1
|
Bogen O, Araldi D, Sucher A, Kober K, Ohara PT, Levine JD. Isolectin B4 (IB4)-conjugated streptavidin for the selective knockdown of proteins in IB4-positive (+) nociceptors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.18.572242. [PMID: 38260446 PMCID: PMC10802253 DOI: 10.1101/2023.12.18.572242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
In vivo analysis of protein function in nociceptor subpopulations using antisense oligonucleotides and short interfering RNAs is limited by their non-selective cellular uptake. To address the need for selective transfection methods, we covalently linked isolectin B4 (IB4) to streptavidin and analyzed whether it could be used to study protein function in IB4(+)-nociceptors. Rats treated intrathecally with IB4-conjugated streptavidin complexed with biotinylated antisense oligonucleotides for protein kinase C epsilon (PKCε) mRNA were found to have: a) less PKCε in dorsal root ganglia (DRG), b) reduced PKCε expression in IB4(+) but not IB4(-) DRG neurons, and c) fewer transcripts of the PKCε gene in the DRG. This knockdown in PKCε expression in IB4(+) DRG neurons is sufficient to reverse hyperalgesic priming, a rodent model of chronic pain that is dependent on PKCε in IB4(+)-nociceptors. These results establish that IB4-streptavidin can be used to study protein function in a defined subpopulation of nociceptive C-fiber afferents.
Collapse
|
2
|
Bogen O, Araldi D, Sucher A, Kober K, Ohara PT, Levine JD. Isolectin B4 (IB4)-conjugated streptavidin for the selective knockdown of proteins in IB4-positive (+) nociceptors. Mol Pain 2024; 20:17448069241230419. [PMID: 38246917 PMCID: PMC10851726 DOI: 10.1177/17448069241230419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 01/12/2024] [Indexed: 01/23/2024] Open
Abstract
In vivo analysis of protein function in nociceptor subpopulations using antisense oligonucleotides and short interfering RNAs is limited by their non-selective cellular uptake. To address the need for selective transfection methods, we covalently linked isolectin B4 (IB4) to streptavidin and analyzed whether it could be used to study protein function in IB4(+)-nociceptors. Rats treated intrathecally with IB4-conjugated streptavidin complexed with biotinylated antisense oligonucleotides for protein kinase C epsilon (PKCε) mRNA were found to have: (a) less PKCε in dorsal root ganglia (DRG), (b) reduced PKCε expression in IB4(+) but not IB4(-) DRG neurons, and (c) fewer transcripts of the PKCε gene in the DRG. This knockdown in PKCε expression in IB4(+) DRG neurons is sufficient to reverse hyperalgesic priming, a rodent model of chronic pain that is dependent on PKCε in IB4(+)-nociceptors. These results establish that IB4-streptavidin can be used to study protein function in a defined subpopulation of nociceptive C-fiber afferents.
Collapse
Affiliation(s)
- Oliver Bogen
- Department of Oral & Maxillofacial Surgery, UCSF Pain and Addiction Research Center, University of California, San Francisco, CA, USA
| | - Dionéia Araldi
- Department of Oral & Maxillofacial Surgery, UCSF Pain and Addiction Research Center, University of California, San Francisco, CA, USA
| | - Anatol Sucher
- School of Nursing, University of California, San Francisco, CA, USA
| | - Kord Kober
- School of Nursing, University of California, San Francisco, CA, USA
| | - Peter T Ohara
- Department of Anatomy, University of California, San Francisco, CA, USA
| | - Jon D Levine
- Department of Oral & Maxillofacial Surgery, UCSF Pain and Addiction Research Center, University of California, San Francisco, CA, USA
- Division of Neuroscience, Department of Medicine, University of California, San Francisco, CA, USA
| |
Collapse
|
3
|
Sharma R, Narum S, Liu S, Dong Y, Baek KI, Jo H, Salaita K. Nanodiscoidal Nucleic Acids for Gene Regulation. ACS Chem Biol 2023; 18:2349-2367. [PMID: 37910400 PMCID: PMC10660333 DOI: 10.1021/acschembio.3c00038] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 10/06/2023] [Accepted: 10/12/2023] [Indexed: 11/03/2023]
Abstract
