1
|
Yıldırım A, Atmaca U, Şahin E, Taslimi P, Taskin-Tok T, Çelik M, Gülçin İ. The synthesis, carbonic anhydrase and acetylcholinesterase inhibition effects of sulfonyl chloride moiety containing oxazolidinones using an intramolecular aza-Michael addition. J Biomol Struct Dyn 2025; 43:1052-1067. [PMID: 38100567 DOI: 10.1080/07391102.2023.2291163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/26/2023] [Indexed: 12/17/2023]
Abstract
Oxazolidinones are used as various potent antibiotics, in organisms it acts as a protein synthesis inhibitor, focusing on an initial stage that encompasses the tRNA binding process. Novel intramolecular aza-Michael reactions devoid of metal catalysts have been introduced in an oxazolidone synthesis pathway, different from α,β-unsaturated ketones. Oxazolidinone derivatives were tested against acetylcholinesterase (AChE), carbonic anhydrase I and II (hCA I and hCA II) enzymes. All the synthesized compounds had potent inhibition effects with Ki values in the range of 13.57 ± 0.98 - 53.60 ± 6.81 µM against hCA I and 9.96 ± 1.02 - 46.35 ± 3.83 µM against hCA II in comparison to the acetazolamide (AZA) (Ki = 50.46 ± 6.17 µM for hCA I) and for hCA II (Ki = 41.31 ± 5.05 µM). Also, most of the compounds demonstrated potent inhibition ability towards AChE enzyme with Ki values 78.67-231.75 nM and compared to tacrine (TAC) as standard clinical inhibitor (Ki = 142.48 nM). Furthermore, ADMET analysis and molecular docking were calculated using the AChE, hCA I and hCA II enzyme proteins to correlate the data with the experimental data. In this work, recent applications of a stereoselective aza-Michael reaction as an efficient tool for of nitrogen-containing heterocyclic scaffolds and their useful to pharmacology analogs are reviewed and summarized.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Alper Yıldırım
- Department of Chemistry, Faculty of Sciences, Atatürk University, Erzurum, Turkey
| | - Ufuk Atmaca
- Department of Chemistry, Faculty of Sciences, Atatürk University, Erzurum, Turkey
| | - Ertan Şahin
- Department of Chemistry, Faculty of Sciences, Atatürk University, Erzurum, Turkey
| | - Parham Taslimi
- Department of Biotechnology, Faculty of Sciences, Bartin University, Bartin, Turkey
| | - Tugba Taskin-Tok
- Faculty of Arts and Sciences, Department of Chemistry, Gaziantep University, Gaziantep, Turkey
- Department of Bioinformatics and Computational Biology, Institute of Health Sciences, Gaziantep University, Gaziantep, Turkey
| | - Murat Çelik
- Department of Chemistry, Faculty of Sciences, Atatürk University, Erzurum, Turkey
| | - İlhami Gülçin
- Department of Chemistry, Faculty of Sciences, Atatürk University, Erzurum, Turkey
| |
Collapse
|
2
|
Naeem N, Sadiq A, Othman GA, Yassin HM, Mughal EU. Exploring heterocyclic scaffolds in carbonic anhydrase inhibition: a decade of structural and therapeutic insights. RSC Adv 2024; 14:35769-35970. [PMID: 39534850 PMCID: PMC11555472 DOI: 10.1039/d4ra06290f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024] Open
Abstract
Heterocyclic compounds represent a prominent class of molecules with diverse pharmacological activities. Among their therapeutic applications, they have gained significant attention as carbonic anhydrase (CA) inhibitors, owing to their potential in the treatment of various diseases such as epilepsy, cancer and glaucoma. CA is a widely distributed zinc metalloenzyme that facilitates the reversible interconversion of carbon dioxide and bicarbonate. This reaction is essential for numerous physiological and pathological processes. In humans, CA exists in sixteen different isoforms, labeled hCA-I to hCA-XV, each distributed across various tissues and organs and involved in crucial physiological functions. Clinically utilized CA inhibitors, such as brinzolamide, dorzolamide and acetazolamide, exhibit poor selectivity, leading to undesirable side effects. A significant challenge in designing effective CA inhibitors is achieving balanced isoform selectivity, prompting the exploration of new chemotypes. This review compiles recent strategies employed by various researchers in developing CAIs across different structural classes, including pyrazoline, quinoline, imidazole, oxadiazole, pyrimidine, coumarin, chalcone, rhodanine, phthalazine, triazole, isatin, and indole. Additionally, the review summarizes structure-activity relationship (SAR) analyses, isoform selectivity evaluations, along with mechanistic and in silico investigations. Insights derived from SAR studies provide crucial directions for the rational design of next-generation heterocyclic CA inhibitors, with improved therapeutic efficacy and reduced side effects. To the best of our knowledge, for the first time, we have comprehensively summarized all known isoforms of CA in relation to various heterocyclic motifs. This review examines the use of different heterocycles as CA inhibitors, drawing on research published over the past 11 years. It offers a valuable resource for early-career researchers, encouraging further exploration of synthetic heterocycles in the development of CA inhibitors.
Collapse
Affiliation(s)
- Nafeesa Naeem
- Department of Chemistry, University of Gujrat Gujrat 50700 Pakistan
| | - Amina Sadiq
- Department of Chemistry, Govt. College Women University Sialkot 51300 Pakistan
| | - Gehan Ahmed Othman
- Biology Department, College of Science, King Khalid University Abha 61421 Saudi Arabia
| | - Habab M Yassin
- Biology Department, College of Science, King Khalid University Abha 61421 Saudi Arabia
| | | |
Collapse
|
3
|
Parkkinen J, Bhowmik R, Tolvanen M, Carta F, Supuran CT, Parkkila S, Aspatwar A. Mycobacterial β-carbonic anhydrases: Molecular biology, role in the pathogenesis of tuberculosis and inhibition studies. Enzymes 2024; 55:343-381. [PMID: 39222997 DOI: 10.1016/bs.enz.2024.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Mycobacterium tuberculosis (Mtb), which causes tuberculosis (TB), is still a major global health problem. According to the World Health Organization (WHO), TB still causes more deaths worldwide than any other infectious agent. Drug-sensitive TB is treatable using first-line drugs; treatment of multidrug-resistant (MDR) and extensively drug-resistant (XDR) TB requires second- and third-line drugs. However, due to the long duration of treatment, the noncompliance of patients with different levels of resistance of Mtb to these drugs has worsened the situation. Previously developed anti-TB drugs targeted the replication machinery, protein synthesis, and cell wall biosynthesis pathways of Mtb. Therefore, novel drugs targeting alternate pathways crucial for the survival and pathogenesis of Mtb in the human host are needed. The genome of Mtb encodes three β-carbonic anhydrases (CAs) that are fundamental for pH homeostasis, hypoxia, survival, and pathogenesis. Recently, several studies have shown that the β-CAs of Mtb could be inhibited both in vitro and in vivo using small chemical molecules, suggesting that these enzymes could be novel targets for developing anti-TB compounds that are devoid of resistance by Mtb. In addition, homologs of β-CAs are absent in humans; therefore, drugs developed to target these enzymes might have minimal off-target effects. In this work, we describe the roles of β-CAs in Mtb and discuss bioinformatics and cheminformatics tools used in development and discovery of novel inhibitors of these enzymes. In addition, we summarize the in vitro and in vivo studies demonstrating that the β-CAs of Mtb are indeed druggable targets.
Collapse
Affiliation(s)
- Jenny Parkkinen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Ratul Bhowmik
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | | | - Fabrizio Carta
- Neurofarba Department, Sezione di Chimica Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Firenze, Italy
| | - Claudiu T Supuran
- Neurofarba Department, Sezione di Chimica Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Firenze, Italy
| | - Seppo Parkkila
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland; Fimlab Ltd. and Tampere University Hospital, Tampere, Finland
| | - Ashok Aspatwar
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.
| |
Collapse
|
4
|
Abdoli M, Bonardi A, Paoletti N, Aspatwar A, Parkkila S, Gratteri P, Supuran CT, Žalubovskis R. Inhibition Studies on Human and Mycobacterial Carbonic Anhydrases with N-((4-Sulfamoylphenyl)carbamothioyl) Amides. Molecules 2023; 28:molecules28104020. [PMID: 37241761 DOI: 10.3390/molecules28104020] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/25/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
A library of structurally diverse N-((4-sulfamoylphenyl)carbamothioyl) amides was synthesized by selective acylation of easily accessible 4-thioureidobenzenesulfonamide with various aliphatic, benzylic, vinylic and aromatic acyl chlorides under mild conditions. Inhibition of three α-class cytosolic human (h) carbonic anhydrases (CAs) (EC 4.2.1.1); that is, hCA I, hCA II and hCA VII and three bacterial β-CAs from Mycobacterium tuberculosis (MtCA1-MtCA3) with these sulfonamides was thereafter investigated in vitro and in silico. Many of the evaluated compounds displayed better inhibition against hCA I (KI = 13.3-87.6 nM), hCA II (KI = 5.3-384.3 nM), and hCA VII (KI = 1.1-13.5 nM) compared with acetazolamide (AAZ) as the control drug (KI values of 250, 12.5 and 2.5 nM, respectively, against hCA I, hCA II and hCA VII). The mycobacterial enzymes MtCA1 and MtCA2 were also effectively inhibited by these compounds. MtCA3 was, on the other hand, poorly inhibited by the sulfonamides reported here. The most sensitive mycobacterial enzyme to these inhibitors was MtCA2 in which 10 of the 12 evaluated compounds showed KIs (KI, the inhibitor constant) in the low nanomolar range.
