1
|
Cho C, Fei C, Jiang B, Yang W, Yuan HS. Molecular mechanisms for DNA methylation defects induced by ICF syndrome-linked mutations in DNMT3B. Protein Sci 2024; 33:e5131. [PMID: 39290110 PMCID: PMC11408749 DOI: 10.1002/pro.5131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/19/2024] [Accepted: 07/14/2024] [Indexed: 09/19/2024]
Abstract
DNA methyltransferase 3B (DNMT3B) plays a crucial role in DNA methylation during mammalian development. Mutations in DNMT3B are associated with human genetic diseases, particularly immunodeficiency, centromere instability, facial anomalies (ICF) syndrome. Although ICF syndrome-related missense mutations in the DNMT3B have been identified, their precise impact on protein structure and function remains inadequately explored. Here, we delve into the impact of four ICF syndrome-linked mutations situated in the DNMT3B dimeric interface (H814R, D817G, V818M, and R823G), revealing that each of these mutations compromises DNA-binding and methyltransferase activities to varying degrees. We further show that H814R, D817G, and V818M mutations severely disrupt the proper assembly of DNMT3B homodimer, whereas R823G does not. We also determined the first crystal structure of the methyltransferase domain of DNMT3B-DNMT3L tetrameric complex hosting the R823G mutation showing that the R823G mutant displays diminished hydrogen bonding interactions around T775, K777, G823, and Q827 in the protein-DNA interface, resulting in reduced DNA-binding affinity and a shift in sequence preference of +1 to +3 flanking positions. Altogether, our study uncovers a wide array of fundamental defects triggered by DNMT3B mutations, including the disassembly of DNMT3B dimers, reduced DNA-binding capacity, and alterations in flanking sequence preferences, leading to aberrant DNA hypomethylation and ICF syndrome.
Collapse
Affiliation(s)
- Chao‐Cheng Cho
- Institute of Molecular Biology, Academia SinicaTaipeiTaiwan, ROC
| | - Cheng‐Yin Fei
- Institute of Molecular Biology, Academia SinicaTaipeiTaiwan, ROC
| | - Bo‐Chen Jiang
- Institute of Molecular Biology, Academia SinicaTaipeiTaiwan, ROC
| | - Wei‐Zen Yang
- Institute of Molecular Biology, Academia SinicaTaipeiTaiwan, ROC
| | - Hanna S. Yuan
- Institute of Molecular Biology, Academia SinicaTaipeiTaiwan, ROC
- Graduate Institute of Biochemistry and Molecular BiologyNational Taiwan UniversityTaipeiTaiwan, ROC
| |
Collapse
|
2
|
Li Y, Wu M, Fu Y, Xue J, Yuan F, Qu T, Rissanou AN, Wang Y, Li X, Hu H. Therapeutic stapled peptides: Efficacy and molecular targets. Pharmacol Res 2024; 203:107137. [PMID: 38522761 DOI: 10.1016/j.phrs.2024.107137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/06/2024] [Accepted: 03/06/2024] [Indexed: 03/26/2024]
Abstract
Peptide stapling, by employing a stable, preformed alpha-helical conformation, results in the production of peptides with improved membrane permeability and enhanced proteolytic stability, compared to the original peptides, and provides an effective solution to accelerate the rapid development of peptide drugs. Various reviews present peptide stapling chemistries, anchoring residues and one- or two-component cyclization, however, therapeutic stapled peptides have not been systematically summarized, especially focusing on various disease-related targets. This review highlights the latest advances in therapeutic peptide drug development facilitated by the application of stapling technology, including different stapling techniques, synthetic accessibility, applicability to biological targets, potential for solving biological problems, as well as the current status of development. Stapled peptides as therapeutic drug candidates have been classified and analysed mainly by receptor- and ligand-based stapled peptide design against various diseases, including cancer, infectious diseases, inflammation, and diabetes. This review is expected to provide a comprehensive reference for the rational design of stapled peptides for different diseases and targets to facilitate the development of therapeutic peptides with enhanced pharmacokinetic and biological properties.
Collapse
Affiliation(s)
- Yulei Li
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China.
| | - Minghao Wu
- School of Medicine, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Yinxue Fu
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Jingwen Xue
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Fei Yuan
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Tianci Qu
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Anastassia N Rissanou
- Theoretical & Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, Athens 11635, Greece
| | - Yilin Wang
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, 131 Dong'an Road, Shanghai 200032, China
| | - Xiang Li
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai, 200433, China.
| | - Honggang Hu
- School of Medicine, Shanghai University, 99 Shangda Road, Shanghai 200444, China.
| |
Collapse
|
3
|
Tsuji K, Baffour-Awuah Owusu K, Miura Y, Ishii T, Shinohara K, Kobayakawa T, Emi A, Nakano T, Suzuki Y, Tamamura H. Dimerized fusion inhibitor peptides targeting the HR1-HR2 interaction of SARS-CoV-2. RSC Adv 2023; 13:8779-8793. [PMID: 36950081 PMCID: PMC10026625 DOI: 10.1039/d2ra07356k] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 02/27/2023] [Indexed: 03/22/2023] Open
Abstract
Membrane fusion is a critical and indispensable step in the replication cycles of viruses such as SARS-CoV-2 and human immunodeficiency virus type-1 (HIV-1). In this step, a trimer of the heptad repeat 1 (HR1) region interacts with the three HR2 regions and forms a 6-helix bundle (6-HB) structure to proceed with membrane fusion of the virus envelope and host cells. Recently, several researchers have developed potent peptidic SARS-CoV-2 fusion inhibitors based on the HR2 sequence and including some modifications. We have developed highly potent HIV-1 fusion inhibitors by dimerization of its HR2 peptides. Here, we report the development of dimerized HR2 peptides of SARS-CoV-2, which showed significantly higher antiviral activity than the corresponding monomers, suggesting that the dimerization strategy can facilitate the design of potent inhibitors of SARS-CoV-2.
