 4-aminopyridine and coumarin derivatives. Arch Pharm (Weinheim) 2019; 352:e1800247. [DOI: 10.1002/ardp.201800247] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 12/01/2018] [Accepted: 12/05/2018] [Indexed: 01/13/2023]
Affiliation(s)
- Hajar G. Ghalehshahi
- Peptide Chemistry Research Center; K. N. Toosi University of Technology; Tehran Iran
| | - Saeed Balalaie
- Peptide Chemistry Research Center; K. N. Toosi University of Technology; Tehran Iran
- Medical Biology Research Center; Kermanshah University of Medical Sciences; Kermanshah Iran
| | - Hamid R. Sohbati
- Faculty of Pharmacy, Department of Medicinal Chemistry; Tehran University of Medical Science; Tehran Iran
| | - Homa Azizian
- Department of Medicinal Chemistry, School of Pharmacy international Campus; Iran University of Medical Sciences; Tehran Iran
| | | |
Collapse
|
15
|
Kandasamy P, Gyimesi G, Kanai Y, Hediger MA. Amino acid transporters revisited: New views in health and disease. Trends Biochem Sci 2018; 43:752-789. [PMID: 30177408 DOI: 10.1016/j.tibs.2018.05.003] [Citation(s) in RCA: 278] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 05/23/2018] [Accepted: 05/25/2018] [Indexed: 02/09/2023]
Abstract
Amino acid transporters (AATs) are membrane-bound transport proteins that mediate transfer of amino acids into and out of cells or cellular organelles. AATs have diverse functional roles ranging from neurotransmission to acid-base balance, intracellular energy metabolism, and anabolic and catabolic reactions. In cancer cells and diabetes, dysregulation of AATs leads to metabolic reprogramming, which changes intracellular amino acid levels, contributing to the pathogenesis of cancer, obesity and diabetes. Indeed, the neutral amino acid transporters (NATs) SLC7A5/LAT1 and SLC1A5/ASCT2 are likely involved in several human malignancies. However, a clinical therapy that directly targets AATs has not yet been developed. The purpose of this review is to highlight the structural and functional diversity of AATs, their diverse physiological roles in different tissues and organs, their wide-ranging implications in human diseases and the emerging strategies and tools that will be necessary to target AATs therapeutically.
Collapse
Affiliation(s)
- Palanivel Kandasamy
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, CH-3012 Bern, Switzerland
| | - Gergely Gyimesi
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, CH-3012 Bern, Switzerland
| | - Yoshikatsu Kanai
- Division of Bio-system Pharmacology, Graduate School of Medicine, Osaka University, Osaka, Japan.
| | - Matthias A Hediger
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, CH-3012 Bern, Switzerland.
| |
Collapse
|
16
|
Ashwin BCMA, Sivaraman G, Stalin T, Yuvakkumar R, Muthu Mareeswaran P. Selective and sensitive fluorescent sensor for Pd 2+ using coumarin 460 for real-time and biological applications. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 183:302-308. [PMID: 29754048 DOI: 10.1016/j.jphotobiol.2018.04.045] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 04/25/2018] [Accepted: 04/26/2018] [Indexed: 12/27/2022]
Abstract
The efficient fluorescent property of coumarin 460 (C460) is utilized to sense the Pd2+ selectively and sensitively. Fabrication of a sensor strip using commercial adhesive tape is achieved and the detection of Pd2+ is attempted using a handy UV torch. The naked eye detection in solution state using UV chamber is also attempted. The calculated high binding constant values support the strong stable complex formation of Pd2+ with C460. The detection limit up to 2.5 × 10-7 M is achieved using fluorescence spectrometer, which is considerably low from the WHO's recommendation. The response of coumarin 460 with various cations also studied. The quenching is further studied by the lifetime measurements. The binding mechanism is clearly explained by the 1H NMR titration. The sensing mechanism is established as ICT. C460 strip's Pd2+ quenching detection is further confirmed by solid-state PL study. The in-vitro response of Pd2+ in a living cell is also studied using fluorescent imaging studies by means of HeLa cell lines and this probe is very compatible with biological environments. It could be applicable to sense trace amounts of a Pd2+ ion from various industries. Compared with previous reports, this one is very cheap, sensitive, selective and suitable for biological systems.