Collapse
Affiliation(s)
- Morteza Abdoli
- Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, LV-1048 Riga, Latvia
| | - Alessandro Bonardi
- Neurofarba Department, Universitàdegli Studi di Firenze, 50019 Florence, Italy
- Laboratory of Molecular Modeling Cheminformatics & QSAR, Neurofarba Department, Università degli Studi di Firenze, 50019 Florence, Italy
| | - Niccolò Paoletti
- Neurofarba Department, Universitàdegli Studi di Firenze, 50019 Florence, Italy
- Laboratory of Molecular Modeling Cheminformatics & QSAR, Neurofarba Department, Università degli Studi di Firenze, 50019 Florence, Italy
| | - Ashok Aspatwar
- Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland
| | - Seppo Parkkila
- Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland
- Fimlab Ltd., Tampere University Hospital, 33520 Tampere, Finland
| | - Paola Gratteri
- Laboratory of Molecular Modeling Cheminformatics & QSAR, Neurofarba Department, Università degli Studi di Firenze, 50019 Florence, Italy
| | - Claudiu T Supuran
- Neurofarba Department, Universitàdegli Studi di Firenze, 50019 Florence, Italy
| | - Raivis Žalubovskis
- Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, LV-1048 Riga, Latvia
- Latvian Institute of Organic Synthesis, LV-1006 Riga, Latvia
| |
Collapse
|
5
|
Atmaca U, Saglamtas R, Sert Y, Çelik M, Gülçin İ. Metal‐Free Synthesis via Intramolecular Cyclization, Enzyme Inhibition Properties and Molecular Docking of Novel Isoindolinones. ChemistrySelect 2023. [DOI: 10.1002/slct.202204578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Affiliation(s)
- Ufuk Atmaca
- Oltu Vocational Collage Atatürk University 25400- Oltu-Erzurum Turkey
- Department of Chemistry Faculty of Science Atatürk University 25240- Erzurum Turkey
| | - Ruya Saglamtas
- Department of Medical Services and Technology Vocational School of Health Services Agri Ibrahim Cecen University 04100- Agri Turkey
| | - Yusuf Sert
- Sorgun Vocational School & Department of Physics Yozgat Bozok University 47800- Yozgat Turkey
| | - Murat Çelik
- Department of Chemistry Faculty of Science Atatürk University 25240- Erzurum Turkey
| | - İlhami Gülçin
- Department of Chemistry Faculty of Science Atatürk University 25240- Erzurum Turkey
| |
Collapse
|
6
|
Karaca EÖ, Bingöl Z, Gürbüz N, Özdemir İ, Gülçin İ. Vinyl functionalized 5,6-dimethylbenzimidazolium salts: Synthesis and biological activities. J Biochem Mol Toxicol 2023; 37:e23255. [PMID: 36424355 DOI: 10.1002/jbt.23255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 09/23/2022] [Accepted: 11/15/2022] [Indexed: 11/27/2022]
Abstract
A series of vinyl functionalized 5,6-dimethylbenzimidazolium salts are synthesized. All compounds were fully characterized by elemental analyses, MS, 1 H-NMR, 13 C-NMR, and IR spectroscopy techniques. Enzyme inhibition is a very active area of research in drug design and development. In this study, the synthesized novel benzimidazolium salts were evaluated toward the human erythrocyte carbonic anhydrase I (hCA I), and II (hCA II) isoenzymes, acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes. They demonstrated highly potent inhibition ability against hCA I with Ki values of 484.8 ± 62.6-1389.7 ± 243.2 nM, hCA II with Ki values of 298.9 ± 55.7-926.1 ± 330.0 nM, α-glycosidase with Ki values of 170.3 ± 27-760.1 ± 269 μM, AChE with Ki values of 27.1 ± 3-77.6 ± 1.7 nM, and BChE with Ki values of 21.0 ± 5-61.3 ± 15 nM. As a result, novel vinyl functionalized 5,6-dimethylbenzimidazolium salts (1a-g) exhibited effective inhibition profiles toward studied metabolic enzymes. Therefore, we believe that these results may contribute to the development of new drugs particularly to treat some global disorders including glaucoma, Alzheimer's disease, and diabetes.
Collapse
Affiliation(s)
- Emine Ö Karaca
- Catalysis Research and Application Center, İnönü University, Malatya, Turkey.,Drug Application and Research Center, İnönü University, Malatya, Turkey
| | - Zeynebe Bingöl
- Tokat Vocational School of Health Services, Department of Medical Services and Techniques, Gaziosmanpasa University, Tokat, Turkey
| | - Nevin Gürbüz
- Catalysis Research and Application Center, İnönü University, Malatya, Turkey.,Drug Application and Research Center, İnönü University, Malatya, Turkey.,Department of Chemistry, Faculty of Science and Art, İnönü University, Malatya, Turkey
| | - İsmail Özdemir
- Catalysis Research and Application Center, İnönü University, Malatya, Turkey.,Drug Application and Research Center, İnönü University, Malatya, Turkey.,Department of Chemistry, Faculty of Science and Art, İnönü University, Malatya, Turkey
| | - İlhami Gülçin
- Department of Chemistry, Faculty of Sciences, Ataturk University, Erzurum, Turkey
| |
Collapse
|
7
|
Anil DA, Polat MF, Saglamtas R, Tarikogullari AH, Alagoz MA, Gulcin I, Algul O, Burmaoglu S. Exploring enzyme inhibition profiles of novel halogenated chalcone derivatives on some metabolic enzymes: Synthesis, characterization and molecular modeling studies. Comput Biol Chem 2022; 100:107748. [DOI: 10.1016/j.compbiolchem.2022.107748] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 07/19/2022] [Accepted: 07/26/2022] [Indexed: 12/27/2022]
|
8
|
Şahin İ, Bingöl Z, Onur S, Güngör SA, Köse M, Gülçin İ, Tümer F. Enzyme Inhibition Properties and Molecular Docking Studies of 4-Sulfonate Containing Aryl α-Hydroxyphosphonates Based Hybrid Molecules. Chem Biodivers 2022; 19:e202100787. [PMID: 35315972 DOI: 10.1002/cbdv.202100787] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 03/18/2022] [Indexed: 11/10/2022]
Abstract
In this study, a series of new hybrid molecules containing two important functional groups on the same skeleton were designed. 4-Hydroxybenzaldehyde and its two different derivatives were converted into their respective sulphonates by interacting with tosylchloride and methanesulfonyl chloride. Then, the desired molecules were synthesized by adding diethoxyphosphonate to the aldehyde group. Also, novel synthesis of hybrid compounds (4a-c and 5a-c) were tested toward some metabolic enzymes like carbonic anhydrase I and II isoenzymes (hCA I and hCA II) and acetylcholinesterase (AChE) enzyme. The synthesis of hybrid compounds (4a-c and 5a-c) showed Ki values of in range of 25.084±4.73-69.853±15.19 nM against hCA I, 32.325±1.67-82.761±22.73 nM against hCA II and 1.699±0.25 and 3.500±0.91 nM against AChE. For these compounds, compound 4c showed maximum inhibition effect against hCA I and hCA II isoenzymes and compound 5b showed maximum inhibition effect against AChE enzyme. By performing docking studies of the most active compounds for their binding modes and interactions were determined.
Collapse
Affiliation(s)
- İrfan Şahin
- Department of Chemistry, Faculty of Sciences and Arts, Kahramanmaras Sutcu Imam University, TR, 46100, Kahramanmaras, Turkey
| | - Zeynebe Bingöl
- Department of Chemistry, Faculty of Sciences, Ataturk University, 25240-Erzurum, Turkey
| | - Sultan Onur
- Department of Chemistry, Faculty of Sciences and Arts, Kahramanmaras Sutcu Imam University, TR, 46100, Kahramanmaras, Turkey
| | - Seyit Ali Güngör
- Department of Chemistry, Faculty of Sciences and Arts, Kahramanmaras Sutcu Imam University, TR, 46100, Kahramanmaras, Turkey
| | - Muhammet Köse
- Department of Chemistry, Faculty of Sciences and Arts, Kahramanmaras Sutcu Imam University, TR, 46100, Kahramanmaras, Turkey
| | - İlhami Gülçin
- Department of Chemistry, Faculty of Sciences, Ataturk University, 25240-Erzurum, Turkey
| | - Ferhan Tümer
- Department of Chemistry, Faculty of Sciences and Arts, Kahramanmaras Sutcu Imam University, TR, 46100, Kahramanmaras, Turkey
| |
Collapse
|
9
|
Novel hypervalent iodine catalyzed synthesis of α-sulfonoxy ketones: Biological activity and molecular docking studies. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130492] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
10
|
Topal F, Aksu K, Gulcin I, Tümer F, Goksu S. Inhibition Profiles of Some Symmetric Sulfamides Derived from Phenethylamines on Human Carbonic Anhydrase I, and II Isoenzymes. Chem Biodivers 2021; 18:e2100422. [PMID: 34387019 DOI: 10.1002/cbdv.202100422] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 08/12/2021] [Indexed: 12/21/2022]
Abstract
In this work, the inhibitory effect of some symmetric sulfamides derived from phenethylamines were determined against human carbonic anhydrase (hCA) I, and II isoenzymes, and compared with standard compound acetazolamide. IC50 values were obtained from the Enzyme activity (%)-[Symmetric sulfamides] graphs. Also, Ki values were calculated from the Lineweaver-Burk graphs. Some symmetric sulfamides compounds (11-18) demonstrated excellent inhibition effects against hCA I, and II isoenzymes. These compounds demonstrated effective inhibitory profiles with IC50 values in ranging from 21.66-28.88 nM against hCA I, 14.44-30.13 nM against hCA II. Among these compounds, the best Ki value for hCA I (Ki : 8.34±1.60 nM) and hCA II (Ki : 16.40±1.00 nM) is compound number 11. Besides, the IC50 value of acetazolamide used as a standard was determined as hCA I, hCA II 57.75 nM, 49.50 nM, respectively. Moreover, in silico ADME-Tox study showed that all synthesized compounds (11-18) had good oral bioavailability in light of Jorgensen's rule of three, and of Lipinski's rule of five.
Collapse
Affiliation(s)
- Fevzi Topal
- Department of Chemical and Chemical Processing Technologies, Gümüşhane Vocational School, Gümüşhane University, Gümüşhane, 29100, Turkey
| | - Kadir Aksu
- Department of Chemistry, Faculty of Sciences and Arts, Ordu University, Ordu, 52200, Turkey
| | - Ilhami Gulcin
- Department of Chemistry, Faculty of Sciences, Atatürk University, Erzurum, 25240, Turkey
| | - Ferhan Tümer
- Department of Chemistry, Faculty of Sciences and Arts, Sütçü İmam University, Kahramanmaraş, 46100, Turkey
| | - Süleyman Goksu
- Department of Chemistry, Faculty of Sciences, Atatürk University, Erzurum, 25240, Turkey
| |
Collapse
|
11
|
BiLGiNER S, ANIL B, KOCA M, DEMİR Y, GÜLÇİN İ. Novel Mannich bases with strong carbonic anhydrases and acetylcholinesterase inhibition effects: 3-(aminomethyl)-6-{3-[4-(trifluoromethyl)phenyl]acryloyl}-2(3H)-benzoxazolones. Turk J Chem 2021; 45:805-818. [PMID: 34385868 PMCID: PMC8326492 DOI: 10.3906/kim-2101-25] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/22/2021] [Indexed: 12/18/2022] Open
Abstract
In this study, a new series of Mannich bases, 3-(aminomethyl)-6-{3-[4-(trifluoromethyl)phenyl]acryloyl}-2( 3H )-benzoxazolones ( 1a-g ), were synthesized by the Mannich reaction. Inhibitory effects of the newly synthesized compounds towards carbonic anhydrases (CAs) and acetylcholinesterase (AChE) enzymes were evaluated to find out new potential drug candidate compounds. According to the inhibitory activity results, Ki values of the compounds 1 and 1a-g were in the range of 12.3 ± 1.2 to 154.0 ± 9.3 nM against hCA I, and they were in the range of 8.6 ± 1.9 to 41.0 ± 5.5 nM against hCA II. Ki values of acetazolamide (AZA) that was used as a reference compound were 84.4 ± 8.4 nM towards hCA I and 59.2 ± 4.8 nM towards hCA II. Ki values of the compounds 1 and 1a-g were in the range of 35.2 ± 2.0 to 158.9 ± 33.5 nM towards AChE. Ki value of Tacrine (TAC), the reference compound, was 68.6 ± 3.8 nM towards AChE. Furthermore, docking studies were done with the most potent compounds 1d , 1g , and 1f (in terms of hCA I, hCA II, and AChE inhibition effects, respectively) to determine the binding profiles of the series with these enzymes. Additionally, the prediction of ADME profiles of the compounds pointed out that the newly synthesized compounds had desirable physicochemical properties as lead compounds for further studies.