Collapse
Affiliation(s)
- Kohei Tsuji
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU) Chiyoda-ku Tokyo 101-0062 Japan +81-3-5280-8038 +81-3-5280-8036
| | - Kofi Baffour-Awuah Owusu
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU) Chiyoda-ku Tokyo 101-0062 Japan +81-3-5280-8038 +81-3-5280-8036
| | - Yutaro Miura
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU) Chiyoda-ku Tokyo 101-0062 Japan +81-3-5280-8038 +81-3-5280-8036
| | - Takahiro Ishii
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU) Chiyoda-ku Tokyo 101-0062 Japan +81-3-5280-8038 +81-3-5280-8036
| | - Kouki Shinohara
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU) Chiyoda-ku Tokyo 101-0062 Japan +81-3-5280-8038 +81-3-5280-8036
| | - Takuya Kobayakawa
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU) Chiyoda-ku Tokyo 101-0062 Japan +81-3-5280-8038 +81-3-5280-8036
| | - Akino Emi
- Department of Microbiology and Infection Control, Faculty of Medicine, Osaka Medical and Pharmaceutical University Takatsuki Osaka 569-8686 Japan
| | - Takashi Nakano
- Department of Microbiology and Infection Control, Faculty of Medicine, Osaka Medical and Pharmaceutical University Takatsuki Osaka 569-8686 Japan
| | - Youichi Suzuki
- Department of Microbiology and Infection Control, Faculty of Medicine, Osaka Medical and Pharmaceutical University Takatsuki Osaka 569-8686 Japan
| | - Hirokazu Tamamura
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU) Chiyoda-ku Tokyo 101-0062 Japan +81-3-5280-8038 +81-3-5280-8036
| |
Collapse
|
4
|
Kobayakawa T, Yokoyama M, Tsuji K, Fujino M, Kurakami M, Onishi T, Boku S, Ishii T, Miura Y, Shinohara K, Kishihara Y, Ohashi N, Kotani O, Murakami T, Sato H, Tamamura H. Low-molecular-weight anti-HIV-1 agents targeting HIV-1 capsid proteins. RSC Adv 2023; 13:2156-2167. [PMID: 36712613 PMCID: PMC9834766 DOI: 10.1039/d2ra06837k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 01/02/2023] [Indexed: 01/15/2023] Open
Abstract
The HIV-1 capsid is a shell that encapsulates viral RNA, and forms a conical structure by assembling oligomers of capsid (CA) proteins. Since the CA proteins are highly conserved among many strains of HIV-1, the inhibition of the CA function could be an appropriate goal for suppression of HIV-1 replication, but to date, no drug targeting CA has been developed. Hydrophobic interactions between two CA molecules through Trp184 and Met185 in the protein are known to be indispensable for conformational stabilization of the CA multimer. In our previous study, a small molecule designed by in silico screening as a dipeptide mimic of Trp184 and Met185 in the interaction site was synthesized and found to have significant anti-HIV-1 activity. In the present study, molecules with different scaffolds based on a dipeptide mimic of Trp184 and Met185 have been designed and synthesized. Their significant anti-HIV activity and their advantages compared to the previous compounds were examined. The present results should be useful in the design of novel CA-targeting anti-HIV agents.