Collapse
Affiliation(s)
| | - Gandhi Sivaraman
- Institute for Stem Cell Biology and Regenerative Medicine, Bangalore 560065, India
| | - Thambusamy Stalin
- Department of Industrial Chemistry, Alagappa University, Karaikudi 630003, Tamilnadu, India
| | - Rathinam Yuvakkumar
- Department of Physics, Alagappa University, Karaikudi 630003, Tamilnadu, India
| | | |
Collapse
|
17
|
Fernández-Salas JA, Pulis AP, Procter DJ. Metal-free C-H thioarylation of arenes using sulfoxides: a direct, general diaryl sulfide synthesis. Chem Commun (Camb) 2018; 52:12364-12367. [PMID: 27722278 DOI: 10.1039/c6cc07627k] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Metal-free C-H thioarylation of arenes and heteroarenes using methyl sulfoxides constitutes a general protocol for the synthesis of high value diaryl sulfides. The coupling of arenes and heteroarenes with in situ activated sulfoxides is regioselective, uses readily available starting materials, is operationally simple, and tolerates a wide range of functional groups.
Collapse
Affiliation(s)
| | - Alexander P Pulis
- School of Chemistry, University of Manchester, Oxford Rd, Manchester M13 9PL, UK.
| | - David J Procter
- School of Chemistry, University of Manchester, Oxford Rd, Manchester M13 9PL, UK.
| |
Collapse
|
18
|
Maleki A, Azadegan S. Preparation and characterization of silica-supported magnetic nanocatalyst and application in the synthesis of 2-amino-4H-chromene-3-carbonitrile derivatives. INORG NANO-MET CHEM 2017. [DOI: 10.1080/24701556.2016.1241266] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, Iran
| | - Sepide Azadegan
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, Iran
| |
Collapse
|
19
|
Erbium-Organic Framework as Heterogeneous Lewis Acid Catalysis for Hantzsch Coupling and Tetrahydro-4H-Chromene Synthesis. Catal Letters 2016. [DOI: 10.1007/s10562-016-1913-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
20
|
Elinson MN, Ryzhkov FV, Nasybullin RF, Vereshchagin AN, Egorov MP. Fast Efficient and General PASE Approach to Medicinally Relevant 4H,5H-Pyrano-[4,3-b]pyran-5-one and 4,6-Dihydro-5H-pyrano-[3,2-c]pyridine-5-one Scaffolds. Helv Chim Acta 2016. [DOI: 10.1002/hlca.201600150] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Michail N. Elinson
- N. D. Zelinsky Institute of Organic Chemistry; Leninsky Prospect 47 119991 Moscow Russia
| | - Fedor V. Ryzhkov
- N. D. Zelinsky Institute of Organic Chemistry; Leninsky Prospect 47 119991 Moscow Russia
| | - Ruslan F. Nasybullin
- N. D. Zelinsky Institute of Organic Chemistry; Leninsky Prospect 47 119991 Moscow Russia
| | | | - Mikhail P. Egorov
- N. D. Zelinsky Institute of Organic Chemistry; Leninsky Prospect 47 119991 Moscow Russia
| |
Collapse
|
21
|
Haym I, Huynh THV, Hansen SW, Pedersen MHF, Ruiz JA, Erichsen MN, Gynther M, Bjørn-Yoshimoto WE, Abrahamsen B, Bastlund JF, Bundgaard C, Eriksen AL, Jensen AA, Bunch L. Bioavailability Studies and in vitro Profiling of the Selective Excitatory Amino Acid Transporter Subtype 1 (EAAT1) Inhibitor UCPH-102. ChemMedChem 2016; 11:403-19. [PMID: 26797816 DOI: 10.1002/cmdc.201500527] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Revised: 12/14/2015] [Indexed: 02/03/2023]
Abstract
Although the selective excitatory amino acid transporter subtype 1 (EAAT1) inhibitor UCPH-101 has become a standard pharmacological tool compound for in vitro and ex vivo studies in the EAAT research field, its inability to penetrate the blood-brain barrier makes it unsuitable for in vivo studies. In the present study, per os (p.o.) administration (40 mg kg(-1) ) of the closely related analogue UCPH-102 in rats yielded respective plasma and brain concentrations of 10.5 and 6.67 μm after 1 h. Three analogue series were designed and synthesized to improve the bioavailability profile of UCPH-102, but none displayed substantially improved properties in this respect. In vitro profiling of UCPH-102 (10 μm) at 51 central nervous system targets in radioligand binding assays strongly suggests that the compound is completely selective for EAAT1. Finally, in a rodent locomotor model, p.o. administration of UCPH-102 (20 mg kg(-1) ) did not induce acute effects or any visible changes in behavior.