Collapse
Affiliation(s)
- Sinan BiLGiNER
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Atatürk University, ErzurumTurkey
| | - Barış ANIL
- Department of Chemistry, Faculty of Science, Atatürk University, ErzurumTurkey
| | - Mehmet KOCA
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Atatürk University, ErzurumTurkey
| | - Yeliz DEMİR
- Nihat Delibalta Göle Vocational High School, Ardahan University, ArdahanTurkey
| | - İlhami GÜLÇİN
- Department of Chemistry, Faculty of Science, Atatürk University, ErzurumTurkey
| |
Collapse
|
12
|
Tuğrak M, Gül Hİ, Sakagami H, Kaya R, Gülçin İ. Synthesis and biological evaluation of new pyrazolebenzene-sulphonamides as potential anticancer agents and hCA I and II inhibitors. Turk J Chem 2021; 45:528-539. [PMID: 34385849 PMCID: PMC8326471 DOI: 10.3906/kim-2009-37] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/12/2020] [Indexed: 12/17/2022] Open
Abstract
Cancer is a disease characterized by the continuous growth of cells without adherence to the rules that healthy normal cells obey. Carbonic anhydrase I and II (CA I and CA II) inhibitors are used for the treatment of some diseases. The available drugs in the market have limitations or side effects, which bring about the need to develop new drug candidate compound(s) to overcome the problems at issue. In this study, new pyrazole-sulphonamide hybrid compounds 4-[5-(1,3-benzodioxol-5-yl)-3-aryl-4,5-dihydro-1
H
-pyrazol-1-yl]benzenesulphonamides (4a - 4j) were designed to discover new drug candidate compounds. The compounds 4a - 4j were synthesized and their chemical structures were confirmed using spectral techniques. The hypothesis tested was whether an introduction of methoxy and polymethoxy group(s) lead to an increased potency selectivity expression (PSE) value of the compound, which reflects cytotoxicity and selectivity of the compounds. The cytotoxicity of the compounds towards tumor cell lines were in the range of 6.7 – 400 µM. The compounds 4i (PSE2 = 461.5) and 4g (PSE1 = 193.2) had the highest PSE values in cytotoxicity assays. Ki values of the compounds were in the range of 59.8 ± 3.0 - 12.7 ± 1.7 nM towards hCA I and in the range of 24.1 ± 7.1 - 6.9 ± 1.5 nM towards hCA II. While the compounds 4b, 4f, 4g, and 4i showed promising cytotoxic effects, the compounds 4c and 4g had the inhibitory potency towards hCA I and hCA II, respectively. These compounds can be considered as lead compounds for further research.
Collapse
Affiliation(s)
- Mehtap Tuğrak
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Atatürk University, Erzurum Turkey
| | - Halise İnci Gül
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Atatürk University, Erzurum Turkey
| | - Hiroshi Sakagami
- Division of Pharmacology, Meikai University School of Dentistry, Sakado, Saitama Japan
| | - Rüya Kaya
- Department of Chemistry, Faculty of Science, Atatürk University, Erzurum Turkey.,Central Research and Application Laboratory, Ağrı İbrahim Çeçen University, Ağrı Turkey
| | - İlhami Gülçin
- Department of Chemistry, Faculty of Science, Atatürk University, Erzurum Turkey
| |
Collapse
|
13
|
Supuran CT, Capasso C. A Highlight on the Inhibition of Fungal Carbonic Anhydrases as Drug Targets for the Antifungal Armamentarium. Int J Mol Sci 2021; 22:4324. [PMID: 33919261 PMCID: PMC8122340 DOI: 10.3390/ijms22094324] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 04/19/2021] [Accepted: 04/19/2021] [Indexed: 12/24/2022] Open
Abstract
Carbon dioxide (CO2), a vital molecule of the carbon cycle, is a critical component in living organisms' metabolism, performing functions that lead to the building of compounds fundamental for the life cycle. In all living organisms, the CO2/bicarbonate (HCO3-) balancing is governed by a superfamily of enzymes, known as carbonic anhydrases (CAs, EC 4.2.1.1). CAs catalyze the pivotal physiological reaction, consisting of the reversible hydration of the CO2 to HCO3- and protons. Opportunistic and pathogenic fungi can sense the environmental CO2 levels, which influence their virulence or environmental subsistence traits. The fungal CO2-sensing is directly stimulated by HCO3- produced in a CA-dependent manner, which directly activates adenylyl cyclase (AC) involved in the fungal spore formation. The interference with CA activity may impair fungal growth and virulence, making this approach interesting for designing antifungal drugs with a novel mechanism of action: the inhibition of CAs linked to the CO2/HCO3-/pH chemosensing and signaling. This review reports that sulfonamides and their bioisosteres as well as inorganic anions can inhibit in vitro the β- and α-CAs from the fungi, suggesting how CAs may be considered as a novel "pathogen protein" target of many opportunistic, pathogenic fungi.
Collapse
Affiliation(s)
- Claudiu T. Supuran
- Section of Pharmaceutical and Nutraceutical Sciences, Department of Neurofarba, University of Florence, Via U. Schiff 6, Sesto Fiorentino, 50019 Florence, Italy
| | - Clemente Capasso
- Institute of Biosciences and Bioresources, CNR, Via Pietro Castellino 111, 80131 Napoli, Italy
| |
Collapse
|
14
|
Tugrak M, Gul HI, Akincioglu H, Gulcin I. New Chalcone Derivatives with Pyrazole and Sulfonamide Pharmacophores as Carbonic Anhydrase Inhibitors. LETT DRUG DES DISCOV 2021. [DOI: 10.2174/1570180817999201001160414] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background:
Compound containing sulfonamide, pyrazole and chalcone groups are
important in medicinal chemistry. They have a wide range of biological activities, including carbonic
anhydrase (CA) inhibitory activities.
Introduction:
Carbonic anhydrase I and II inhibitors are used for the treatment of diseases, such as
retinal and cerebral edema (CA I), epilepsy, and glaucoma (CA II). However, the currently available
drugs have some limitations or side effects. Thus, there is a need for new drug candidates to
overcome these issues. In this study, a series of compounds, (E)-4-(4-(3-aryl)-3-oxoprop-1-en-1-yl)-
3-phenyl-1H-pyrazol-1-yl) benzenesulfonamides MS4-MS10, were designed to discover new CA
inhibitors using a hybrid approach.
Methods:
Compounds MS4-MS10 were synthesized as shown in Scheme 1, and their chemical
structures were confirmed by 1H NMR, 13C NMR, and HRMS spectra. The CAs (E.C.4.2.1.1) inhibitory
effects of MS4-MS10 were tested on the hCA I and II isoenzymes using previously reported
procedures.
Results:
The CA inhibitors MS4–MS10 gave IC50 values (nM) of 27.8–87.3 towards hCA I and
24.4–54.8 towards hCA II while the IC50 values for reference drug acetazolamide were 384.2 (hCA I)
and 36.9 (hCA II). MS7 and MS9 exhibited 13.8 (hCA I) and 1.5 (hCA II) times more potent CA
inhibition than the reference compound acetazolamide, respectively.
Conclusion:
MS7 (Ar: 2,4,5-trimethoxy phenyl) and MS9 (Ar: 3,4-dimethoxy phenyl) were the
most promising compounds of our series with the lowest IC50 values towards hCA I and hCA II,
respectively, and can be considered for further studies.
Collapse
Affiliation(s)
- Mehtap Tugrak
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ataturk University, Erzurum, Turkey
| | - Halise Inci Gul
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ataturk University, Erzurum, Turkey
| | - Hulya Akincioglu
- Department of Chemistry, Faculty of Sciences and Arts, Agri Ibrahim Cecen University, Agri, Turkey
| | - Ilhami Gulcin
- Department of Chemistry, Faculty of Science, Ataturk University, Erzurum, Turkey
| |
Collapse
|
15
|
Burmaoglu S, Yilmaz AO, Polat MF, Kaya R, Gulcin İ, Algul O. Synthesis of novel tris-chalcones and determination of their inhibition profiles against some metabolic enzymes. Arch Physiol Biochem 2021; 127:153-161. [PMID: 31172840 DOI: 10.1080/13813455.2019.1623265] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
In this study, we report the synthesis of novel tris-chalcones and testing of human carbonic anhydrase I, and II isoenzymes (hCA I, and hCA II), acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and α-glycosidase (α-Gly) inhibitors for the development of novel chalcone structures towards for treatment of some diseases. The compounds demonstrated Ki values between 13.6 ± 1.1 and 50.0 ± 17.1 nM on hCA I, 9.9 ± 0.8 and 39.5 ± 15.1 nM on hCA II, 3.1 ± 0.2 and 20.1 ± 1.9 nM on AChE, 4.9 ± 0.4 and 14.7 ± 5.2 nM on BChE and 3.9 ± 0.2 and 22.4 ± 10.7 nM on α-Gly enzymes. The results revealed that novel tris-chalcones can have promising drug potential for glaucoma, leukaemia, epilepsy; Alzheimer's disease that was associated with the high enzymatic activity of hCA I, hCA II, AChE, and BChE enzymes.
Collapse
Affiliation(s)
- Serdar Burmaoglu
- Tercan Vocational High School, Erzincan Binali Yildirim University, Erzincan, Turkey
- Department of Chemistry, Faculty of Science, Atatürk University, Erzurum, Turkey
| | - Ali Osman Yilmaz
- Department of Chemistry, Faculty of Science, Atatürk University, Erzurum, Turkey
| | - M Fatih Polat
- Department of Pharmaceutical Basic Sciences, Faculty of Pharmacy, Erzincan Binali Yildirim University, Erzincan, Turkey
| | - Rüya Kaya
- Central Research and Application Laboratory, Agri Ibrahim Cecen University, Agri, Turkey
| | - İlhami Gulcin
- Department of Chemistry, Faculty of Science, Atatürk University, Erzurum, Turkey
| | - Oztekin Algul
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Mersin University, Mersin, Turkey
| |
Collapse
|
16
|
Cakmak EB, Zengin Kurt B, Ozturk Civelek D, Angeli A, Akdemir A, Sonmez F, Supuran CT, Kucukislamoglu M. Quinoline-sulfamoyl carbamates/sulfamide derivatives: Synthesis, cytotoxicity, carbonic anhydrase activity, and molecular modelling studies. Bioorg Chem 2021; 110:104778. [PMID: 33684713 DOI: 10.1016/j.bioorg.2021.104778] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/15/2021] [Accepted: 02/21/2021] [Indexed: 12/14/2022]
Abstract
Carbonic anhydrase (CA) IX, and XII isoforms are known to be highly expressed in various human tissues and malignancies. CA IX is a prominent target for some cancers because it is overexpressed in hypoxic tumors and this overexpression leads to poor prognosis. Novel twenty-seven compounds in two series (sulfamoylcarbamate-based quinoline (2a-2o) and sulfamide-based quinoline (3a-3l)) were synthesized and characterized by means of IR, NMR, and mass spectra. Their inhibitory activities were evaluated against CA I, CA II, CA IX, and CA XII isoforms. 2-Phenylpropyl (N-(quinolin-8-yl)sulfamoyl)carbamate (2m) exhibited the highest hCA IX inhibition with the Ki of 0.5 µM. In addition, cytotoxic effects of the synthesized compounds on human colorectal adenocarcinoma (HT-29; HTB-38), human breast adenocarcinoma (MCF7; HTB-22), human prostate adenocarcinoma (PC3; CRL-1435) and human healthy skin fibroblast (CCD-986Sk; CRL-1947) cell lines were examined. The cytotoxicity results showed that 2j, 3a, 3e, 3f are most active compounds in all cell lines (HT-29, MCF7, PC3, and CCD-986Sk).