Collapse
Affiliation(s)
- Takuya Kobayakawa
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU) 2-3-10 Kandasurugadai, Chiyoda-ku Tokyo 101-0062 Japan
| | - Masaru Yokoyama
- Pathogen Genomics Center, National Institute of Infectious Diseases Musashimurayama 208-0011 Tokyo Japan
| | - Kohei Tsuji
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU) 2-3-10 Kandasurugadai, Chiyoda-ku Tokyo 101-0062 Japan
| | - Masayuki Fujino
- AIDS Research Center, National Institute of Infectious Diseases Shinjuku-ku Tokyo 162-8640 Japan
| | - Masaki Kurakami
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU) 2-3-10 Kandasurugadai, Chiyoda-ku Tokyo 101-0062 Japan
| | - Takato Onishi
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU) 2-3-10 Kandasurugadai, Chiyoda-ku Tokyo 101-0062 Japan
| | - Sayaka Boku
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU) 2-3-10 Kandasurugadai, Chiyoda-ku Tokyo 101-0062 Japan
| | - Takahiro Ishii
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU) 2-3-10 Kandasurugadai, Chiyoda-ku Tokyo 101-0062 Japan
| | - Yutaro Miura
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU) 2-3-10 Kandasurugadai, Chiyoda-ku Tokyo 101-0062 Japan
| | - Kouki Shinohara
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU) 2-3-10 Kandasurugadai, Chiyoda-ku Tokyo 101-0062 Japan
| | - Yuki Kishihara
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU) 2-3-10 Kandasurugadai, Chiyoda-ku Tokyo 101-0062 Japan
| | - Nami Ohashi
- Showa Pharmaceutical University Machida 194-8543 Tokyo Japan
| | - Osamu Kotani
- Pathogen Genomics Center, National Institute of Infectious Diseases Musashimurayama 208-0011 Tokyo Japan
| | - Tsutomu Murakami
- AIDS Research Center, National Institute of Infectious Diseases Shinjuku-ku Tokyo 162-8640 Japan
| | - Hironori Sato
- Pathogen Genomics Center, National Institute of Infectious Diseases Musashimurayama 208-0011 Tokyo Japan
| | - Hirokazu Tamamura
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU) 2-3-10 Kandasurugadai, Chiyoda-ku Tokyo 101-0062 Japan
| |
Collapse
|
5
|
|
6
|
Kobayakawa T, Yokoyama M, Tsuji K, Fujino M, Kurakami M, Boku S, Nakayama M, Kaneko M, Ohashi N, Kotani O, Murakami T, Sato H, Tamamura H. Small-Molecule Anti-HIV-1 Agents Based on HIV-1 Capsid Proteins. Biomolecules 2021; 11:biom11020208. [PMID: 33546092 PMCID: PMC7913237 DOI: 10.3390/biom11020208] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/09/2021] [Accepted: 01/12/2021] [Indexed: 12/28/2022] Open
Abstract
The capsid of human immunodeficiency virus type 1 (HIV-1) is a shell that encloses viral RNA and is highly conserved among many strains of the virus. It forms a conical structure by assembling oligomers of capsid (CA) proteins. CA dysfunction is expected to be an important target of suppression of HIV-1 replication, and it is important to understand a new mechanism that could lead to the CA dysfunction. A drug targeting CA however, has not been developed to date. Hydrophobic interactions between two CA molecules via Trp184/Met185 in CA were recently reported to be important for stabilization of the multimeric structure of CA. In the present study, a small molecule designed by in silico screening as a dipeptide mimic of Trp184 and Met185 in the interaction site, was synthesized and its significant anti-HIV-1 activity was confirmed. Structure activity relationship (SAR) studies of its derivatives were performed and provided results that are expected to be useful in the future design and development of novel anti-HIV agents targeting CA.
Collapse
Affiliation(s)
- Takuya Kobayakawa
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Chiyoda-ku, Tokyo 101-0062, Japan; (T.K.); (K.T.); (M.K.); (S.B.); (M.N.); (M.K.); (N.O.)
| | - Masaru Yokoyama
- Pathogen Genomics Center, National Institute of Infectious Diseases, Musashimurayama, Tokyo 208-0011, Japan; (M.Y.); (O.K.)
| | - Kohei Tsuji
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Chiyoda-ku, Tokyo 101-0062, Japan; (T.K.); (K.T.); (M.K.); (S.B.); (M.N.); (M.K.); (N.O.)
| | - Masayuki Fujino
- AIDS Research Center, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo 162-8640, Japan;
| | - Masaki Kurakami
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Chiyoda-ku, Tokyo 101-0062, Japan; (T.K.); (K.T.); (M.K.); (S.B.); (M.N.); (M.K.); (N.O.)
| | - Sayaka Boku
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Chiyoda-ku, Tokyo 101-0062, Japan; (T.K.); (K.T.); (M.K.); (S.B.); (M.N.); (M.K.); (N.O.)
| | - Miyuki Nakayama
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Chiyoda-ku, Tokyo 101-0062, Japan; (T.K.); (K.T.); (M.K.); (S.B.); (M.N.); (M.K.); (N.O.)
| | - Moemi Kaneko
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Chiyoda-ku, Tokyo 101-0062, Japan; (T.K.); (K.T.); (M.K.); (S.B.); (M.N.); (M.K.); (N.O.)
| | - Nami Ohashi
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Chiyoda-ku, Tokyo 101-0062, Japan; (T.K.); (K.T.); (M.K.); (S.B.); (M.N.); (M.K.); (N.O.)
| | - Osamu Kotani
- Pathogen Genomics Center, National Institute of Infectious Diseases, Musashimurayama, Tokyo 208-0011, Japan; (M.Y.); (O.K.)
| | - Tsutomu Murakami
- AIDS Research Center, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo 162-8640, Japan;
- Correspondence: (T.M.); (H.S.); (H.T.); Tel.: +81-3-4582-2816 (T.M.); +81-42-561-0771 (H.S.); +81-3-5280-8036 (H.T.)
| | - Hironori Sato
- Pathogen Genomics Center, National Institute of Infectious Diseases, Musashimurayama, Tokyo 208-0011, Japan; (M.Y.); (O.K.)
- Correspondence: (T.M.); (H.S.); (H.T.); Tel.: +81-3-4582-2816 (T.M.); +81-42-561-0771 (H.S.); +81-3-5280-8036 (H.T.)
| | - Hirokazu Tamamura
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Chiyoda-ku, Tokyo 101-0062, Japan; (T.K.); (K.T.); (M.K.); (S.B.); (M.N.); (M.K.); (N.O.)