Collapse
Affiliation(s)
- Isabell Haym
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100, Copenhagen Ø, Denmark
| | - Tri H V Huynh
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100, Copenhagen Ø, Denmark
| | - Stinne W Hansen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100, Copenhagen Ø, Denmark
| | - Martin H F Pedersen
- Technical University of Denmark, Center for Nuclear Technologies, DTU Nutech/Hevesy Laboratory, Frederiksborgvej 399, Building 202, 4000, Roskilde, Denmark
| | - Josep A Ruiz
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100, Copenhagen Ø, Denmark
| | - Mette N Erichsen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100, Copenhagen Ø, Denmark
| | - Mikko Gynther
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Yliopistonranta 1C, 70211, Kuopio, Finland
| | - Walden E Bjørn-Yoshimoto
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100, Copenhagen Ø, Denmark
| | - Bjarke Abrahamsen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100, Copenhagen Ø, Denmark
| | | | | | - Anette L Eriksen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100, Copenhagen Ø, Denmark
| | - Anders A Jensen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100, Copenhagen Ø, Denmark
| | - Lennart Bunch
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100, Copenhagen Ø, Denmark.
| |
Collapse
|
22
|
Hansen SW, Erichsen MN, Huynh THV, Ruiz JA, Haym I, Bjørn-Yoshimoto WE, Abrahamsen B, Hansen J, Storgaard M, Eriksen AL, Jensen AA, Bunch L. New Insight into the Structure-Activity Relationships of the Selective Excitatory Amino Acid Transporter Subtype 1 (EAAT1) Inhibitors UCPH-101 and UCPH-102. ChemMedChem 2016; 11:382-402. [DOI: 10.1002/cmdc.201500525] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Indexed: 11/11/2022]
Affiliation(s)
- Stinne W. Hansen
- Department of Drug Design and Pharmacology; Faculty of Health and Medical Sciences; University of Copenhagen; 2100 Copenhagen Ø Denmark
| | - Mette N. Erichsen
- Department of Drug Design and Pharmacology; Faculty of Health and Medical Sciences; University of Copenhagen; 2100 Copenhagen Ø Denmark
| | - Tri H. V. Huynh
- Department of Drug Design and Pharmacology; Faculty of Health and Medical Sciences; University of Copenhagen; 2100 Copenhagen Ø Denmark
| | - Josep A. Ruiz
- Department of Drug Design and Pharmacology; Faculty of Health and Medical Sciences; University of Copenhagen; 2100 Copenhagen Ø Denmark
| | - Isabell Haym
- Department of Drug Design and Pharmacology; Faculty of Health and Medical Sciences; University of Copenhagen; 2100 Copenhagen Ø Denmark
| | - Walden E. Bjørn-Yoshimoto
- Department of Drug Design and Pharmacology; Faculty of Health and Medical Sciences; University of Copenhagen; 2100 Copenhagen Ø Denmark
| | - Bjarke Abrahamsen
- Department of Drug Design and Pharmacology; Faculty of Health and Medical Sciences; University of Copenhagen; 2100 Copenhagen Ø Denmark
| | - Jeanette Hansen
- Department of Drug Design and Pharmacology; Faculty of Health and Medical Sciences; University of Copenhagen; 2100 Copenhagen Ø Denmark
| | - Morten Storgaard
- Department of Drug Design and Pharmacology; Faculty of Health and Medical Sciences; University of Copenhagen; 2100 Copenhagen Ø Denmark
| | - Anette L. Eriksen
- Department of Drug Design and Pharmacology; Faculty of Health and Medical Sciences; University of Copenhagen; 2100 Copenhagen Ø Denmark
| | - Anders A. Jensen
- Department of Drug Design and Pharmacology; Faculty of Health and Medical Sciences; University of Copenhagen; 2100 Copenhagen Ø Denmark
| | - Lennart Bunch
- Department of Drug Design and Pharmacology; Faculty of Health and Medical Sciences; University of Copenhagen; 2100 Copenhagen Ø Denmark
| |
Collapse
|
23
|
Qiu G, Liu T, Ding Q. Tandem oxidative radical brominative addition of activated alkynes and spirocyclization: switchable synthesis of 3-bromocoumarins and 3-bromo spiro-[4,5] trienone. Org Chem Front 2016. [DOI: 10.1039/c6qo00041j] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A K2S2O8-mediated tandem radical brominative addition of alkynoates, oxidative spiro-cyclization, and 1,2-migration of esters is reported for the synthesis of 3-bromocoumarins with high efficiency.