Collapse
Affiliation(s)
- Elmas Begum Cakmak
- Sakarya University, Institute of Natural Sciences, 54050 Sakarya, Turkey
| | - Belma Zengin Kurt
- Bezmialem Vakif University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, 34093 Istanbul, Turkey.
| | - Dilek Ozturk Civelek
- Bezmialem Vakif University, Faculty of Pharmacy, Department of Pharmacology, 34093 Istanbul, Turkey
| | - Andrea Angeli
- Università degli Studi di Firenze, Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Via U. Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Atilla Akdemir
- Bezmialem Vakif University, Faculty of Pharmacy, Department of Pharmacology, Computer-aided Drug Discovery Laboratory, 34093 Istanbul, Turkey
| | - Fatih Sonmez
- Sakarya University of Applied Sciences, Pamukova Vocational School, 54055 Sakarya, Turkey
| | - Claudiu T Supuran
- Università degli Studi di Firenze, Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Via U. Schiff 6, 50019 Sesto Fiorentino, Florence, Italy.
| | - Mustafa Kucukislamoglu
- Sakarya University, Faculty of Arts and Science, Department of Chemistry, 54050 Sakarya, Turkey
| |
Collapse
|
17
|
Akıncıoğlu H, Gülçin İ. Potent Acetylcholinesterase Inhibitors: Potential Drugs for Alzheimer's Disease. Mini Rev Med Chem 2020; 20:703-715. [PMID: 31902355 DOI: 10.2174/1389557520666200103100521] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 10/30/2018] [Accepted: 10/19/2019] [Indexed: 02/05/2023]
Abstract
Alzheimer's disease (AD) is one of the cognitive or memory-related impairments occurring with advancing age. Since its exact mechanism is not known, the full therapy has still not been found. Acetylcholinesterase (AChE) has been reported to be a viable therapeutic target for the treatment of AD and other dementias. To this end, acetylcholinesterase inhibitors (AChEIs) are commonly used. AChE is a member of the hydrolase enzyme family. A hydrolase is an enzyme that catalyzes the hydrolysis of a chemical bond. AChE is useful for the development of novel and mechanism-based inhibitors. It has a role in the breakdown of acetylcholine (ACh) neurotransmitters, such as acetylcholinemediated neurotransmission. AChEIs are the most effective approaches to treat AD. AChE hydrolyzes ACh to acetate and choline, as an important neurotransmitter substance. Recently, Gülçin and his group explored new AChEIs. The most suggested mechanism for AD is the deficiency of ACh, which is an important neurotransmitter. In this regard, AChEIs are commonly used for the symptomatic treatment of AD. They act in different ways, such as by inhibiting AChE, protecting cells from free radical toxicity and β-amyloid-induced injury or inhibiting the release of cytokines from microglia and monocytes. This review focuses on the role of AChEIs in AD using commonly available drugs. Also, the aim of this review is to research and discuss the role of AChEIs in AD using commonly available drugs. Therefore, in our review, related topics like AD and AChEIs are highlighted. Also, the latest work related to AChEIs is compiled. In recent research studies, novel natural and synthetic AChEIs, used for AD, are quite noteworthy. These studies can be very promising in detecting potent drugs against AD.
Collapse
Affiliation(s)
- Hulya Akıncıoğlu
- Faculty of Science and Arts, Agri Ibrahim Cecen University, 04100-Agri, Turkey
| | - İlhami Gülçin
- Department of Chemistry, Faculty of Science, Ataturk University, 25240-Erzurum, Turkey
| |
Collapse
|
18
|
Bilginer S, Gul HI, Anil B, Demir Y, Gulcin I. Synthesis and in silico studies of triazene-substituted sulfamerazine derivatives as acetylcholinesterase and carbonic anhydrases inhibitors. Arch Pharm (Weinheim) 2020; 354:e2000243. [PMID: 32984993 DOI: 10.1002/ardp.202000243] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/27/2020] [Accepted: 09/01/2020] [Indexed: 01/06/2023]
Abstract
A novel series of sulfonamides, 4-(3-phenyltriaz-1-en-1-yl)-N-(4-methyl-2-pyrimidinyl)benzenesulfonamides (1-9), was designed and synthesized by the diazo reaction between sulfamerazine and substituted aromatic amines for the first time. Their chemical structures were characterized by 1 H nuclear magnetic resonance (NMR), 13 C NMR, and high-resolution mass spectra. The newly synthesized compounds were evaluated in terms of acetylcholineasterase (AChE) and human carbonic anhydrases (hCA) I and II isoenzymes inhibitory activities. According to the AChE inhibition results, the Ki values of the compounds 1-9 were in the range of 19.9 ± 1.5 to 96.5 ± 20.7 nM against AChE. Tacrine was used as the reference drug and its Ki value was 49.2 ± 2.7 nM against AChE. The Ki values of the compounds 1-9 were in the range of 10.2 ± 2.6 to 101.4 ± 27.8 nM against hCA I, whereas they were 18.3 ± 4.4 to 48.1 ± 4.5 nM against hCA II. Acetazolamide was used as a reference drug and its Ki values were 72.2 ± 5.4 and 52.2 ± 5.7 nM against hCA I and hCA II, respectively. The most active compounds, 1 (nonsubstituted) against AChE, 5 (4-ethoxy-substituted) against hCA I, and 8 (4-bromo-substituted) against hCA II, were chosen and docked at the binding sites of these enzymes to explain the inhibitory activities of the series. The newly synthesized compounds presented satisfactory pharmacokinetic properties via the estimation of ADME properties.
Collapse
Affiliation(s)
- Sinan Bilginer
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ataturk University, Erzurum, Turkey
| | - Halise I Gul
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ataturk University, Erzurum, Turkey
| | - Baris Anil
- Department of Chemistry, Faculty of Science, Ataturk University, Erzurum, Turkey
| | - Yeliz Demir
- Nihat Delibalta Göle Vocational High School, Ardahan University, Ardahan, Turkey
| | - Ilhami Gulcin
- Department of Chemistry, Faculty of Science, Ataturk University, Erzurum, Turkey
| |
Collapse
|
19
|
Grüner B, Kugler M, El Anwar S, Holub J, Nekvinda J, Bavol D, Růžičková Z, Pospíšilová K, Fábry M, Král V, Brynda J, Řezáčová P. Cobalt Bis(dicarbollide) Alkylsulfonamides: Potent and Highly Selective Inhibitors of Tumor Specific Carbonic Anhydrase IX. Chempluschem 2020; 86:352-363. [PMID: 32955786 DOI: 10.1002/cplu.202000574] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 08/26/2020] [Indexed: 11/05/2022]
Abstract
Carbonic anhydrase IX (CAIX) is an enzyme expressed on the surface of cells in hypoxic tumors. It plays a role in regulation of tumor pH and promotes thus tumor cell survival and occurrence of metastases. Here, derivatives of the cobalt bis(dicarbollide)(1-) anion are reported that are based on substitution at the carbon sites of the polyhedra by two alkylsulfonamide groups differing in the length of the aliphatic connector (from C1 to C4, n=1-4), which were prepared by cobalt insertion into the 7-sulfonamidoalkyl-7,8-dicarba-nido-undecaborate ions. Pure meso- and rac-diastereoisomeric forms were isolated. The series is complemented with monosubstituted species (n=2). Synthesis by a direct method furnished similar derivatives (n=2, 3), which are chlorinated at the B(8,8') boron sites. All compounds inhibited CAIX with subnanomolar inhibition constants and showed high selectivity for CAIX. The best inhibitory properties were observed for the compound with n= 3 and two substituents present in rac-arrangement with Ki =20 pM and a selectivity index of 668. X-ray crystallography was used to study interactions of these compounds with the active site of CAIX on the structural level.
Collapse
Affiliation(s)
- Bohumír Grüner
- Department of Synthesis, Institute of Inorganic Chemistry of the Czech Academy of Sciences, 250 68, Řež, Czech Republic
| | - Michael Kugler
- Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague 4, Czech Republic.,Institute of Organic Chemistry and, Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 166 10 Prague, Czech Republic
| | - Suzan El Anwar
- Department of Synthesis, Institute of Inorganic Chemistry of the Czech Academy of Sciences, 250 68, Řež, Czech Republic
| | - Josef Holub
- Department of Synthesis, Institute of Inorganic Chemistry of the Czech Academy of Sciences, 250 68, Řež, Czech Republic
| | - Jan Nekvinda
- Department of Synthesis, Institute of Inorganic Chemistry of the Czech Academy of Sciences, 250 68, Řež, Czech Republic
| | - Dmytro Bavol
- Department of Synthesis, Institute of Inorganic Chemistry of the Czech Academy of Sciences, 250 68, Řež, Czech Republic
| | - Zdeňka Růžičková
- Department of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10, Pardubice, Czech Republic
| | - Klára Pospíšilová
- Institute of Organic Chemistry and, Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 166 10 Prague, Czech Republic
| | - Milan Fábry
- Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague 4, Czech Republic
| | - Vlastimil Král
- Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague 4, Czech Republic
| | - Jiří Brynda
- Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague 4, Czech Republic
| | - Pavlína Řezáčová
- Institute of Organic Chemistry and, Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 166 10 Prague, Czech Republic
| |
Collapse
|
20
|
Kalin R, Köksal Z, Bayrak S, Gerni S, Ozyürek IN, Usanmaz H, Karaman M, Atasever A, Özdemir H, Gülçin İ. Molecular docking and inhibition profiles of some antibiotics on lactoperoxidase enzyme purified from bovine milk. J Biomol Struct Dyn 2020; 40:401-410. [PMID: 32856529 DOI: 10.1080/07391102.2020.1814416] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Antibiotics are generally used for human and veterinary applications to preserve and to control microbial diseases. Milk has a biologically significant enzyme known as lactoperoxidase (LPO) that is a member of peroxidase family. In metabolism, LPO has ability to catalyze the transformation of thiocyanate (SCN-) to hypothiocyanite (OSCN-) that is an antibacterial agent and the reaction occurs with hydrogen peroxide. In this work, LPO inhibition effects of some antibiotics including cefazolin, oxytetracycline, flunixin meglumine, cefuroxime, tylosin, vancomycin, chloramphenicol and lincomycin were tested. Among the antibiotics cefazolin was indicated the strongest inhibitory efficacy. The half maximal inhibitory concentration (IC50) and the inhibition constant (Ki) values of cefazolin were found as 8.19 and 34.66 µM, respectively. It was shown competitive inhibition. 5-Methyl-1,3,4-thiadiazol-2-yl moiety activity plays a key role in the inhibition mechanism of cefazolin.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ramazan Kalin
- Department of Basic Science, Faculty of Science, Erzurum Technical University, Erzurum, Turkey
| | - Zeynep Köksal
- Department of Chemistry, Faculty of Engineering and Natural Sciences, İstanbul Medeniyet University, İstanbul, Turkey
| | - Songül Bayrak
- Department of Chemistry, Faculty of Science, Atatürk University, Erzurum, Turkey
| | - Serpil Gerni
- Department of Chemistry, Faculty of Science, Atatürk University, Erzurum, Turkey
| | - Işıl Nihan Ozyürek
- Department of Chemistry, Faculty of Science, Atatürk University, Erzurum, Turkey
| | - Hande Usanmaz
- Department of Bioengineering, Faculty of Engineering and Architecture, Sinop University, Sinop, Turkey
| | - Muhammet Karaman
- Department of Molecular Biology and Genetics, Faculty of Arts and Science, Kilis 7 Aralik University, Kilis, Turkey
| | - Ali Atasever
- Ispir Hamza Polat Vocational Training School, Ataturk University, Erzurum, Turkey
| | - Hasan Özdemir
- Department of Chemistry, Faculty of Science, Atatürk University, Erzurum, Turkey
| | - İlhami Gülçin
- Department of Chemistry, Faculty of Science, Atatürk University, Erzurum, Turkey
| |
Collapse
|
21
|
Gülçin İ, Trofimov B, Kaya R, Taslimi P, Sobenina L, Schmidt E, Petrova O, Malysheva S, Gusarova N, Farzaliyev V, Sujayev A, Alwasel S, Supuran CT. Synthesis of nitrogen, phosphorus, selenium and sulfur-containing heterocyclic compounds - Determination of their carbonic anhydrase, acetylcholinesterase, butyrylcholinesterase and α-glycosidase inhibition properties. Bioorg Chem 2020; 103:104171. [PMID: 32891857 DOI: 10.1016/j.bioorg.2020.104171] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/13/2020] [Accepted: 08/25/2020] [Indexed: 12/25/2022]
Abstract
Sulfur-containing pyrroles (1-3), tris(2-pyridyl)phosphine(selenide) sulfide (4-5) and 4-benzyl-6-(thiophen-2-yl)pyrimidin-2-amine (6) were synthesized and characterized by elemental analysis, IR and NMR spectra. In this study, the synthesized compounds of nitrogen, phosphorus, selenium and sulfur-containing heterocyclic compounds (1-6) were evaluated against the human erythrocyte carbonic anhydrase I, and II isoenzymes, acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and α-glycosidase enzymes. The synthesized heterocyclic compounds showed IC50 values in range of 33.32-60.79 nM against hCA I, and 37.05-66.64 nM against hCA II closely associated with various physiological and pathological processes. On the other hand, IC50 values were found in range of 13.13-22.21 nM against AChE, 0.54-31.22 nM against BChE, and 13.51-26.55 nM against α-glycosidase as a hydrolytic enzyme. As a result, nitrogen, phosphorus, selenium and sulfur-containing heterocyclic compounds (1-6) demonstrated potent inhibition profiles against indicated metabolic enzymes. Therefore, we believe that these results may contribute to the development of new drugs particularly in the treatment of some global disorders including glaucoma, Alzheimer's disease and diabetes.