- Correspondence: (T.M.); (H.S.); (H.T.); Tel.: +81-3-4582-2816 (T.M.); +81-42-561-0771 (H.S.); +81-3-5280-8036 (H.T.)
| |
Collapse
|
7
|
Tsuji K, Wang R, Kobayakawa T, Owusu KBA, Fujino M, Kaneko M, Yamamoto N, Murakami T, Tamamura H. Potent leads based on CA-19L, an anti-HIV active HIV-1 capsid fragment. Bioorg Med Chem 2020; 30:115923. [PMID: 33316719 DOI: 10.1016/j.bmc.2020.115923] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 11/29/2020] [Accepted: 12/01/2020] [Indexed: 01/17/2023]
Abstract
Several anti-HIV-1 peptides have previously been found among overlapping fragment peptide libraries that contain an octa-arginyl moiety and cover the whole sequence of an HIV-1 capsid (CA) protein. Several derivatives based on a potent CA fragment peptide CA-19L have been synthesized. CA-19L overlaps with the Helix 9 region of the CA protein, which could be important for oligomerization of the CA proteins. Derivatives of CA-19L in which several amino acid residues were added to the N- and C-termini according to the natural CA sequence, were synthesized and their anti-HIV activity was evaluated. Some potent compounds were found, and these potential new anti-HIV agents are expected to be useful as new tools for elucidation of CA functions.
Collapse
Affiliation(s)
- Kohei Tsuji
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Rongyi Wang
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Takuya Kobayakawa
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Kofi Baffour-Awuah Owusu
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan; Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8150, Japan
| | - Masayuki Fujino
- AIDS Research Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Moemi Kaneko
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Naoki Yamamoto
- Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8150, Japan; Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Tsutomu Murakami
- AIDS Research Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan.
| | - Hirokazu Tamamura
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan; Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8150, Japan.
| |
Collapse
|
8
|
Kobayakawa T, Ebihara K, Tsuji K, Kawada T, Fujino M, Honda Y, Ohashi N, Murakami T, Tamamura H. Bivalent HIV-1 fusion inhibitors based on peptidomimetics. Bioorg Med Chem 2020; 28:115812. [PMID: 33157478 DOI: 10.1016/j.bmc.2020.115812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 09/29/2020] [Accepted: 10/03/2020] [Indexed: 10/23/2022]
Abstract
Membrane fusion is a valid target for inhibition of HIV-1 replication. A 34-mer fragment peptide (C34), which is contained in the HIV-1 envelope protein gp41, has significant anti-HIV activity. Previously, a dimeric derivative of C34 linked by a disulfide bridge at its C-terminus was found to have more potent anti-HIV activity than the C34 peptide monomer. To date, several peptidomimetic small inhibitors have been reported, but most have lower potency than peptide derivatives related to C34. In the present study we applied this dimerization concept to these peptidomimetic small inhibitors and designed several bivalent peptidomimetic HIV-1 fusion inhibitors. The importance of the length of linkers crosslinking two peptidomimetic compounds was demonstrated and several potent bivalent inhibitors containing tethered peptidomimetics were produced.
Collapse
Affiliation(s)
- Takuya Kobayakawa
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Kento Ebihara
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Kohei Tsuji
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Takuma Kawada
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Masayuki Fujino
- AIDS Research Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Yuzuna Honda
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Nami Ohashi
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Tsutomu Murakami
- AIDS Research Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan.
| | - Hirokazu Tamamura
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| |
Collapse
|
9
|
Tsuji K, Owusu KBA, Kobayakawa T, Wang R, Fujino M, Kaneko M, Yamamoto N, Murakami T, Tamamura H. Exploratory studies on CA-15L, an anti-HIV active HIV-1 capsid fragment. Bioorg Med Chem 2020; 28:115488. [PMID: 32305183 DOI: 10.1016/j.bmc.2020.115488] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 03/31/2020] [Accepted: 04/03/2020] [Indexed: 02/04/2023]
Abstract
Utilizing overlapping fragment peptide libraries covering the whole sequence of an HIV-1 capsid (CA) protein with the addition of an octa-arginyl moiety, we had previously found several peptides with anti-HIV-1 activity. Herein, among these potent CA fragment peptides, CA-15L was examined because this peptide sequence overlaps with Helix 7, a helix region of the CA protein, which may be important for oligomerization of the CA proteins. A CA-15L surrogate with hydrophilic residues, and its derivatives, in which amino acid sequences are shifted toward the C-terminus by one or more residues, were synthesized and their anti-HIV activity was evaluated. In addition, its derivatives with substitution for the Ser149 residue were synthesized and their anti-HIV activity was evaluated because Ser149 might be phosphorylated in the step of degradation of CA protein oligomers. Several active compounds were found and might become new anti-HIV agents and new tools for elucidation of CA functions.