Therapeutic nucleic acids represent a powerful class of drug molecules to control gene expression and protein synthesis. A major challenge in this field is that soluble oligonucleotides have limited serum stability, and the majority of nucleic acids that enter the cells are trapped within endosomes. Delivery efficiency can be improved using lipid scaffolds. One such example is the nanodisc (ND), a self-assembled nanostructure composed of phospholipids and peptides and modeled after high density lipoproteins (HDLs). Herein, we describe the development of the nanodiscoidal nucleic acid (NNA) which is a ND covalently modified with nucleic acids on the top and bottom lipid faces as well as the lateral peptide belt. The 13 nm ND was doped with thiolated phospholipids and thiol-containing peptides and coupled in a one-pot reaction with oligonucleotides to achieve ∼30 DNA/NNA nucleic acid density. NNAs showed superior nuclease resistance and enhanced cellular uptake that was mediated through the scavenger receptor B1. Time-dependent Förster resonance energy transfer (FRET) analysis of internalized NNA confirmed that NNAs display increased stability. NNAs modified with clinically validated antisense oligonucleotides (ASOs) that target hypoxia inducible factor 1-α (HIF-1-α) mRNA showed enhanced activity compared with that of the soluble DNA across multiple cell lines as well as a 3D cancer spheroid model. Lastly, in vivo experiments show that ASO-modified NNAs are primarily localized into livers and kidneys, and NNAs were potent in downregulating HIF-1-α using 5-fold lower doses than previously reported. Collectively, our results highlight the therapeutic potential for NNAs.
Collapse
Affiliation(s)
- Radhika Sharma
- Department
of Chemistry, Emory University, Atlanta, Georgia 30332, United States
| | - Steven Narum
- Wallace
H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
| | - Shuhong Liu
- Department
of Chemistry, Emory University, Atlanta, Georgia 30332, United States
| | - Yixiao Dong
- Department
of Chemistry, Emory University, Atlanta, Georgia 30332, United States
| | - Kyung In Baek
- Wallace
H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
| | - Hanjoong Jo
- Wallace
H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
| | - Khalid Salaita
- Department
of Chemistry, Emory University, Atlanta, Georgia 30332, United States
- Wallace
H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
| |
Collapse
|
4
|
Yamaji R, Nakagawa O, Kishimoto Y, Fujii A, Matsumura T, Nakayama T, Kamada H, Osawa T, Yamaguchi T, Obika S. Synthesis and physical and biological properties of 1,3-diaza-2-oxophenoxazine-conjugated oligonucleotides. Bioorg Med Chem 2022; 72:116972. [DOI: 10.1016/j.bmc.2022.116972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 11/26/2022]
|
5
|
Hawner M, Ducho C. Cellular Targeting of Oligonucleotides by Conjugation with Small Molecules. Molecules 2020; 25:E5963. [PMID: 33339365 PMCID: PMC7766908 DOI: 10.3390/molecules25245963] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 12/11/2020] [Accepted: 12/11/2020] [Indexed: 12/20/2022] Open
Abstract
Drug candidates derived from oligonucleotides (ON) are receiving increased attention that is supported by the clinical approval of several ON drugs. Such therapeutic ON are designed to alter the expression levels of specific disease-related proteins, e.g., by displaying antigene, antisense, and RNA interference mechanisms. However, the high polarity of the polyanionic ON and their relatively rapid nuclease-mediated cleavage represent two major pharmacokinetic hurdles for their application in vivo. This has led to a range of non-natural modifications of ON structures that are routinely applied in the design of therapeutic ON. The polyanionic architecture of ON often hampers their penetration of target cells or tissues, and ON usually show no inherent specificity for certain cell types. These limitations can be overcome by conjugation of ON with molecular entities mediating cellular 'targeting', i.e., enhanced accumulation at and/or penetration of a specific cell type. In this context, the use of small molecules as targeting units appears particularly attractive and promising. This review provides an overview of advances in the emerging field of cellular targeting of ON via their conjugation with small-molecule targeting structures.