Collapse
Affiliation(s)
- İlhami Gülçin
- Atatürk University, Faculty of Sciences, Department of Chemistry, 25240 Erzurum, Turkey.
| | - Boris Trofimov
- Irkutsk Institute of Chemistry of the Siberian Branch of the Russian Academy of Sciences, 664033 Irkutsk, Russia
| | - Ruya Kaya
- Atatürk University, Faculty of Sciences, Department of Chemistry, 25240 Erzurum, Turkey; Central Research and Application Laboratory, Agri Ibrahim Cecen University, 04100 Agri, Turkey
| | - Parham Taslimi
- Department of Biotechnology, Faculty of Science, Bartin University, 74100 Bartin, Turkey
| | - Lyubov Sobenina
- Irkutsk Institute of Chemistry of the Siberian Branch of the Russian Academy of Sciences, 664033 Irkutsk, Russia
| | - Elena Schmidt
- Irkutsk Institute of Chemistry of the Siberian Branch of the Russian Academy of Sciences, 664033 Irkutsk, Russia
| | - Olga Petrova
- Irkutsk Institute of Chemistry of the Siberian Branch of the Russian Academy of Sciences, 664033 Irkutsk, Russia
| | - Svetlana Malysheva
- Irkutsk Institute of Chemistry of the Siberian Branch of the Russian Academy of Sciences, 664033 Irkutsk, Russia
| | - Nina Gusarova
- Irkutsk Institute of Chemistry of the Siberian Branch of the Russian Academy of Sciences, 664033 Irkutsk, Russia
| | - Vagif Farzaliyev
- Institute of Chemistry of Additives, Azerbaijan National Academy of Sciences, 1029 Baku, Azerbaijan
| | - Afsun Sujayev
- Institute of Chemistry of Additives, Azerbaijan National Academy of Sciences, 1029 Baku, Azerbaijan
| | - Saleh Alwasel
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Claudiu T Supuran
- Dipartimento di Chimica Ugo Schiff, Universita degli Studi di Firenze, Sesto Fiorentino, Firenze, Italy; Neurofarba Department and Laboratorio di Chimica Bioinorganica Universita' degli Studi di Firenze, Sesto Fiorentino, Italy
| |
Collapse
|
22
|
YAMALI C, GÜL Hİ, DEMİR Y, KAZAZ C, GÜLÇİN İ. Synthesis and bioactivities of 1-(4-hydroxyphenyl)-2-((heteroaryl)thio)ethanones as carbonic anhydrase I, II and acetylcholinesterase inhibitors. Turk J Chem 2020; 44:1058-1067. [PMID: 33488212 PMCID: PMC7751916 DOI: 10.3906/kim-2004-36] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 05/31/2020] [Indexed: 12/12/2022] Open
Abstract
The discovery of enzyme targeting inhibitors is a popular area of drug research. Biological activities of the compounds bearing phenol and heteroaryl groups make them popular groups in drug design targeting important enzymes such as acetylcholinesterase (AChE, E.C.3.1.1.7) and carbonic anhydrases (CAs, EC 4.2.1.1). 1-(4-hydroxyphenyl)- 2-((aryl)thio)ethanones as possible AChE and CAs inhibitors were synthesized, and their chemical structures were confirmed by IR, 1H NMR, 13C NMR, and HRMS. The compounds 2 and 4 were found potent AChE inhibitors with the Ki values of 22.13 ±1.96 nM and 23.71 ±2.95 nM, respectively, while the compounds 2 (Ki = 8.61 ±0.90 nM, on hCA I) and 1 (Ki = 8.76 ±0.84 nM, on hCA II) had considerable CAs inhibitory potency. The lead compounds may help the scientists for the rational designing of an innovative class of drug candidates targeting enzyme-based diseases.
Collapse
Affiliation(s)
- Cem YAMALI
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Atatürk University, ErzurumTurkey
| | - Halise İnci GÜL
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Atatürk University, ErzurumTurkey
| | - Yeliz DEMİR
- Department of Pharmacy Services, Nihat Delibalta Göle Vocational High School, Ardahan University, ArdahanTurkey
| | - Cavit KAZAZ
- Department of Chemistry, Faculty of Science, Atatürk University, ErzurumTurkey
| | - İlhami GÜLÇİN
- Department of Chemistry, Faculty of Science, Atatürk University, ErzurumTurkey
| |
Collapse
|
23
|
Mishra CB, Tiwari M, Supuran CT. Progress in the development of human carbonic anhydrase inhibitors and their pharmacological applications: Where are we today? Med Res Rev 2020; 40:2485-2565. [PMID: 32691504 DOI: 10.1002/med.21713] [Citation(s) in RCA: 158] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 06/14/2020] [Accepted: 07/03/2020] [Indexed: 12/21/2022]
Abstract
Carbonic anhydrases (CAs, EC 4.2.1.1) are widely distributed metalloenzymes in both prokaryotes and eukaryotes. They efficiently catalyze the reversible hydration of carbon dioxide to bicarbonate and H+ ions and play a crucial role in regulating many physiological processes. CAs are well-studied drug target for various disorders such as glaucoma, epilepsy, sleep apnea, and high altitude sickness. In the past decades, a large category of diverse families of CA inhibitors (CAIs) have been developed and many of them showed effective inhibition toward specific isoforms, and effectiveness in pathological conditions in preclinical and clinical settings. The discovery of isoform-selective CAIs in the last decade led to diminished side effects associated with off-target isoforms inhibition. The many new classes of such compounds will be discussed in the review, together with strategies for their development. Pharmacological advances of the newly emerged CAIs in diseases not usually associated with CA inhibition (neuropathic pain, arthritis, cerebral ischemia, and cancer) will also be discussed.
Collapse
Affiliation(s)
- Chandra B Mishra
- Department of Bioorganic Chemistry, Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India.,Department of Pharmaceutical Chemistry, College of Pharmacy, Sookmyung Women's University, Seoul, South Korea
| | - Manisha Tiwari
- Department of Bioorganic Chemistry, Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
| | - Claudiu T Supuran
- Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze, Florence, Italy
| |
Collapse
|
24
|
Synthesis of novel β-amino carbonyl derivatives and their inhibition effects on some metabolic enzymes. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127453] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
25
|
Bytyqi-Damoni A, Kestane A, Taslimi P, Tuzun B, Zengin M, Bilgicli HG, Gulcin İ. Novel carvacrol based new oxypropanolamine derivatives: Design, synthesis, characterization, biological evaluation, and molecular docking studies. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127297] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
26
|
Novel 2-methylimidazolium salts: Synthesis, characterization, molecular docking, and carbonic anhydrase and acetylcholinesterase inhibitory properties. Bioorg Chem 2020; 94:103468. [DOI: 10.1016/j.bioorg.2019.103468] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 10/21/2019] [Accepted: 11/21/2019] [Indexed: 12/18/2022]
|
27
|
Khalil OM, Kamal AM, Bua S, El Sayed Teba H, Nissan YM, Supuran CT. Pyrrolo and pyrrolopyrimidine sulfonamides act as cytotoxic agents in hypoxia via inhibition of transmembrane carbonic anhydrases. Eur J Med Chem 2019; 188:112021. [PMID: 31901743 DOI: 10.1016/j.ejmech.2019.112021] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 12/25/2019] [Accepted: 12/27/2019] [Indexed: 11/28/2022]
Abstract
A series of novel sulfonamide derivatives bearing pyrrole and pyrrolopyrimidine scaffolds were synthesized and screened as carbonic anhydrase inhibitors. The inhibition activity of the synthesized compounds was evaluated against the cytosolic human carbonic anhydrase isoforms I and II and the transmembranal isoforms IX and XII. Several candidates showed potent inhibitory activity against IX and XII isoforms. Furthermore, ex vivo screening of cytotoxic selectivity and activity of the most potent derivatives were carried out against normal cells (WI38) and cervical cancer cell line (HeLa) under normal and hypoxic conditions using acetazolamide as reference drug. Compound 11b potency was nearly three folds higher in hypoxic than normoxic condition whereas that of compound 11f was nearly four folds higher in hypoxic vs. normoxic HeLa cells. All the screened derivatives exhibited less potency on normal cells (WI38). Molecular docking was carried out to discover the possible binding mode of compounds within the active site of isoform CA IX.