Collapse
Affiliation(s)
- Kohei Tsuji
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Kofi Baffour-Awuah Owusu
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan; Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8150, Japan
| | - Takuya Kobayakawa
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Rongyi Wang
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Masayuki Fujino
- AIDS Research Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Moemi Kaneko
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Naoki Yamamoto
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Tsutomu Murakami
- AIDS Research Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan.
| | - Hirokazu Tamamura
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan; Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8150, Japan.
| |
Collapse
|
10
|
Maeda K, Das D, Kobayakawa T, Tamamura H, Takeuchi H. Discovery and Development of Anti-HIV Therapeutic Agents: Progress Towards Improved HIV Medication. Curr Top Med Chem 2019; 19:1621-1649. [PMID: 31424371 PMCID: PMC7132033 DOI: 10.2174/1568026619666190712204603] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/14/2019] [Accepted: 06/21/2019] [Indexed: 01/09/2023]
Abstract
The history of the human immunodeficiency virus (HIV)/AIDS therapy, which spans over 30 years, is one of the most dramatic stories of science and medicine leading to the treatment of a disease. Since the advent of the first AIDS drug, AZT or zidovudine, a number of agents acting on different drug targets, such as HIV enzymes (e.g. reverse transcriptase, protease, and integrase) and host cell factors critical for HIV infection (e.g. CD4 and CCR5), have been added to our armamentarium to combat HIV/AIDS. In this review article, we first discuss the history of the development of anti-HIV drugs, during which several problems such as drug-induced side effects and the emergence of drug-resistant viruses became apparent and had to be overcome. Nowadays, the success of Combination Antiretroviral Therapy (cART), combined with recently-developed powerful but nonetheless less toxic drugs has transformed HIV/AIDS from an inevitably fatal disease into a manageable chronic infection. However, even with such potent cART, it is impossible to eradicate HIV because none of the currently available HIV drugs are effective in eliminating occult “dormant” HIV cell reservoirs. A number of novel unique treatment approaches that should drastically improve the quality of life (QOL) of patients or might actually be able to eliminate HIV altogether have also been discussed later in the review.
Collapse
Affiliation(s)
- Kenji Maeda
- National Center for Global Health and Medicine (NCGM) Research Institute, Tokyo 162-8655, Japan
| | - Debananda Das
- Experimental Retrovirology Section, HIV and AIDS Malignancy Branch, National Cancer Institute, National Institutes of Health (NCI/NIH), Bethesda, MD, United States
| | - Takuya Kobayakawa
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Tokyo 101-0062, Japan
| | - Hirokazu Tamamura
- Department of Molecular Virology, Tokyo Medical and Dental University (TMDU), Tokyo 113-8519, Japan
| | - Hiroaki Takeuchi
- Department of Molecular Virology, Tokyo Medical and Dental University (TMDU), Tokyo 113-8519, Japan
| |
Collapse
|
11
|
Kobayakawa T, Ebihara K, Honda Y, Fujino M, Nomura W, Yamamoto N, Murakami T, Tamamura H. Dimeric C34 Derivatives Linked through Disulfide Bridges as New HIV-1 Fusion Inhibitors. Chembiochem 2019; 20:2101-2108. [PMID: 31012222 DOI: 10.1002/cbic.201900187] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Indexed: 11/12/2022]
Abstract
C34, a 34-mer fragment peptide, is contained in the HIV-1 envelope protein gp41. A dimeric derivative of C34 linked through a disulfide bridge at its C terminus was synthesized and found to display potent anti-HIV activity, comparable with that of a previously reported PEGylated dimer of C34REG. The reduction in the size of the linker moiety for dimerization was thus successful, and this result might shed some light on the mechanism of the suppression of six-helix bundle formation by these C34 dimeric derivatives. Addition of a Gly-Cys(CH2 CONH2 )-Gly-Gly motif at the N-terminal position of a C34 monomeric derivative significantly increased the anti-HIV-1 activity. This moiety functions as a new pharmacophore, and this might provide a useful insight into the design of potent HIV-1 fusion inhibitors.
Collapse
Affiliation(s)
- Takuya Kobayakawa
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo, 101-0062, Japan
| | - Kento Ebihara
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo, 101-0062, Japan
| | - Yuzuna Honda
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo, 101-0062, Japan
| | - Masayuki Fujino
- AIDS Research Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Wataru Nomura
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo, 101-0062, Japan
| | - Naoki Yamamoto
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Tsutomu Murakami
- AIDS Research Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Hirokazu Tamamura
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo, 101-0062, Japan
| |
Collapse
|
12
|
Tang Y, Han Z, Ren H, Guo J, Chong H, Tian Y, Liu K, Xu L. A novel multivalent DNA helix-based inhibitor showed enhanced anti-HIV-1 fusion activity. Eur J Pharm Sci 2018; 125:244-253. [PMID: 30292749 DOI: 10.1016/j.ejps.2018.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 09/26/2018] [Accepted: 10/04/2018] [Indexed: 11/27/2022]
Abstract
DNA helix-based HIV-1 fusion inhibitors have been discovered as potent drug candidates, but further research is required to enhance their efficiency. The trimeric structure of the HIV-1 envelope glycoprotein provides a structural basis for multivalent drug design. In this work, a "multi-domain" strategy was adopted for design of an oligodeoxynucleotide with assembly, linkage, and activity domains. Built on the self-assembly of higher-order nucleic acid structure, a novel category of multivalent DNA helix-based HIV-1 fusion inhibitor could be easily obtained by a simple annealing course in solution buffer, with no other chemical synthesis for multivalent connection. An optimized multivalent molecule, M4, showed significantly higher anti-HIV-1 fusion activity than did corresponding monovalent inhibitors. Examination of the underlying mechanism indicated that M4 could interact with HIV-1 glycoproteins gp120 and gp41, thereby inhibiting 6HB formation in the fusion course. M4 also showed anti-RDDP and anti-RNase H activity of reverse transcriptase. Besides, these assembled molecules showed improved in vitro metabolic stability in liver homogenate, kidney homogenate, and rat plasma. Moreover, little acute toxicity was observed. Our findings aid in the structural design and understanding of the mechanisms of DNA helix-based HIV-1 inhibitors. This study also provides a general strategy based on a new structural paradigm for the design of other multivalent nucleic acid drugs.