Collapse
Affiliation(s)
| | - Christian Ducho
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2 3, 66 123 Saarbrücken, Germany;
| |
Collapse
|
6
|
Ibrahim N, Alami M, Messaoudi S. Recent Advances in Transition-Metal-Catalyzed Functionalization of 1-Thiosugars. ASIAN J ORG CHEM 2018. [DOI: 10.1002/ajoc.201800449] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Nada Ibrahim
- BioCIS, Univ. Paris-Sud; CNRS; University Paris-Saclay; 92290 Châtenay-Malabry France
| | - Mouad Alami
- BioCIS, Univ. Paris-Sud; CNRS; University Paris-Saclay; 92290 Châtenay-Malabry France
| | - Samir Messaoudi
- BioCIS, Univ. Paris-Sud; CNRS; University Paris-Saclay; 92290 Châtenay-Malabry France
| |
Collapse
|
7
|
Probst N, Lartia R, Théry O, Alami M, Defrancq E, Messaoudi S. Efficient Buchwald-Hartwig-Migita Cross-Coupling for DNA Thioglycoconjugation. Chemistry 2018; 24:1795-1800. [PMID: 29205564 DOI: 10.1002/chem.201705371] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Indexed: 11/11/2022]
Abstract
An efficient method for the thioglycoconjugation of iodinated oligonucleotides by Buchwald-Hartwig-Migita cross-coupling under mild conditions is reported. The method enables divergent synthesis of many different functionalized thioglycosylated ODNs in good yields, without affecting the integrity of the other A, C, and G nucleobases.
Collapse
Affiliation(s)
- Nicolas Probst
- BioCIS, Univ. Paris-Sud, CNRS, University Paris-Saclay, 92290, Châtenay-Malabry, France
| | - Rémy Lartia
- University Grenoble-Alpes, DCM, CS 40700, 38058, Grenoble, France
| | - Océane Théry
- University Grenoble-Alpes, DCM, CS 40700, 38058, Grenoble, France
| | - Mouâd Alami
- BioCIS, Univ. Paris-Sud, CNRS, University Paris-Saclay, 92290, Châtenay-Malabry, France
| | - Eric Defrancq
- University Grenoble-Alpes, DCM, CS 40700, 38058, Grenoble, France
| | - Samir Messaoudi
- BioCIS, Univ. Paris-Sud, CNRS, University Paris-Saclay, 92290, Châtenay-Malabry, France
| |
Collapse
|
8
|
Zhou Z, Liu S, Zhang Y, Yang X, Ma Y, Guan Z, Wu Y, Zhang L, Yang Z. Reductive nanocomplex encapsulation of cRGD-siRNA conjugates for enhanced targeting to cancer cells. Int J Nanomedicine 2017; 12:7255-7272. [PMID: 29042774 PMCID: PMC5634379 DOI: 10.2147/ijn.s136726] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In this study, through covalent conjugation and lipid material entrapment, a combined modification strategy was established for effective delivery of small interfering RNA (siRNA). Single strands of siRNA targeting to BRAFV600E gene (siMB3) conjugated with cRGD peptide at 3'-terminus or 5'-terminus via cleavable disulfide bond was synthesized and then annealed with corresponding strands to obtain single and bis-cRGD-siRNA conjugates. A cationic lipid material (CLD) developed by our laboratory was mixed with the conjugates to generate nanocomplexes; their uniformity and electrical property were revealed by particle size and zeta potential measurement. Compared with CLD/siBraf, CLD/cRGD-siBraf achieved higher cell uptake and more excellent tumor-targeting ability, especially 21 (sense-5'/antisense-3″-cRGD-congjugate) nanocomplex. Moreover, they can regulate multiple pathways to varying degree and reduce acidification of endosome. Compared with the gene silencing of different conjugates, single or bis-cRGD-conjugated siRNA showed little differences except 22 (5/5) which cRGD was conjugated at 5'-terminus of antisense strand and sense strand. However bis-cRGD conjugate 21 nanocomplex exhibited better specific target gene silencing at multiple time points. Furthermore, the serum stabilities of the bis-cRGD conjugates were higher than those of the single-cRGD conjugates. In conclusion, all these data suggested that CLD/bis-conjugates, especially CLD/21, can be an effective system for delivery of siRNA to target BRAFV600E gene for therapy of melanoma.