Collapse
Affiliation(s)
- Omneya M Khalil
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, 11562, Cairo, Egypt
| | - Aliaa M Kamal
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, 11562, Cairo, Egypt; Organic Chemistry Department, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), 11787, Giza, Egypt.
| | - Silvia Bua
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy
| | - Heba El Sayed Teba
- Organic Chemistry Department, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), 11787, Giza, Egypt.
| | - Yassin M Nissan
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, 11562, Cairo, Egypt; Pharmaceutical Chemistry Department, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), 11787, Giza, Egypt
| | - Claudiu T Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy.
| |
Collapse
|
28
|
Yakan S, Aydin T, Gulmez C, Ozden O, Eren Erdogan K, Daglioglu YK, Andic F, Atakisi O, Cakir A. The protective role of jervine against radiation-induced gastrointestinal toxicity. J Enzyme Inhib Med Chem 2019; 34:789-798. [PMID: 30871382 PMCID: PMC6419660 DOI: 10.1080/14756366.2019.1586681] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/16/2019] [Accepted: 02/19/2019] [Indexed: 12/21/2022] Open
Abstract
In this study, we investigated whether jervine (J) could prevent gastrointestinal (GI) side effects of abdominopelvic radiotherapy (RT) in Wistar-Albino female rats. Rats were divided into five groups: control (C), J only (J), J administered at 5 mg/kg/days for 7 days, RT only (RT), J before RT (J + RT), J administered for seven days before RT, J both before and after RT (J + RT + J), and J administered for 7 days before RT and after RT for 3 days. The weights of rats were measured on the 1st, 7th, and 10th days of the study. Rats were sacrificed to obtain tissues from the liver and intestine, which was followed by taking blood samples intracardially. In addition, the tissues were stained with pyruvate dehydrogenase (PDH) immunohistochemically. In our study, J supplementation markedly reduced weight loss, and histopathological, immunohistochemical, biochemical results suggest that J had a protective effect on GI toxicity following RT.
Collapse
Affiliation(s)
- Selvinaz Yakan
- Animal Health Department, Agri Ibrahim Cecen University Eleskirt Celal Oruc School of Animal Production, Agri, Turkey
| | - Tuba Aydin
- Faculty of Pharmacy, Agri Ibrahim Cecen University, Agri, Turkey
| | - Canan Gulmez
- Department of Pharmacy Services, Tuzluca Vocational School, Igdir University, Igdir, Turkey
| | - Ozkan Ozden
- Department of Bioengineering, Faculty of Engineering and Architecture, Kafkas University, Kars, Turkey
| | | | | | - Fundagul Andic
- Department of Radiation Oncology, Faculty of Medicine, Cukurova University, Adana, Turkey
| | - Onur Atakisi
- Department of Chemistry, Faculty of Science and Letter, Kafkas University, Kars, Turkey
| | - Ahmet Cakir
- Department of Chemistry, Faculty of Science and Literature, Kilis 7 Aralık University, Kilis, Turkey
| |
Collapse
|
29
|
Grüner B, Brynda J, Das V, Šícha V, Štěpánková J, Nekvinda J, Holub J, Pospíšilová K, Fábry M, Pachl P, Král V, Kugler M, Mašek V, Medvedíková M, Matějková S, Nová A, Lišková B, Gurská S, Džubák P, Hajdúch M, Řezáčová P. Metallacarborane Sulfamides: Unconventional, Specific, and Highly Selective Inhibitors of Carbonic Anhydrase IX. J Med Chem 2019; 62:9560-9575. [PMID: 31568723 DOI: 10.1021/acs.jmedchem.9b00945] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Carbonic anhydrase IX (CAIX) is a transmembrane enzyme that regulates pH in hypoxic tumors and promotes tumor cell survival. Its expression is associated with the occurrence of metastases and poor prognosis. Here, we present nine derivatives of the cobalt bis(dicarbollide)(1-) anion substituted at the boron or carbon sites by alkysulfamide group(s) as highly specific and selective inhibitors of CAIX. Interactions of these compounds with the active site of CAIX were explored on the atomic level using protein crystallography. Two selected derivatives display subnanomolar or picomolar inhibition constants and high selectivity for the tumor-specific CAIX over cytosolic isoform CAII. Both derivatives had a time-dependent effect on the growth of multicellular spheroids of HT-29 and HCT116 colorectal cancer cells, facilitated penetration and/or accumulation of doxorubicin into spheroids, and displayed low toxicity and showed promising pharmacokinetics and a significant inhibitory effect on tumor growth in syngenic breast 4T1 and colorectal HT-29 cancer xenotransplants.
Collapse
Affiliation(s)
- Bohumír Grüner
- Institute of Inorganic Chemistry of the Czech Academy of Sciences , 250 68 Řež , Czech Republic
| | - Jiří Brynda
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences , Flemingovo nám. 2 , 16610 Prague , Czech Republic.,Institute of Molecular Genetics of the Czech Academy of Sciences , Flemingovo nam. 2 , 16610 Prague , Czech Republic
| | - Viswanath Das
- Institute of Molecular and Translational Medicine , Olomouc, Hněvotínská 1333/5 , 77900 Olomouc , Czech Republic.,Cancer Research Czech Republic , Hněvotínská 5 , 77900 Olomouc , Czech Republic
| | - Václav Šícha
- Institute of Inorganic Chemistry of the Czech Academy of Sciences , 250 68 Řež , Czech Republic
| | - Jana Štěpánková
- Institute of Molecular and Translational Medicine , Olomouc, Hněvotínská 1333/5 , 77900 Olomouc , Czech Republic.,Cancer Research Czech Republic , Hněvotínská 5 , 77900 Olomouc , Czech Republic
| | - Jan Nekvinda
- Institute of Inorganic Chemistry of the Czech Academy of Sciences , 250 68 Řež , Czech Republic.,Department of Organic Chemistry, Faculty of Natural Science , Charles University , Hlavova 2030 , 12800 Prague 2, Czech Republic
| | - Josef Holub
- Institute of Inorganic Chemistry of the Czech Academy of Sciences , 250 68 Řež , Czech Republic
| | - Klára Pospíšilová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences , Flemingovo nám. 2 , 16610 Prague , Czech Republic
| | - Milan Fábry
- Institute of Molecular Genetics of the Czech Academy of Sciences , Flemingovo nam. 2 , 16610 Prague , Czech Republic
| | - Petr Pachl
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences , Flemingovo nám. 2 , 16610 Prague , Czech Republic
| | - Vlastimil Král
- Institute of Molecular Genetics of the Czech Academy of Sciences , Flemingovo nam. 2 , 16610 Prague , Czech Republic
| | - Michael Kugler
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences , Flemingovo nám. 2 , 16610 Prague , Czech Republic
| | - Vlastimil Mašek
- Institute of Molecular and Translational Medicine , Olomouc, Hněvotínská 1333/5 , 77900 Olomouc , Czech Republic
| | - Martina Medvedíková
- Institute of Molecular and Translational Medicine , Olomouc, Hněvotínská 1333/5 , 77900 Olomouc , Czech Republic
| | - Stanislava Matějková
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences , Flemingovo nám. 2 , 16610 Prague , Czech Republic
| | - Alice Nová
- Institute of Molecular and Translational Medicine , Olomouc, Hněvotínská 1333/5 , 77900 Olomouc , Czech Republic
| | - Barbora Lišková
- Institute of Molecular and Translational Medicine , Olomouc, Hněvotínská 1333/5 , 77900 Olomouc , Czech Republic
| | - Soňa Gurská
- Institute of Molecular and Translational Medicine , Olomouc, Hněvotínská 1333/5 , 77900 Olomouc , Czech Republic
| | - Petr Džubák
- Institute of Molecular and Translational Medicine , Olomouc, Hněvotínská 1333/5 , 77900 Olomouc , Czech Republic.,Cancer Research Czech Republic , Hněvotínská 5 , 77900 Olomouc , Czech Republic
| | - Marián Hajdúch
- Institute of Molecular and Translational Medicine , Olomouc, Hněvotínská 1333/5 , 77900 Olomouc , Czech Republic.,Cancer Research Czech Republic , Hněvotínská 5 , 77900 Olomouc , Czech Republic
| | - Pavlína Řezáčová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences , Flemingovo nám. 2 , 16610 Prague , Czech Republic.,Institute of Molecular Genetics of the Czech Academy of Sciences , Flemingovo nam. 2 , 16610 Prague , Czech Republic
| |
Collapse
|
30
|
Biçer A, Kaya R, Anıl B, Turgut Cin G, Gülcin İ, Gültekin MS. Synthesis of novel bis‐sulfone derivatives and their inhibition properties on some metabolic enzymes including carbonic anhydrase, acetylcholinesterase, and butyrylcholinesterase. J Biochem Mol Toxicol 2019; 33:e22401. [DOI: 10.1002/jbt.22401] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 08/05/2019] [Accepted: 09/18/2019] [Indexed: 02/01/2023]
Affiliation(s)
- Abdullah Biçer
- Department of Chemistry, Faculty of ScienceAkdeniz UniversityAntalya Turkey
| | - Rüya Kaya
- Central Research and Application LaboratoryAğrı İbrahim Çeçen UniversityAğrı Turkey
- Department of Chemistry, Faculty of ScienceAtatürk UniversityErzurum Turkey
| | - Barış Anıl
- Department of Chemistry, Faculty of ScienceAtatürk UniversityErzurum Turkey
| | - Günseli Turgut Cin
- Department of Chemistry, Faculty of ScienceAkdeniz UniversityAntalya Turkey
| | - İlhami Gülcin
- Department of Chemistry, Faculty of ScienceAtatürk UniversityErzurum Turkey
| | - Mehmet Serdar Gültekin
- Department of Chemistry, Faculty of ScienceAtatürk UniversityErzurum Turkey
- Faculty of PharmacyAğrı İbrahim Çeçen UniversityAğrı Turkey
| |
Collapse
|
31
|
Demir Y. The behaviour of some antihypertension drugs on human serum paraoxonase-1: an important protector enzyme against atherosclerosis. J Pharm Pharmacol 2019; 71:1576-1583. [DOI: 10.1111/jphp.13144] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 06/30/2019] [Indexed: 11/27/2022]
Abstract
Abstract
Objectives
Paraoxonase-1 (PON1) enzyme is related to high-density lipoprotein (HDL), which is calcium dependent. It has essential roles such as protecting LDL against oxidation and detoxification of highly toxic substances. It is a significant risk to reduce the levels of this enzyme in patients with diabetes mellitus, cardiovascular diseases, hyperthyroidism and chronic renal failure.
Methods
Here, it was reported that the purification of human serum PON1 using straightforward methods and determination of the interactions between some antihypertension drugs and the enzyme.
Key finding
It was found that these drugs exhibit potential inhibitor properties for human serum PON1 with IC50 values in the range of 131.40–369.40 μm and Ki values in the range of 56.24 ± 6.75–286.74 ± 28.28 μm. These drugs showed different inhibition mechanisms. It was determined that midodrine and nadolol were exhibited competitive inhibition, but atenolol and pindolol were exhibited non-competitive inhibition.
Conclusion
Usage of these drugs would be hazardous in some cases.