Collapse
Affiliation(s)
- Guanyinsheng Qiu
- College of Biological
- Chemical Science and Engineering
- Jiaxing University
- Jiaxing 314001
- China
| | - Tong Liu
- College of Chemical and Engineering
- Jiangxi Normal University
- Nanchang 330013
- China
| | - Qiuping Ding
- College of Chemical and Engineering
- Jiangxi Normal University
- Nanchang 330013
- China
| |
Collapse
|
24
|
New coumarin-based fluorescent melatonin ligands. Design, synthesis and pharmacological characterization. Eur J Med Chem 2015; 103:370-3. [DOI: 10.1016/j.ejmech.2015.09.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 09/01/2015] [Accepted: 09/02/2015] [Indexed: 11/17/2022]
|
25
|
Zhang X, Huang P, Li Y, Duan C. A mild and fast continuous-flow trifluoromethylation of coumarins with the CF3 radical derived from CF3SO2Na and TBHP. Org Biomol Chem 2015; 13:10917-22. [PMID: 26372421 DOI: 10.1039/c5ob01516b] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A mild and fast Cu(I)-catalyzed trifluoromethylation of coumarins with CF3SO2Na and TBHP in a continuous-flow reactor has been developed. This method is experimentally simple and carried out under mild conditions, affording the corresponding products in moderate to good yields, and showing wide substrate tolerance. The scale-up flow process results in an isolated yield of 68% and a productivity of 305 mg h(-1) of 3-trifluoromethyl-7-diethylamino-4-methyl coumarin when the concentration was increased five-fold. Given these features and the widespread applications of coumarins, this method may find use from laboratory to manufacturing.
Collapse
Affiliation(s)
- Xiaodan Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China.
| | | | | | | |
Collapse
|
26
|
S. Saleh T, S. Al-Bogami A. Regioselective Synthesis of Pyrazoles and Pyrazolo[1,5-a]Pyrimidines: Structural Characterization by HMBC NMR. HETEROCYCLES 2015. [DOI: 10.3987/com-15-13267] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
27
|
Efficient tandem synthesis of a variety of pyran-annulated heterocycles, 3,4-disubstituted isoxazol-5(4H)-ones, and α,β-unsaturated nitriles catalyzed by potassium hydrogen phthalate in water. RESEARCH ON CHEMICAL INTERMEDIATES 2014. [DOI: 10.1007/s11164-014-1863-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
28
|
Kiyani H, Ghorbani F. Potassium phthalimide promoted green multicomponent tandem synthesis of 2-amino-4H-chromenes and 6-amino-4H-pyran-3-carboxylates. JOURNAL OF SAUDI CHEMICAL SOCIETY 2014. [DOI: 10.1016/j.jscs.2014.02.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
29
|
Das DK, Sarkar S, Khan M, Belal M, Khan AT. A mild and efficient method for large scale synthesis of 3-aminocoumarins and its further application for the preparation of 4-bromo-3-aminocoumarins. Tetrahedron Lett 2014. [DOI: 10.1016/j.tetlet.2014.07.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
30
|
Size-controlled crystalline basic nanoporous coordination polymers of Zn4O(H2N-TA)3: Catalytically study of IRMOF-3 as a suitable and green catalyst for selective synthesis of tetrahydro-chromenes. Inorganica Chim Acta 2014. [DOI: 10.1016/j.ica.2013.12.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
31
|
Huynh THV, Demmer CS, Abrahamsen B, Marcher E, Frykman M, Jensen AA, Bunch L. Structure-activity-relationship study of N-acyl-N-phenylpiperazines as potential inhibitors of the Excitatory Amino Acid Transporters (EAATs): improving the potency of a micromolar screening Hit is not truism. SPRINGERPLUS 2013; 2:112. [PMID: 25530930 PMCID: PMC4225009 DOI: 10.1186/2193-1801-2-112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 02/28/2013] [Indexed: 11/10/2022]
Abstract
Abstract