Collapse
Affiliation(s)
- Zhaoxiu Zhou
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, People's Republic of China
| | - Shuang Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, People's Republic of China
| | - Yanfen Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, People's Republic of China
| | - Xiantao Yang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, People's Republic of China
| | - Yuan Ma
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, People's Republic of China
| | - Zhu Guan
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, People's Republic of China
| | - Yun Wu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, People's Republic of China
| | - Lihe Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, People's Republic of China
| | - Zhenjun Yang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, People's Republic of China
| |
Collapse
|
9
|
Valeur E, Guéret SM, Adihou H, Gopalakrishnan R, Lemurell M, Waldmann H, Grossmann TN, Plowright AT. New Modalities for Challenging Targets in Drug Discovery. Angew Chem Int Ed Engl 2017; 56:10294-10323. [PMID: 28186380 DOI: 10.1002/anie.201611914] [Citation(s) in RCA: 249] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 01/31/2017] [Indexed: 12/11/2022]
Abstract
Our ever-increasing understanding of biological systems is providing a range of exciting novel biological targets, whose modulation may enable novel therapeutic options for many diseases. These targets include protein-protein and protein-nucleic acid interactions, which are, however, often refractory to classical small-molecule approaches. Other types of molecules, or modalities, are therefore required to address these targets, which has led several academic research groups and pharmaceutical companies to increasingly use the concept of so-called "new modalities". This Review defines for the first time the scope of this term, which includes novel peptidic scaffolds, oligonucleotides, hybrids, molecular conjugates, as well as new uses of classical small molecules. We provide the most representative examples of these modalities to target large binding surface areas such as those found in protein-protein interactions and for biological processes at the center of cell regulation.
Collapse
Affiliation(s)
- Eric Valeur
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Pepparedsleden 1, Mölndal, 431 83, Sweden
| | - Stéphanie M Guéret
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Pepparedsleden 1, Mölndal, 431 83, Sweden.,AstraZeneca MPI Satellite Unit, Abteilung Chemische Biologie, Max Planck Institut für Molekulare Physiologie, Dortmund, Germany
| | - Hélène Adihou
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Pepparedsleden 1, Mölndal, 431 83, Sweden.,AstraZeneca MPI Satellite Unit, Abteilung Chemische Biologie, Max Planck Institut für Molekulare Physiologie, Dortmund, Germany
| | - Ranganath Gopalakrishnan
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Pepparedsleden 1, Mölndal, 431 83, Sweden.,AstraZeneca MPI Satellite Unit, Abteilung Chemische Biologie, Max Planck Institut für Molekulare Physiologie, Dortmund, Germany
| | - Malin Lemurell
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Pepparedsleden 1, Mölndal, 431 83, Sweden
| | - Herbert Waldmann
- Abteilung Chemische Biologie, Max Planck Institut für Molekulare Physiologie, Dortmund, Germany.,Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Germany
| | - Tom N Grossmann
- Chemical Genomics Centre of the Max Planck Society, Dortmund, Germany.,Department of Chemistry & Pharmaceutical Sciences, VU University Amsterdam, The Netherlands
| | - Alleyn T Plowright
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Pepparedsleden 1, Mölndal, 431 83, Sweden
| |
Collapse
|
10
|
Valeur E, Guéret SM, Adihou H, Gopalakrishnan R, Lemurell M, Waldmann H, Grossmann TN, Plowright AT. Neue Modalitäten für schwierige Zielstrukturen in der Wirkstoffentwicklung. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201611914] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Eric Valeur
- Cardiovascular and Metabolic Diseases; Innovative Medicines and Early Development Biotech Unit; AstraZeneca; Pepparedsleden 1 Mölndal 431 83 Schweden
| | - Stéphanie M. Guéret
- Cardiovascular and Metabolic Diseases; Innovative Medicines and Early Development Biotech Unit; AstraZeneca; Pepparedsleden 1 Mölndal 431 83 Schweden
- AstraZeneca MPI Satellite Unit; Abteilung Chemische Biologie; Max-Planck-Institut für Molekulare Physiologie; Dortmund Deutschland
| | - Hélène Adihou
- Cardiovascular and Metabolic Diseases; Innovative Medicines and Early Development Biotech Unit; AstraZeneca; Pepparedsleden 1 Mölndal 431 83 Schweden
- AstraZeneca MPI Satellite Unit; Abteilung Chemische Biologie; Max-Planck-Institut für Molekulare Physiologie; Dortmund Deutschland
| | - Ranganath Gopalakrishnan
- Cardiovascular and Metabolic Diseases; Innovative Medicines and Early Development Biotech Unit; AstraZeneca; Pepparedsleden 1 Mölndal 431 83 Schweden