Collapse
Affiliation(s)
- Yeliz Demir
- Department of Chemistry, Faculty of Sciences, Ataturk University, Erzurum, Turkey
- Department of Pharmacy Services, Nihat Delibalta Göle Vocational High School, Ardahan University, Ardahan, Turkey
| |
Collapse
|
32
|
Synthesis and biological evaluation of bromophenol derivatives with cyclopropyl moiety: Ring opening of cyclopropane with monoester. Bioorg Chem 2019; 89:103017. [PMID: 31174041 DOI: 10.1016/j.bioorg.2019.103017] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 05/21/2019] [Accepted: 05/27/2019] [Indexed: 12/14/2022]
Abstract
Trans-(1R*,2R*,3R*)-Ethyl 2-(3,4-dimethoxyphenyl)-3-methylcyclopropane-1-carboxylate (6) and its cis isomer 7 were obtained from the reaction of the methyl isoeugenol (5) with ethyl diazoacetate. The reduction and bromination reactions of the ester 6 and 7 together with the hydrolysis of all esters were carried out. Opening ring of cyclopropane was observed in the reaction of 7 with bromine. The opening of cyclopropane ring with COOR and synthesis of esters, alcohols and acids (6-26) are new. These obtained bromophenol derivatives (6-26) were effective inhibitors of the cytosolic carbonic anhydrase I and II isoforms (hCA I and II) and acetylcholinesterase (AChE) enzymes with Ki values in the range of 7.8 ± 0.9-58.3 ± 10.3 nM for hCA I, 43.1 ± 16.7-150.2 ± 24.1 nM for hCA II, and 159.6 ± 21.9-924.2 ± 104.8 nM for AChE, respectively. Acetylcholinesterase inhibitors are the most popular drugs applied in the treatment of diseases such as Alzheimer's disease, Parkinson's disease, senile dementia, and ataxia, among others.
Collapse
|
33
|
Atmaca U, Kaya R, Karaman HS, Çelik M, Gülçin İ. Synthesis of oxazolidinone from enantiomerically enriched allylic alcohols and determination of their molecular docking and biologic activities. Bioorg Chem 2019; 88:102980. [PMID: 31174010 DOI: 10.1016/j.bioorg.2019.102980] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/01/2019] [Accepted: 05/08/2019] [Indexed: 12/11/2022]
Abstract
Enantioselective synthesis of functionalized cyclic allylic alcohols via kinetic resolution in transesterifcation with different lipase enzymes has been developed. The influence of the enzymes and temperature activity was studied. By determination of ideal reaction conditions, byproduct formation is minimized; this made it possible to prepare enantiomerically enriched allylic alcohols in high ee's and good yields. Enantiomerically enriched allylic alcohols were used for enantiomerically enriched oxazolidinone synthesis. Using benzoate as a leaving group means that 1 mol % of potassium osmate is necessary and can be obtained high yields 98%. Inhibitory activities of enantiomerically enriched oxazolidinones (8, 10 and 12) were tested against human carbonic anhydrase I and II isoenzymes (hCA I and hCA II), acetylcholinesterase (AChE), and α-glycosidase (α-Gly) enzymes. These enantiomerically enriched oxazolidinones derivatives had Ki values in the range of 11.6 ± 2.1-66.4 ± 22.7 nM for hCA I, 34.1 ± 6.7-45.2 ± 12.9 nM for hCA II, 16.5 ± 2.9 to 35.6 ± 13.9 for AChE, and 22.3 ± 6.0-70.9 ± 9.9 nM for α-glycosidase enzyme. Moreover, they had high binding affinity with -5.767, -6.568, -9.014, and -8.563 kcal/mol for hCA I, hCA II, AChE and α-glycosidase enzyme, respectively. These results strongly supported the promising nature of the enantiomerically enriched oxazolidinones as selective hCA, AChE, and α-glycosidase inhibitors. Overall, due to these derivatives' inhibitory potential on the tested enzymes, they are promising drug candidates for the treatment of diseases like glaucoma, leukemia, epilepsy; Alzheimer's disease; type-2 diabetes mellitus that are associated with high enzymatic activity of CA, AChE, and α-glycosidase.
Collapse
Affiliation(s)
- Ufuk Atmaca
- Department of Chemistry, Faculty of Sciences, Ataturk University, 25240 Erzurum, Turkey; Oltu Vocational School, Ataturk University, 25400 Oltu-Erzurum, Turkey
| | - Rüya Kaya
- Department of Chemistry, Faculty of Sciences, Ataturk University, 25240 Erzurum, Turkey; Central Research and Application Laboratory, Agri Ibrahim Cecen University, 04100 Agri, Turkey
| | - Halide Sedef Karaman
- Department of Chemistry, Faculty of Sciences, Ataturk University, 25240 Erzurum, Turkey
| | - Murat Çelik
- Department of Chemistry, Faculty of Sciences, Ataturk University, 25240 Erzurum, Turkey
| | - İlhami Gülçin
- Department of Chemistry, Faculty of Sciences, Ataturk University, 25240 Erzurum, Turkey.
| |
Collapse
|
34
|
Genç Bilgiçli H, Kestane A, Taslimi P, Karabay O, Bytyqi-Damoni A, Zengin M, Gulçin İ. Novel eugenol bearing oxypropanolamines: Synthesis, characterization, antibacterial, antidiabetic, and anticholinergic potentials. Bioorg Chem 2019; 88:102931. [PMID: 31015178 DOI: 10.1016/j.bioorg.2019.102931] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 03/27/2019] [Accepted: 04/15/2019] [Indexed: 12/14/2022]
Abstract
Five oxypropanol amine derivatives that four of them are novel have been synthesized with high yields and practical methods. in vitro antibacterial susceptibility of Acinetobacter baumannii, Pseudomonas aeruginosa, Escherichia coli and Staphylococcus aureus strains to synthesized substances were evaluated with agar well-diffusion method by comparison with commercially available drugs. Most of the bacteria were multidrug resistant. It was concluded that these compounds are much more effective than reference drugs. These eugenol bearing oxypropanolamine derivatives were also effective inhibitors against α-glycosidase, cytosolic carbonic anhydrase I and II isoforms (hCA I and II), and acetylcholinesterase (AChE) enzymes with Ki values in the range of 0.80 ± 0.24-3.52 ± 1.01 µM for hCA I, 1.08 ± 0.15-3.64 ± 0.92 µM for hCA II, 5.18 ± 0.84-12.46 ± 2.08 µM for α-glycosidase, and 11.33 ± 2.83-32.81 ± 9.73 µM for AChE, respectively.
Collapse
Affiliation(s)
- Hayriye Genç Bilgiçli
- Sakarya University, Science and Arts Faculty Chemistry Department, 54187-Serdivan Sakarya, Turkey.
| | - Ali Kestane
- Sakarya University, Science and Arts Faculty Chemistry Department, 54187-Serdivan Sakarya, Turkey
| | - Parham Taslimi
- Department of Biotechnology, Faculty of Science, Bartin University, 74100 Bartin, Turkey
| | - Oguz Karabay
- Sakarya University, Faculty of Medicine Infectious Diseases and Clinical Microbiology Department, 54290-Adapazarı Sakarya, Turkey
| | - Arlinda Bytyqi-Damoni
- University of Pristina, Faculty of Education, Department of Chemistry, Pristina, Kosovo
| | - Mustafa Zengin
- Sakarya University, Science and Arts Faculty Chemistry Department, 54187-Serdivan Sakarya, Turkey
| | - İlhami Gulçin
- Department of Chemistry, Faculty of Science, Atatürk University, 25240-Erzurum, Turkey
| |
Collapse
|
35
|
Synthesis and biological evaluation of novel tris-chalcones as potent carbonic anhydrase, acetylcholinesterase, butyrylcholinesterase and α-glycosidase inhibitors. Bioorg Chem 2019; 85:191-197. [DOI: 10.1016/j.bioorg.2018.12.035] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 12/25/2018] [Accepted: 12/27/2018] [Indexed: 12/18/2022]
|
36
|
The first synthesis, carbonic anhydrase inhibition and anticholinergic activities of some bromophenol derivatives with S including natural products. Bioorg Chem 2019; 85:128-139. [DOI: 10.1016/j.bioorg.2018.12.012] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 12/04/2018] [Accepted: 12/10/2018] [Indexed: 01/28/2023]
|
37
|
Kocyigit UM, Budak Y, Gürdere MB, Dürü N, Taslimi P, Gülçin İ, Ceylan M. Synthesis and investigation of anticancer, antibacterial activities and carbonic anhydrase, acetylcholinesterase inhibition profiles of novel (3aR,4S,7R,7aS)-2-[4-[1-acetyl-5-(aryl/heteroaryl)-4,5-dihydro-1H-pyrazol-3-yl]phenyl]-3a,4,7,7a-tetrahydro-1H-4,7-methanoisoindole-1,3(2H)-diones. MONATSHEFTE FUR CHEMIE 2019. [DOI: 10.1007/s00706-019-2350-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
38
|
Köksal Z, Alım Z, Bayrak S, Gülçin İ, Özdemir H. Investigation of the effects of some sulfonamides on acetylcholinesterase and carbonic anhydrase enzymes. J Biochem Mol Toxicol 2019; 33:e22300. [DOI: 10.1002/jbt.22300] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/15/2019] [Accepted: 01/29/2019] [Indexed: 01/02/2023]
Affiliation(s)
- Zeynep Köksal
- Department of ChemistryFaculty of Sciences, Istanbul Medeniyet UniversityIstanbul Turkey
| | - Zuhal Alım
- Department of ChemistryFaculty of Science and Arts, Kırşehir Ahi Evran UniversityKırsehir Turkey
| | - Songül Bayrak
- Department of ChemistryFaculty of Sciences, Atatürk UniversityErzurum Turkey
| | - İlhami Gülçin
- Department of ChemistryFaculty of Sciences, Atatürk UniversityErzurum Turkey
| | - Hasan Özdemir
- Department of ChemistryFaculty of Sciences, Atatürk UniversityErzurum Turkey
| |
Collapse
|
39
|
Synthesis, biological evaluation and molecular docking of novel pyrazole derivatives as potent carbonic anhydrase and acetylcholinesterase inhibitors. Bioorg Chem 2019; 86:420-427. [PMID: 30769267 DOI: 10.1016/j.bioorg.2019.02.013] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 02/02/2019] [Accepted: 02/04/2019] [Indexed: 11/22/2022]
Abstract
A series of substituted pyrazole compounds (1-8 and 9a, b) were synthesized and their structure was characterized by IR, NMR, and Mass analysis. These obtained novel pyrazole derivatives (1-8 and 9a, b) were emerged as effective inhibitors of the cytosolic carbonic anhydrase I and II isoforms (hCA I and II) and acetylcholinesterase (AChE) enzymes with Ki values in the range of 1.03 ± 0.23-22.65 ± 5.36 µM for hCA I, 1.82 ± 0.30-27.94 ± 4.74 µM for hCA II, and 48.94 ± 9.63-116.05 ± 14.95 µM for AChE, respectively. Docking studies were performed for the most active compounds, 2 and 5, and binding mode between the compounds and the receptors were determined.