Collapse
Affiliation(s)
- Yongjia Tang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Taiping road, Beijing 100850, China
| | - Zeye Han
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Taiping road, Beijing 100850, China
| | - Hongqian Ren
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Taiping road, Beijing 100850, China
| | - Jiamei Guo
- Beijing Key laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, , Institute of Materia Medica, , Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Huihui Chong
- Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yangli Tian
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Taiping road, Beijing 100850, China
| | - Keliang Liu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Taiping road, Beijing 100850, China.
| | - Liang Xu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Taiping road, Beijing 100850, China.
| |
Collapse
|
13
|
Nomura W. Creation of Functional Molecules Based on Biomolecular Interactions; Development toward Chemical Biology. YAKUGAKU ZASSHI 2017; 137:1223-1231. [PMID: 28966263 DOI: 10.1248/yakushi.17-00125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Interactions between bio-macromolecules such as proteins, DNA, and polysaccharides play pivotal roles in maintaining homeostasis in living systems. For elucidating the function of biomolecules, peptides are powerful tools, compared to native proteins, because of their lower molecular weights, compatibility with chemical modification, and predictability of interaction with the target molecules. These advantages enabled us to develop peptide-based functional molecules. However, for the purposes of controlling or regulating biomolecule functions, designing artificial proteins is also an effective approach. Not only rational protein design, but also directed molecular evolution, are now regarded as powerful methods for optimizing protein function. The interactions of proteins with bio-macromolecules are usually highly specific and show high affinity because of larger interaction surfaces as compared to small molecules or peptides. Thus, the use of proteins for designing biofunctional molecules is also important for wider applications in the biotechnology field. In this review, four topics will be discussed: 1) the development of fluorescently-labeled ligands for G protein-coupled receptors (GPCR), as well as bivalent ligands for GPCR imaging and function analysis, 2) the design and synthesis of gp41 trimer mimics as HIV-1 inhibitors or vaccines, 3) the development of a ZIP tag-probe system and its application to intracellular protein imaging, and 4) the functional analysis of sequence-specific DNA recombinase for expanding the scope of genome editing. The results of these studies indicate the importance of precision in the design of peptides or proteins for regulating bio-macromolecular interactions.
Collapse
Affiliation(s)
- Wataru Nomura
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University
| |
Collapse
|
14
|
Mizuguchi T, Ohashi N, Matsumoto D, Hashimoto C, Nomura W, Yamamoto N, Murakami T, Tamamura H. Development of anti-HIV peptides based on a viral capsid protein. Biopolymers 2017; 108. [PMID: 27428649 DOI: 10.1002/bip.22920] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 07/11/2016] [Accepted: 07/14/2016] [Indexed: 01/01/2023]
Abstract
Peptide inhibitors with cell permeability targeting an HIV-1 capsid (CA) protein might make therapeutic by regulating HIV-1 replication. Overlapping fragment peptide libraries covering the whole sequence of an HIV-1 CA protein have been synthesized with the addition of an octa-arginyl moiety to increase their cell permeability. Amongst these peptides, several compounds which inhibit the HIV-1 replication cycle have been found. Conjugation of cell-penetrating functions such as an octa-arginyl group to individual peptides in combination with the addition of chloroquine in cell-based anti-HIV assays was previously proven to be a useful assay method with which to search for active peptides. Anti-HIV assays have been performed in the presence or absence of chloroquine and found that most of compounds have higher anti-HIV activity in the presence, rather than in the absence of chloroquine. Some potent seeds as anti-HIV agents might naturally lie hidden in CA proteins, and could become useful leads to HIV inhibitors.
Collapse
Affiliation(s)
- Takaaki Mizuguchi
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Chiyoda-ku, Tokyo, 101-0062, Japan
| | - Nami Ohashi
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Chiyoda-ku, Tokyo, 101-0062, Japan
| | - Daichi Matsumoto
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Chiyoda-ku, Tokyo, 101-0062, Japan
| | - Chie Hashimoto
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Chiyoda-ku, Tokyo, 101-0062, Japan
| | - Wataru Nomura
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Chiyoda-ku, Tokyo, 101-0062, Japan
| | - Naoki Yamamoto
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Tsutomu Murakami
- AIDS Research Center, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Hirokazu Tamamura
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Chiyoda-ku, Tokyo, 101-0062, Japan
| |
Collapse
|
15
|
Nomura W, Mizuguchi T, Tamamura H. Multimerized HIV-gp41-derived peptides as fusion inhibitors and vaccines. Biopolymers 2017; 106:622-8. [PMID: 26583370 DOI: 10.1002/bip.22782] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Revised: 10/28/2015] [Accepted: 11/02/2015] [Indexed: 11/11/2022]
Abstract
To date, several antigens based on the amino-terminal leucine/isoleucine heptad repeat (NHR) region of an HIV-1 envelope protein gp41 and fusion inhibitors based on the carboxy-terminal leucine/isoleucine heptad repeat (CHR) region of gp41 have been reported. We have developed a synthetic antigen targeting the membrane-fusion mechanism of HIV-1. This uses a template designed with C3-symmetric linkers and mimics the trimeric form of the NHR-derived peptide N36. The antiserum obtained by immunization of the N36 trimeric antigen binds preferentially to the N36 trimer and blocks HIV-1 infection effectively, compared with the antiserum obtained by immunization of the N36 monomer. Using another template designed with different C3-symmetric linkers, we have also developed a synthetic peptide mimicking the trimeric form of the CHR-derived peptide C34, with ∼100 times the inhibitory activity against the HIV-1 fusion mechanism than that of the monomer C34 peptide. A dimeric derivative of C34 has potent inhibitory activity at almost the same levels as this C34 trimer mimic, suggesting that presence of a dimeric form of C34 is structurally critical for fusion inhibitors. As examples of rising mid-size drugs, this review describes an effective strategy for the design of HIV vaccines and fusion inhibitors based on a relationship with the native structure of proteins involved in HIV fusion mechanisms. © 2015 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 622-628, 2016.