- AstraZeneca MPI Satellite Unit; Abteilung Chemische Biologie; Max-Planck-Institut für Molekulare Physiologie; Dortmund Deutschland
| | - Malin Lemurell
- Cardiovascular and Metabolic Diseases; Innovative Medicines and Early Development Biotech Unit; AstraZeneca; Pepparedsleden 1 Mölndal 431 83 Schweden
| | - Herbert Waldmann
- Abteilung Chemische Biologie; Max-Planck-Institut für Molekulare Physiologie; Dortmund Deutschland
- Fakultät für Chemie and Chemische Biologie; Technische Universität Dortmund; Deutschland
| | - Tom N. Grossmann
- Chemical Genomics Centre der Max-Planck-Gesellschaft; Dortmund Deutschland
- Department of Chemistry & Pharmaceutical Sciences; VU University Amsterdam; Niederlande
| | - Alleyn T. Plowright
- Cardiovascular and Metabolic Diseases; Innovative Medicines and Early Development Biotech Unit; AstraZeneca; Pepparedsleden 1 Mölndal 431 83 Schweden
| |
Collapse
|
11
|
Cooper BM, Putnam D. Polymers for siRNA Delivery: A Critical Assessment of Current Technology Prospects for Clinical Application. ACS Biomater Sci Eng 2016; 2:1837-1850. [PMID: 33440520 DOI: 10.1021/acsbiomaterials.6b00363] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The number of polymer-based vectors for siRNA delivery in clinical trials lags behind other delivery strategies; however, the molecular architectures and chemical compositions available to polymers make them attractive candidates for further exploration. Polymer vectors are extensively investigated in academic laboratories worldwide with fundamental progress having recently been made in the areas of high-throughput screening, synthetic methods, cellular internalization, endosomal escape and computational prediction and analysis. This review assesses recent advances within the field and highlights relevant developments from within the complementary fields of nanotechnology and protein chemistry with the intent to propose future work that addresses key gaps within the current body of knowledge, potentially advancing the development of the next generation of polymeric vectors.
Collapse
Affiliation(s)
- Bailey M Cooper
- Meinig School of Biomedical Engineering and ‡Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - David Putnam
- Meinig School of Biomedical Engineering and Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
12
|
Patel PL, Rana NK, Patel MR, Kozuch SD, Sabatino D. Nucleic Acid Bioconjugates in Cancer Detection and Therapy. ChemMedChem 2015; 11:252-69. [PMID: 26663095 DOI: 10.1002/cmdc.201500502] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 11/23/2015] [Indexed: 12/28/2022]
Abstract
Nucleoside- and nucleotide-based chemotherapeutics have been used to treat cancer for more than 50 years. However, their inherent cytotoxicities and the emergent resistance of tumors against treatment has inspired a new wave of compounds in which the overall pharmacological profile of the bioactive nucleic acid component is improved by conjugation with delivery vectors, small-molecule drugs, and/or imaging modalities. In this manner, nucleic acid bioconjugates have the potential for targeting and effecting multiple biological processes in tumors, leading to synergistic antitumor effects. Consequently, tumor resistance and recurrence is mitigated, leading to more effective forms of cancer therapy. Bioorthogonal chemistry has led to the development of new nucleoside bioconjugates, which have served to improve treatment efficacy en route towards FDA approval. Similarly, oligonucleotide bioconjugates have shown encouraging preclinical and clinical results. The modified oligonucleotides and their pharmaceutically active formulations have addressed many weaknesses of oligonucleotide-based drugs. They have also paved the way for important advancements in cancer diagnosis and treatment. Cancer-targeting ligands such as small-molecules, peptides, and monoclonal antibody fragments have all been successfully applied in oligonucleotide bioconjugation and have shown promising anticancer effects in vitro and in vivo. Thus, the application of bioorthogonal chemistry will, in all likelihood, continue to supply a promising pipeline of nucleic acid bioconjugates for applications in cancer detection and therapy.
Collapse
Affiliation(s)
- Pradeepkumar L Patel
- Sun Pharmaceutical Industries Inc., Analytical Research and Development, 270 Prospect Plains Road, Cranbury, NJ, 08512, USA
| | - Niki K Rana
- Department of Chemistry and Biochemistry, Seton Hall University, 400 South Orange Avenue, South Orange, NJ, 07079, USA
| | - Mayurbhai R Patel
- Department of Chemistry and Biochemistry, Seton Hall University, 400 South Orange Avenue, South Orange, NJ, 07079, USA
| | - Stephen D Kozuch
- Department of Chemistry and Biochemistry, Seton Hall University, 400 South Orange Avenue, South Orange, NJ, 07079, USA
| | - David Sabatino
- Department of Chemistry and Biochemistry, Seton Hall University, 400 South Orange Avenue, South Orange, NJ, 07079, USA.
