1
|
Martínez-González B, Gallego I, Gregori J, Soria ME, Somovilla P, de Ávila AI, García-Crespo C, Durán-Pastor A, Briones C, Gómez J, Quer J, Domingo E, Perales C. Fitness-Dependent, Mild Mutagenic Activity of Sofosbuvir for Hepatitis C Virus. Antimicrob Agents Chemother 2023; 67:e0039423. [PMID: 37367486 PMCID: PMC10353389 DOI: 10.1128/aac.00394-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/06/2023] [Indexed: 06/28/2023] Open
Abstract
The concept of a mild mutagen was coined to describe a minor mutagenic activity exhibited by some nucleoside analogues that potentiated their efficacy as antiretroviral agents. In the present study, we report the mild mutagen activity of sofosbuvir (SOF) for hepatitis C virus (HCV). Serial passages of HCV in human hepatoma cells, in the presence of SOF at a concentration well below its cytotoxic concentration 50 (CC50) led to pre-extinction populations whose mutant spectra exhibited a significant increase of C→U transitions, relative to populations passaged in the absence of SOF. This was reflected in an increase in several diversity indices that were used to characterize viral quasispecies. The mild mutagenic activity of SOF was largely absent when it was tested with isogenic HCV populations that displayed high replicative fitness. Thus, SOF can act as a mild mutagen for HCV, depending on HCV fitness. Possible mechanisms by which the SOF mutagenic activity may contribute to its antiviral efficacy are discussed.
Collapse
Affiliation(s)
- Brenda Martínez-González
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- Department of Clinical Microbiology, IIS-Fundación Jiménez Díaz, Madrid, Spain
| | - Isabel Gallego
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Josep Gregori
- Liver Diseases-Viral Hepatitis, Liver Unit, Vall d’Hebron Institut de Recerca (VHIR), Barcelona, Spain
| | - María Eugenia Soria
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- Department of Clinical Microbiology, IIS-Fundación Jiménez Díaz, Madrid, Spain
| | - Pilar Somovilla
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Madrid, Spain
| | - Ana Isabel de Ávila
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Carlos García-Crespo
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Antoni Durán-Pastor
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | | | - Jordi Gómez
- Instituto de Parasitología y Biomedicina ‘López-Neyra’ (CSIC), Parque Tecnológico Ciencias de la Salud, Granada, Spain
| | - Josep Quer
- Liver Diseases-Viral Hepatitis, Liver Unit, Vall d’Hebron Institut de Recerca (VHIR), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, Madrid, Spain
- Biochemistry and Molecular Biology Department, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Esteban Domingo
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Celia Perales
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- Department of Clinical Microbiology, IIS-Fundación Jiménez Díaz, Madrid, Spain
| |
Collapse
|
2
|
Yang H, Talledge N, Arndt WG, Zhang W, Mansky LM. Human Immunodeficiency Virus Type 2 Capsid Protein Mutagenesis Reveals Amino Acid Residues Important for Virus Particle Assembly. J Mol Biol 2022; 434:167753. [PMID: 35868362 PMCID: PMC11057910 DOI: 10.1016/j.jmb.2022.167753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/13/2022] [Accepted: 07/13/2022] [Indexed: 11/16/2022]
Abstract
Human immunodeficiency virus (HIV) Gag drives virus particle assembly. The capsid (CA) domain is critical for Gag multimerization mediated by protein-protein interactions. The Gag protein interaction network defines critical aspects of the retroviral lifecycle at steps such as particle assembly and maturation. Previous studies have demonstrated that the immature particle morphology of HIV-2 is intriguingly distinct relative to that of HIV-1. Based upon this observation, we sought to determine the amino acid residues important for virus assembly that might help explain the differences between HIV-1 and HIV-2. To do this, we conducted site-directed mutagenesis of targeted locations in the HIV-2 CA domain of Gag and analyzed various aspects of virus particle assembly. A panel of 31 site-directed mutants of residues that reside at the HIV-2 CA inter-hexamer interface, intra-hexamer interface and CA inter-domain linker were created and analyzed for their effects on the efficiency of particle production, particle morphology, particle infectivity, Gag subcellular distribution and in vitro protein assembly. Seven conserved residues between HIV-1 and HIV-2 (L19, A41, I152, K153, K157, N194, D196) and two non-conserved residues (G38, N127) were found to significantly impact Gag multimerization and particle assembly. Taken together, these observations complement structural analyses of immature HIV-2 particle morphology and Gag lattice organization as well as provide important comparative insights into the key amino acid residues that can help explain the observed differences between HIV immature particle morphology and its association with virus replication and particle infectivity.