Collapse
|
40
|
Synthesis, characterization, crystal structure of novel bis-thiomethylcyclohexanone derivatives and their inhibitory properties against some metabolic enzymes. Bioorg Chem 2019; 82:393-404. [DOI: 10.1016/j.bioorg.2018.11.001] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 10/03/2018] [Accepted: 11/01/2018] [Indexed: 12/17/2022]
|
41
|
Novel morpholine liganded Pd-based N-heterocyclic carbene complexes: Synthesis, characterization, crystal structure, antidiabetic and anticholinergic properties. Polyhedron 2019. [DOI: 10.1016/j.poly.2018.11.048] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
42
|
Maharramov A, Kaya R, Taslimi P, Kurbanova M, Sadigova A, Farzaliyev V, Sujayev A, Gulçin İ. Synthesis, crystal structure, and biological evaluation of optically active 2-amino-4-aryl-7,7-dimethyl-5-oxo-5,6,7,8-tetrahydro-4H
-chromen-3-carbonitriles: Antiepileptic, antidiabetic, and anticholinergics potentials. Arch Pharm (Weinheim) 2019; 352:e1800317. [DOI: 10.1002/ardp.201800317] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 11/16/2018] [Accepted: 11/27/2018] [Indexed: 11/05/2022]
Affiliation(s)
- Abel Maharramov
- Department of Organic Chemistry; Baku State University; Baku Azerbaijan
| | - Ruya Kaya
- Faculty of Science, Department of Chemistry; Ataturk University; Erzurum Turkey
- Agri Ibrahim Cecen University Central Research and Application Laboratory; Agri Turkey
| | - Parham Taslimi
- Faculty of Science, Department of Chemistry; Ataturk University; Erzurum Turkey
| | - Malahat Kurbanova
- Department of Organic Chemistry; Baku State University; Baku Azerbaijan
| | - Arzu Sadigova
- Department of Organic Chemistry; Baku State University; Baku Azerbaijan
| | - Vagif Farzaliyev
- Laboratory of Theoretical Bases of Synthesis and Action Mechanism of Additives, Institute of Chemistry of Additives; Azerbaijan National Academy of Sciences; Baku Azerbaijan
| | - Afsun Sujayev
- Laboratory of Theoretical Bases of Synthesis and Action Mechanism of Additives, Institute of Chemistry of Additives; Azerbaijan National Academy of Sciences; Baku Azerbaijan
| | - İlhami Gulçin
- Faculty of Science, Department of Chemistry; Ataturk University; Erzurum Turkey
| |
Collapse
|
43
|
Synthesis of novel sulfamides incorporating phenethylamines and determination of their inhibition profiles against some metabolic enzymes. Arch Pharm (Weinheim) 2018; 351:e1800150. [DOI: 10.1002/ardp.201800150] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 06/25/2018] [Accepted: 06/29/2018] [Indexed: 02/02/2023]
|
44
|
Yiğit B, Yiğit M, Barut Celepci D, Gök Y, Aktaş A, Aygün M, Taslimi P, Gülçin İ. Novel Benzylic Substituted Imidazolinium, Tetrahydropyrimidinium and Tetrahydrodiazepinium Salts: Potent Carbonic Anhydrase and Acetylcholinesterase Inhibitors. ChemistrySelect 2018. [DOI: 10.1002/slct.201801019] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Beyhan Yiğit
- Department of ChemistryFaculty of Science and ArtAdıyaman University 02040-Adıyaman Turkey
| | - Murat Yiğit
- Department of ChemistryFaculty of Science and ArtAdıyaman University 02040-Adıyaman Turkey
| | - Duygu Barut Celepci
- Dokuz Eylül UniversityFaculty of ScienceDepartment of Physics 35160-Buca, İzmir Turkey
| | - Yetkin Gök
- Department of ChemistryFaculty of Science and ArtInönü University 44260-Malatya Turkey
| | - Aydın Aktaş
- Department of ChemistryFaculty of Science and ArtInönü University 44260-Malatya Turkey
| | - Muhittin Aygün
- Dokuz Eylül UniversityFaculty of ScienceDepartment of Physics 35160-Buca, İzmir Turkey
| | - Parham Taslimi
- Department of ChemistryFaculty of ScienceAtatürk University 25240-Erzurum Turkey Phone
| | - İlhami Gülçin
- Department of ChemistryFaculty of ScienceAtatürk University 25240-Erzurum Turkey Phone
| |
Collapse
|
45
|
Bayindir S, Temel Y, Ayna A, Ciftci M. The synthesis of N-benzoylindoles as inhibitors of rat erythrocyte glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase. J Biochem Mol Toxicol 2018; 32:e22193. [PMID: 29992784 DOI: 10.1002/jbt.22193] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 05/12/2018] [Accepted: 06/25/2018] [Indexed: 01/19/2023]
Abstract
Glucose-6-phosphate dehydrogenase (G6PD) and 6-phosphogluconate dehydrogenase (6PGD) play an important function in various biochemical processes as they generate reducing power of the cell. Thus, metabolic reprogramming of reduced nicotinamide adenine dinucleotide phosphate (NADPH) homeostasis is reported to be a vital step in cancer progression as well as in combinational therapeutic approaches. In this study, N-benzoylindoles 9a--9d, which form the main framework of many natural indole derivatives such as indomethacin and N-benzoylindoylbarbituric acid, were synthesized through three easy and effective steps as an in vitro inhibitor effect of G6PD and 6PGD. The N-benzoylindoles inhibited the enzymatic activity with IC50 in the range of 3.391505 μM for G6PD and 2.19-990 μM for 6PGD.
Collapse
Affiliation(s)
- Sinan Bayindir
- Department of Chemistry, Faculty of Sciences and Arts, Bingol University, 12000, Bingol, Turkey
| | - Yusuf Temel
- Department of Health Services, Vocational Schools, Bingol University, 12000, Bingol, Turkey
| | - Adnan Ayna
- Department of Chemistry, Faculty of Sciences and Arts, Bingol University, 12000, Bingol, Turkey
| | - Mehmet Ciftci
- Department of Chemistry, Faculty of Sciences and Arts, Bingol University, 12000, Bingol, Turkey
| |
Collapse
|
46
|
Koksal Z, Kalin R, Gulcin I, Ozdemir H. Inhibitory effects of selected pesticides on peroxidases purified by affinity chromatography. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2018. [DOI: 10.1080/10942912.2018.1424197] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Zeynep Koksal
- Faculty of Engineering and Natural Sciences, Department of Chemistry, Istanbul Medeniyet University, Istanbul, Turkey
| | - Ramazan Kalin
- Faculty of Science, Department of Basic Science, Erzurum Technical University, Erzurum, Turkey
- Faculty of Science, Department of Chemistry, Ataturk University, Erzurum, Turkey
| | - Ilhami Gulcin
- Faculty of Science, Department of Chemistry, Ataturk University, Erzurum, Turkey
| | - Hasan Ozdemir
- Faculty of Science, Department of Chemistry, Ataturk University, Erzurum, Turkey
| |
Collapse
|
47
|
Burmaoglu S, Yilmaz AO, Taslimi P, Algul O, Kilic D, Gulcin I. Synthesis and biological evaluation of phloroglucinol derivatives possessing α-glycosidase, acetylcholinesterase, butyrylcholinesterase, carbonic anhydrase inhibitory activity. Arch Pharm (Weinheim) 2018; 351. [DOI: 10.1002/ardp.201700314] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 12/05/2017] [Accepted: 12/13/2017] [Indexed: 12/25/2022]
Affiliation(s)
- Serdar Burmaoglu
- Faculty of Science, Department of Chemistry; Ataturk University; Erzurum Turkey
- Tercan Vocational High School; Erzincan University; Erzincan Turkey
| | - Ali O. Yilmaz
- Faculty of Science, Department of Chemistry; Ataturk University; Erzurum Turkey
| | - Parham Taslimi
- Faculty of Science, Department of Chemistry; Ataturk University; Erzurum Turkey
| | - Oztekin Algul
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry; Mersin University; Mersin Turkey
| | - Deryanur Kilic
- Faculty of Art and Science, Department of Chemistry; Aksaray University; Aksaray Turkey
| | - Ilhami Gulcin
- Faculty of Science, Department of Chemistry; Ataturk University; Erzurum Turkey
| |
Collapse
|
48
|
Budak Y, Kocyigit UM, Gürdere MB, Özcan K, Taslimi P, Gülçin İ, Ceylan M. Synthesis and investigation of antibacterial activities and carbonic anhydrase and acetyl cholinesterase inhibition profiles of novel 4,5-dihydropyrazol and pyrazolyl-thiazole derivatives containing methanoisoindol-1,3-dion unit. SYNTHETIC COMMUN 2017. [DOI: 10.1080/00397911.2017.1373406] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Yakup Budak
- Department of Chemistry, Faculty of Arts and Sciences, Gaziosmanpasa University, Tokat, Turkiye
| | - Umit M. Kocyigit
- Vocational School of Health Services, Cumhuriyet University, Sivas, Turkey
| | - Meliha Burcu Gürdere
- Department of Chemistry, Faculty of Arts and Sciences, Gaziosmanpasa University, Tokat, Turkiye
| | - Kezban Özcan
- Department of Chemistry, Faculty of Arts and Sciences, Gaziosmanpasa University, Tokat, Turkiye
| | - Parham Taslimi
- Department of Chemistry, Faculty of Science, Atatürk University, Erzurum, Turkey
| | - İlhami Gülçin
- Department of Chemistry, Faculty of Science, Atatürk University, Erzurum, Turkey
| | - Mustafa Ceylan
- Department of Chemistry, Faculty of Arts and Sciences, Gaziosmanpasa University, Tokat, Turkiye
| |
Collapse
|
49
|
Sarı Y, Aktaş A, Taslimi P, Gök Y, Gulçin İ. NovelN-propylphthalimide- and 4-vinylbenzyl-substituted benzimidazole salts: Synthesis, characterization, and determination of their metal chelating effects and inhibition profiles against acetylcholinesterase and carbonic anhydrase enzymes. J Biochem Mol Toxicol 2017; 32. [DOI: 10.1002/jbt.22009] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 10/19/2017] [Accepted: 10/27/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Yakup Sarı
- Department of Chemistry, Faculty of Arts and Sciences; Inönü University; Malatya 44280 Turkey
| | - Aydın Aktaş
- Department of Chemistry, Faculty of Arts and Sciences; Inönü University; Malatya 44280 Turkey
| | - Parham Taslimi
- Department of Chemistry, Faculty of Sciences; Atatürk University; Erzurum 25240 Turkey
| | - Yetkin Gök
- Department of Chemistry, Faculty of Arts and Sciences; Inönü University; Malatya 44280 Turkey
| | - İlhami Gulçin
- Department of Chemistry, Faculty of Sciences; Atatürk University; Erzurum 25240 Turkey
| |
Collapse
|
50
|
Kocyigit UM, Budak Y, Eligüzel F, Taslimi P, Kılıç D, Gulçin İ, Ceylan M. Synthesis and Carbonic Anhydrase Inhibition of Tetrabromo Chalcone Derivatives. Arch Pharm (Weinheim) 2017; 350. [DOI: 10.1002/ardp.201700198] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 09/28/2017] [Accepted: 10/04/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Umit M. Kocyigit
- Vocational School of Health Services; Cumhuriyet University; Sivas Turkey
| | - Yakup Budak
- Department of Chemistry; Faculty of Arts and Sciences; Gaziosmanpasa University; Tokat Turkey
| | - Fikret Eligüzel
- Vocational School of Health Services; Cumhuriyet University; Sivas Turkey
| | - Parham Taslimi
- Department of Chemistry; Faculty of Science; Atatürk University; Erzurum Turkey
| | - Deryanur Kılıç
- Department of Chemistry; Art and Science Faculty; Aksaray University; Aksaray Turkey
| | - İlhami Gulçin
- Department of Chemistry; Faculty of Science; Atatürk University; Erzurum Turkey
| | - Mustafa Ceylan
- Department of Chemistry; Faculty of Arts and Sciences; Gaziosmanpasa University; Tokat Turkey
| |
Collapse
|