| |
Collapse
|
13
|
Niemietz C, Chandhok G, Schmidt H. Therapeutic Oligonucleotides Targeting Liver Disease: TTR Amyloidosis. Molecules 2015; 20:17944-75. [PMID: 26437390 PMCID: PMC6332041 DOI: 10.3390/molecules201017944] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 09/23/2015] [Accepted: 09/23/2015] [Indexed: 12/13/2022] Open
Abstract
The liver has become an increasingly interesting target for oligonucleotide therapy. Mutations of the gene encoding transthyretin (TTR), expressed in vast amounts by the liver, result in a complex degenerative disease, termed familial amyloid polyneuropathy (FAP). Misfolded variants of TTR are linked to the establishment of extracellular protein deposition in various tissues, including the heart and the peripheral nervous system. Recent progress in the chemistry and formulation of antisense (ASO) and small interfering RNA (siRNA) designed for a knockdown of TTR mRNA in the liver has allowed to address the issue of gene-specific molecular therapy in a clinical setting of FAP. The two therapeutic oligonucleotides bind to RNA in a sequence specific manner but exploit different mechanisms. Here we describe major developments that have led to the advent of therapeutic oligonucleotides for treatment of TTR-related disease.
Collapse
MESH Headings
- Amyloid Neuropathies, Familial/genetics
- Amyloid Neuropathies, Familial/therapy
- Animals
- Clinical Studies as Topic
- Drug Evaluation, Preclinical
- Gene Silencing
- Genetic Therapy
- Humans
- Liver Diseases/genetics
- Liver Diseases/therapy
- Mutation
- Oligonucleotides/administration & dosage
- Oligonucleotides/chemistry
- Oligonucleotides/genetics
- Oligonucleotides/therapeutic use
- Oligonucleotides, Antisense/administration & dosage
- Oligonucleotides, Antisense/chemistry
- Oligonucleotides, Antisense/genetics
- Oligonucleotides, Antisense/therapeutic use
- Prealbumin/genetics
- RNA Interference
- RNA, Small Interfering/administration & dosage
- RNA, Small Interfering/chemistry
- RNA, Small Interfering/genetics
- RNA, Small Interfering/therapeutic use
- Treatment Outcome
Collapse
Affiliation(s)
- Christoph Niemietz
- Klinik für Transplantationsmedizin, Universitätsklinikum Münster, Albert-Schweitzer-Campus 1, Gebäude A14, D-48149 Münster, Germany.
| | - Gursimran Chandhok
- Klinik für Transplantationsmedizin, Universitätsklinikum Münster, Albert-Schweitzer-Campus 1, Gebäude A14, D-48149 Münster, Germany.
| | - Hartmut Schmidt
- Klinik für Transplantationsmedizin, Universitätsklinikum Münster, Albert-Schweitzer-Campus 1, Gebäude A14, D-48149 Münster, Germany.
| |
Collapse
|
14
|
Peel BJ, Hagen G, Krishnamurthy K, Desaulniers JP. Conjugation and Evaluation of Small Hydrophobic Molecules to Triazole-Linked siRNAs. ACS Med Chem Lett 2015; 6:117-22. [PMID: 25699137 DOI: 10.1021/ml500260j] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Accepted: 12/04/2014] [Indexed: 12/29/2022] Open
Abstract
Short interfering RNAs (siRNAs) have tremendous potential as a new class of next-generation therapeutics; however, their progress is lagging due to issues related to stability, biodistribution, and cell-membrane permeability. To overcome these issues, there is widespread interest in chemically modifying siRNAs. In this study, siRNAs that contain a triazole-backbone unit with pyrimidine-modified hydrophobic substituents were synthesized and examined for their gene-silencing activity. In our study, we generated a library of siRNAs that target both a plasmid reporter system and an endogenous gene target, bcl-2. Our results indicate that these unique modifications are well tolerated within the RNA interference pathway. In addition, a cholesterol-modified triazole-linked siRNA targeting the exogenous target firefly luciferase was capable of gene-silencing at levels greater than 80% in the absence of a carrier complex.