Collapse
Affiliation(s)
- Huixin Yang
- Institute for Molecular Virology, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA; Comparative Molecular Biosciences Graduate Program, University of Minnesota - Twin Cities, St. Paul, MN 55108, USA
| | - Nathaniel Talledge
- Institute for Molecular Virology, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA; Division of Basic Sciences, School of Dentistry, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA; Masonic Cancer Center, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA
| | - William G Arndt
- Institute for Molecular Virology, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA; Division of Basic Sciences, School of Dentistry, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA; Biochemistry, Molecular Biology & Biophysics Graduate Program, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA
| | - Wei Zhang
- Institute for Molecular Virology, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA; Division of Basic Sciences, School of Dentistry, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA; Masonic Cancer Center, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA; Characterization Facility, College of Sciences and Engineering, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA.
| | - Louis M Mansky
- Institute for Molecular Virology, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA; Division of Basic Sciences, School of Dentistry, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA; Masonic Cancer Center, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA; Comparative Molecular Biosciences Graduate Program, University of Minnesota - Twin Cities, St. Paul, MN 55108, USA; Biochemistry, Molecular Biology & Biophysics Graduate Program, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA.
| |
Collapse
|
3
|
Meissner ME, Talledge N, Mansky LM. Molecular Biology and Diversification of Human Retroviruses. FRONTIERS IN VIROLOGY (LAUSANNE, SWITZERLAND) 2022; 2:872599. [PMID: 35783361 PMCID: PMC9242851 DOI: 10.3389/fviro.2022.872599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Studies of retroviruses have led to many extraordinary discoveries that have advanced our understanding of not only human diseases, but also molecular biology as a whole. The most recognizable human retrovirus, human immunodeficiency virus type 1 (HIV-1), is the causative agent of the global AIDS epidemic and has been extensively studied. Other human retroviruses, such as human immunodeficiency virus type 2 (HIV-2) and human T-cell leukemia virus type 1 (HTLV-1), have received less attention, and many of the assumptions about the replication and biology of these viruses are based on knowledge of HIV-1. Existing comparative studies on human retroviruses, however, have revealed that key differences between these viruses exist that affect evolution, diversification, and potentially pathogenicity. In this review, we examine current insights on disparities in the replication of pathogenic human retroviruses, with a particular focus on the determinants of structural and genetic diversity amongst HIVs and HTLV.