The excitatory amino acid transporters (EAATs) are transmembrane proteins responsible for the uptake of (S)-glutamate from the synaptic cleft. To date, five subtypes EAAT1-5 have been identified for which selective inhibitors have been discovered for EAAT1 and EAAT2. By screening of a commercially available compound library consisting of 4,000 compounds, N-acyl-N-phenylpiperazine analog (±)-
exo
-1 was identified to be a non-selective inhibitor at EAAT1-3 displaying IC50 values in the mid-micromolar range (10 μ M, 40 μ M and 30 μ M at EAAT1, 2 and 3, respectively). Subsequently, we designed and synthesized a series of analogs to explore the structure-activity-relationship of this scaffold in the search for analogs characterized by increased inhibitory potency and/or EAAT subtype selectivity. Despite extensive efforts, all analogs of (±)-
exo
-1 proved to be either inactive or to have least 3-fold lower inhibitory potency than the lead, and furthermore none of the active analogs displayed selectivity for a particular subtype amongst the EAAT1-3. On the basis of our findings, we speculate that (±)-
exo
-1 binds to a recess (deepening) on the EAAT proteins than a well-defined pocket.
Collapse
|
32
|
Rostamnia S, Nuri A, Xin H, Pourjavadi A, Hosseini SH. Water dispersed magnetic nanoparticles (H2O-DMNPs) of γ-Fe2O3 for multicomponent coupling reactions: a green, single-pot technique for the synthesis of tetrahydro-4H-chromenes and hexahydroquinoline carboxylates. Tetrahedron Lett 2013. [DOI: 10.1016/j.tetlet.2013.04.048] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
33
|
Allosteric modulation of an excitatory amino acid transporter: the subtype-selective inhibitor UCPH-101 exerts sustained inhibition of EAAT1 through an intramonomeric site in the trimerization domain. J Neurosci 2013; 33:1068-87. [PMID: 23325245 DOI: 10.1523/jneurosci.3396-12.2013] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In the present study, the mechanism of action and molecular basis for the activity of the first class of selective inhibitors of the human excitatory amino acid transporter subtype 1 (EAAT1) and its rodent ortholog GLAST are elucidated. The previously reported specificity of UCPH-101 and UCPH-102 for EAAT1 over EAAT2 and EAAT3 is demonstrated to extend to the EAAT4 and EAAT5 subtypes as well. Interestingly, brief exposure to UCPH-101 induces a long-lasting inactive state of EAAT1, whereas the inhibition exerted by closely related analogs is substantially more reversible in nature. In agreement with this, the kinetic properties of UCPH-101 unblocking of the transporter are considerably slower than those of UCPH-102. UCPH-101 exhibits noncompetitive inhibition of EAAT1, and its binding site in GLAST has been delineated in an elaborate mutagenesis study. Substitutions of several residues in TM3, TM4c, and TM7a of GLAST have detrimental effects on the inhibitory potency and/or efficacy of UCPH-101 while not affecting the pharmacological properties of (S)-glutamate or the competitive EAAT inhibitor TBOA significantly. Hence, UCPH-101 is proposed to target a predominantly hydrophobic crevice in the "trimerization domain" of the GLAST monomer, and the inhibitor is demonstrated to inhibit the uptake through the monomer that it binds to exclusively and not to affect substrate translocation through the other monomers in the GLAST trimer. The allosteric mode of UCPH-101 inhibition underlines the functional importance of the trimerization domain of the EAAT and demonstrates the feasibility of modulating transporter function through ligand binding to regions distant from its "transport domain."
Collapse
|
34
|
Molla A, Hossain E, Hussain S. Multicomponent domino reactions: borax catalyzed synthesis of highly functionalised pyran-annulated heterocycles. RSC Adv 2013. [DOI: 10.1039/c3ra43514h] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|