Collapse
Affiliation(s)
- Brandon J. Peel
- University of Ontario Institute of Technology, Faculty of Science, 2000 Simcoe Street North, Oshawa, Ontario L1H 7K4, Canada
| | - Gordon Hagen
- University of Ontario Institute of Technology, Faculty of Science, 2000 Simcoe Street North, Oshawa, Ontario L1H 7K4, Canada
| | - Kalaivani Krishnamurthy
- University of Ontario Institute of Technology, Faculty of Science, 2000 Simcoe Street North, Oshawa, Ontario L1H 7K4, Canada
| | - Jean-Paul Desaulniers
- University of Ontario Institute of Technology, Faculty of Science, 2000 Simcoe Street North, Oshawa, Ontario L1H 7K4, Canada
| |
Collapse
|
15
|
Nakagawa O. [Development of artificial nucleic acids functionalized for damaged gene diagnosis, gene inhibition and delivery system]. YAKUGAKU ZASSHI 2014; 134:1319-29. [PMID: 25452241 DOI: 10.1248/yakushi.14-00197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Artificial nucleic acids have recently been widely used with their properties optimized for various technologies such as the inhibition of gene expression (antisense/antigene strategies, RNA interference) and genetic diagnosis (single nucleotide polymorphism (SNP), damaged nucleobase). For practical application of nucleic acid therapeutics, establishment of an effective delivery system for oligonucleotides is also required because of their poor permeability into cells. Various useful delivery technologies including lipoplexes formed using cationic lipids and polyplexes made with cationic polymers have been developed; however, there is no crucial tool for oligonucleotide therapeutics at present. If technologies of functional nucleic acids and adequate delivery systems are cooperatively developed, the realization of nucleic acid therapeutics might be effectively accelerated. Based on this concept, we have been cooperatively developing these technologies based on organic synthetic chemistry during the past decade. This paper summarizes our recent results: 1) development of a specific fluorescent probe for 8-oxoguanine; 2) synthesis and evaluation of a prodrug-type small interfering RNA (siRNA) molecule; and 3) targeted intracellular delivery of oligonucleotides via conjugation with receptor-targeted ligands.
Collapse
Affiliation(s)
- Osamu Nakagawa
- Graduate School of Pharmaceutical Sciences, Osaka University
| |
Collapse
|
16
|
Urban DJ, Roth BL. DREADDs (designer receptors exclusively activated by designer drugs): chemogenetic tools with therapeutic utility. Annu Rev Pharmacol Toxicol 2014; 55:399-417. [PMID: 25292433 DOI: 10.1146/annurev-pharmtox-010814-124803] [Citation(s) in RCA: 448] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In the past decade, emerging synthetic biology technologies such as chemogenetics have dramatically transformed how pharmacologists and systems biologists deconstruct the involvement of G protein-coupled receptors (GPCRs) in a myriad of physiological and translational settings. Here we highlight a specific chemogenetic application that extends the utility of the concept of RASSLs (receptors activated solely by synthetic ligands): We have dubbed it DREADDs (designer receptors exclusively activated by designer drugs). As we show in this review, DREADDs are now used ubiquitously to modulate GPCR activity noninvasively in vivo. Results from these studies have directly implicated GPCR signaling in a large number of therapeutically relevant contexts. We also highlight recent applications of DREADD technology that have illuminated GPCR signaling processes that control pathways relevant to the treatment of eating disorders, obesity, and obesity-associated metabolic abnormalities. Additionally, we provide an overview of the potential utility of chemogenetic technologies for transformative therapeutics.
Collapse
|
17
|
Juliano RL, Ming X, Carver K, Laing B. Cellular uptake and intracellular trafficking of oligonucleotides: implications for oligonucleotide pharmacology. Nucleic Acid Ther 2014; 24:101-13. [PMID: 24383421 DOI: 10.1089/nat.2013.0463] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
One of the major constraints on the therapeutic use of oligonucleotides is inefficient delivery to their sites of action in the cytosol or nucleus. Recently it has become evident that the pathways of cellular uptake and intracellular trafficking of oligonucleotides can strongly influence their pharmacological actions. Here we provide background information on the basic processes of endocytosis and trafficking and then review recent literature on targeted delivery and subcellular trafficking of oligonucleotides in that context. A variety of approaches including molecular scale ligand-oligonucleotide conjugates, ligand-targeted nanocarriers, and the use of small molecules to enhance oligonucleotide effects are discussed.
Collapse
Affiliation(s)
- R L Juliano
- Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina , Chapel Hill, North Carolina
| | | | | | | |
Collapse
|