Collapse
Affiliation(s)
- Wataru Nomura
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Chiyoda-Ku, Tokyo 101-0062, Japan
| | - Takaaki Mizuguchi
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Chiyoda-Ku, Tokyo 101-0062, Japan
| | - Hirokazu Tamamura
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Chiyoda-Ku, Tokyo 101-0062, Japan
| |
Collapse
|
16
|
Membrane-Active Sequences within gp41 Membrane Proximal External Region (MPER) Modulate MPER-Containing Peptidyl Fusion Inhibitor Activity and the Biosynthesis of HIV-1 Structural Proteins. PLoS One 2015; 10:e0134851. [PMID: 26230322 PMCID: PMC4521866 DOI: 10.1371/journal.pone.0134851] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 07/14/2015] [Indexed: 12/04/2022] Open
Abstract
The membrane proximal external region (MPER) is a highly conserved membrane-active region located at the juxtamembrane positions within class I viral fusion glycoproteins and essential for membrane fusion events during viral entry. The MPER in the human immunodeficiency virus type I (HIV-1) envelope protein (Env) interacts with the lipid bilayers through a cluster of tryptophan (Trp) residues and a C-terminal cholesterol-interacting motif. The inclusion of the MPER N-terminal sequence contributes to the membrane reactivity and anti-viral efficacy of the first two anti-HIV peptidyl fusion inhibitors T20 and T1249. As a type I transmembrane protein, Env also interacts with the cellular membranes during its biosynthesis and trafficking. Here we investigated the roles of MPER membrane-active sequences during both viral entry and assembly, specifically, their roles in the design of peptidyl fusion inhibitors and the biosynthesis of viral structural proteins. We found that elimination of the membrane-active elements in MPER peptides, namely, penta Trp→alanine (Ala) substitutions and the disruption of the C-terminal cholesterol-interacting motif through deletion inhibited the anti-viral effect against the pseudotyped HIV-1. Furthermore, as compared to C-terminal dimerization, N-terminal dimerization of MPER peptides and N-terminal extension with five helix-forming residues enhanced their anti-viral efficacy substantially. The secondary structure study revealed that the penta-Trp→Ala substitutions also increased the helical content in the MPER sequence, which prompted us to study the biological relevance of such mutations in pre-fusion Env. We observed that Ala mutations of Trp664, Trp668 and Trp670 in MPER moderately lowered the intracellular and intraviral contents of Env while significantly elevating the content of another viral structural protein, p55/Gag and its derivative p24/capsid. The data suggest a role of the gp41 MPER in the membrane-reactive events during both viral entry and budding, and provide insights into the future development of anti-viral therapeutics.
Collapse
|
17
|
Mizuguchi T, Ohashi N, Nomura W, Komoriya M, Hashimoto C, Yamamoto N, Murakami T, Tamamura H. Anti-HIV screening for cell-penetrating peptides using chloroquine and identification of anti-HIV peptides derived from matrix proteins. Bioorg Med Chem 2015; 23:4423-4427. [PMID: 26094944 DOI: 10.1016/j.bmc.2015.06.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Revised: 06/06/2015] [Accepted: 06/08/2015] [Indexed: 11/17/2022]
Abstract
Previously, compounds which inhibit the HIV-1 replication cycle were found in overlapping peptide libraries covering the whole sequence of an HIV-1 matrix (MA) protein constructed with the addition of an octa-arginyl group. The two top lead compounds are sequential fragments MA-8L and MA-9L. In the present study, the addition of chloroquine in cell-based anti-HIV assays was proven to be an efficient method with which to find anti-HIV compounds among several peptides conjugated by cell-penetrating signals such as an octa-arginyl group: the conjugation of an octa-arginyl group to individual peptides contained in whole proteins in combination with the addition of chloroquine in cells is a useful assay method to search active peptides. To find more potent fragment peptides, individual peptides between MA-8L and MA-9L, having the same peptide chain length but with sequences shifted by one amino acid residue, were synthesized in this paper and their anti-HIV activity was evaluated with an anti-HIV assay using chloroquine. As a result, the peptides in the C-terminal side of the series, which are relatively close to MA-9L, showed more potent inhibitory activity against both X4-HIV-1 and R5-HIV-1 than the peptides in the N-terminal side.
Collapse
Affiliation(s)
- Takaaki Mizuguchi
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Nami Ohashi
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Wataru Nomura
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Mao Komoriya
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Chie Hashimoto
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Naoki Yamamoto
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Tsutomu Murakami
- AIDS Research Center, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo 162-8640, Japan.
| | - Hirokazu Tamamura
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Chiyoda-ku, Tokyo 101-0062, Japan.
| |
Collapse
|
18
|
Augusto MT, Hollmann A, Castanho MARB, Porotto M, Pessi A, Santos NC. Improvement of HIV fusion inhibitor C34 efficacy by membrane anchoring and enhanced exposure. J Antimicrob Chemother 2014; 69:1286-97. [PMID: 24464268 DOI: 10.1093/jac/dkt529] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES The aim of the present work was to evaluate the interaction of two new HIV fusion inhibitors {HIVP3 [C34-polyethylene glycol (PEG)₄-cholesterol] and HIVP4 [(C34-PEG₄)₂-cholesterol]} with membrane model systems and human blood cells in order to clarify where and how the fusion inhibitors locate, allowing us to understand their mechanism of action at the molecular level, and which strategies may be followed to increase efficacy. METHODS Lipid vesicles with defined compositions were used for peptide partition and localization studies, based on the intrinsic fluorescence of HIVP3 and HIVP4. Lipid monolayers were employed in surface pressure studies. Finally, human erythrocytes and peripheral blood mononuclear cells (PBMCs) isolated from blood samples were used in dipole potential assays. RESULTS Membrane partition, dipole potential and surface pressure assays indicate that the new fusion inhibitors interact preferentially with cholesterol-rich liquid-ordered membranes, mimicking biological membrane microdomains known as lipid rafts. HIVP3 and HIVP4 are able to interact with human erythrocytes and PBMCs to a similar degree as a previously described simpler drug with monomeric C34 and lacking the PEG spacer, C34-cholesterol. However, the pocket-binding domain (PBD) of both HIVP3 and HIVP4 is more exposed to the aqueous environment than in C34-cholesterol. CONCLUSIONS The present data allow us to conclude that more efficient blocking of HIV entry results from the synergism between the membranotropic behaviour and the enhanced exposure of the PBD.
Collapse
Affiliation(s)
- Marcelo T Augusto
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | | | | | | | | | | |
Collapse
|
19
|
Liu W, Tan J, Mehryar MM, Teng Z, Zeng Y. Peptide HIV fusion inhibitors: modifications and conjugations. MEDCHEMCOMM 2014. [DOI: 10.1039/c4md00214h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
HIV fusion inhibitors are a group of virus entry preventing drugs aimed at membrane fusion.
Collapse
Affiliation(s)
- Wei Liu
- College of Life Science and Bioengineering
- Beijing University of Technology
- Beijing 100124, China
- State Key Laboratory for Infectious Disease Prevention and Control
- National Institute for Viral disease control and prevention
| | - Jianjun Tan
- College of Life Science and Bioengineering
- Beijing University of Technology
- Beijing 100124, China
| | | | - Zhiping Teng
- State Key Laboratory for Infectious Disease Prevention and Control
- National Institute for Viral disease control and prevention
- Chinese Centre for Disease Control and Prevention
- Beijing 100052, China
| | - Yi Zeng
- College of Life Science and Bioengineering
- Beijing University of Technology
- Beijing 100124, China
- State Key Laboratory for Infectious Disease Prevention and Control
- National Institute for Viral disease control and prevention
| |
Collapse
|
20
|
A CD4 mimic as an HIV entry inhibitor: Pharmacokinetics. Bioorg Med Chem 2013; 21:7884-9. [DOI: 10.1016/j.bmc.2013.10.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 10/05/2013] [Accepted: 10/05/2013] [Indexed: 11/19/2022]
|
21
|
Xiao J, Tolbert TJ. Modular assembly of dimeric HIV fusion inhibitor peptides with enhanced antiviral potency. Bioorg Med Chem Lett 2013; 23:6046-51. [PMID: 24094817 DOI: 10.1016/j.bmcl.2013.09.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 09/11/2013] [Indexed: 01/07/2023]
Abstract
The HIV-1 envelope gp120/gp41 glycoprotein complex plays a critical role in virus-host cell membrane fusion and has been a focus for the development of HIV fusion inhibitors. In this Letter, we present the synthesis of dimers of HIV fusion inhibitor peptides C37H6 and CP32M, which target the trimeric gp41 in the pre-hairpin intermediate state to inhibit membrane fusion. Reactive peptide modules were synthesized using native chemical ligation and then assembled into dimers with varying linker lengths using Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) 'click' chemistry. Cell-cell fusion inhibition assays demonstrated that dimers with a (PEG)7 linker showed enhanced antiviral potency over the corresponding monomers. Moreover, the bio-orthogonal nature of the CuAAC 'click' reaction provides a practical way to assemble heterodimers of HIV fusion inhibitors. Heterodimers consisting of the T20-sensitive strain inhibitor C37H6 and the T20-resistant strain inhibitor CP32M were produced that may have broader spectrum activities against both T20-sensitive and T20-resistant strains.
Collapse
Affiliation(s)
- Junpeng Xiao
- Interdisciplinary Biochemistry Graduate Program, Indiana University, Bloomington, IN 47405, USA
| | | |
Collapse
|