Collapse
Affiliation(s)
- Morgan E. Meissner
- Institute for Molecular Virology, University of Minnesota – Twin Cities, Minneapolis, MN 55455 USA
- Molecular, Cellular, Developmental Biology and Genetics Graduate Program, University of Minnesota – Twin Cities, Minneapolis, MN 55455 USA
| | - Nathaniel Talledge
- Institute for Molecular Virology, University of Minnesota – Twin Cities, Minneapolis, MN 55455 USA
- Division of Basic Sciences, School of Dentistry, University of Minnesota – Twin Cities, Minneapolis, MN 55455 USA
- Masonic Cancer Center, University of Minnesota – Twin Cities, Minneapolis, MN 55455 USA
| | - Louis M. Mansky
- Institute for Molecular Virology, University of Minnesota – Twin Cities, Minneapolis, MN 55455 USA
- Division of Basic Sciences, School of Dentistry, University of Minnesota – Twin Cities, Minneapolis, MN 55455 USA
- Molecular, Cellular, Developmental Biology and Genetics Graduate Program, University of Minnesota – Twin Cities, Minneapolis, MN 55455 USA
- Masonic Cancer Center, University of Minnesota – Twin Cities, Minneapolis, MN 55455 USA
| |
Collapse
|
4
|
Hadj Hassine I, Ben M’hadheb M, Menéndez-Arias L. Lethal Mutagenesis of RNA Viruses and Approved Drugs with Antiviral Mutagenic Activity. Viruses 2022; 14:841. [PMID: 35458571 PMCID: PMC9024455 DOI: 10.3390/v14040841] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 12/11/2022] Open
Abstract
In RNA viruses, a small increase in their mutation rates can be sufficient to exceed their threshold of viability. Lethal mutagenesis is a therapeutic strategy based on the use of mutagens, driving viral populations to extinction. Extinction catastrophe can be experimentally induced by promutagenic nucleosides in cell culture models. The loss of HIV infectivity has been observed after passage in 5-hydroxydeoxycytidine or 5,6-dihydro-5-aza-2'-deoxycytidine while producing a two-fold increase in the viral mutation frequency. Among approved nucleoside analogs, experiments with polioviruses and other RNA viruses suggested that ribavirin can be mutagenic, although its mechanism of action is not clear. Favipiravir and molnupiravir exert an antiviral effect through lethal mutagenesis. Both drugs are broad-spectrum antiviral agents active against RNA viruses. Favipiravir incorporates into viral RNA, affecting the G→A and C→U transition rates. Molnupiravir (a prodrug of β-d-N4-hydroxycytidine) has been recently approved for the treatment of SARS-CoV-2 infection. Its triphosphate derivative can be incorporated into viral RNA and extended by the coronavirus RNA polymerase. Incorrect base pairing and inefficient extension by the polymerase promote mutagenesis by increasing the G→A and C→U transition frequencies. Despite having remarkable antiviral action and resilience to drug resistance, carcinogenic risks and genotoxicity are important concerns limiting their extended use in antiviral therapy.
Collapse
Affiliation(s)
- Ikbel Hadj Hassine
- Unité de Recherche UR17ES30 “Génomique, Biotechnologie et Stratégies Antivirales”, Institut Supérieur de Biotechnologie, Université de Monastir, Monastir 5000, Tunisia; (I.H.H.); (M.B.M.)
| | - Manel Ben M’hadheb
- Unité de Recherche UR17ES30 “Génomique, Biotechnologie et Stratégies Antivirales”, Institut Supérieur de Biotechnologie, Université de Monastir, Monastir 5000, Tunisia; (I.H.H.); (M.B.M.)
| | - Luis Menéndez-Arias
- Centro de Biología Molecular “Severo Ochoa” (Consejo Superior de Investigaciones Científicas & Universidad Autónoma de Madrid), 28049 Madrid, Spain
| |
Collapse
|
5
|
Differential Activity of APOBEC3F, APOBEC3G, and APOBEC3H in the Restriction of HIV-2. J Mol Biol 2022; 434:167355. [PMID: 34774569 PMCID: PMC8752514 DOI: 10.1016/j.jmb.2021.167355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 11/04/2021] [Accepted: 11/04/2021] [Indexed: 02/01/2023]
Abstract
Human immunodeficiency virus (HIV) mutagenesis is driven by a variety of internal and external sources, including the host APOBEC3 (apolipoprotein B mRNA editing enzyme catalytic polypetide-like 3; A3) family of mutagenesis factors, which catalyze G-to-A transition mutations during virus replication. HIV-2 replication is characterized by a relative lack of G-to-A mutations, suggesting infrequent mutagenesis by A3 proteins. To date, the activity of the A3 repertoire against HIV-2 has remained largely uncharacterized, and the mutagenic activity of these proteins against HIV-2 remains to be elucidated. In this study, we provide the first comprehensive characterization of the restrictive capacity of A3 proteins against HIV-2 in cell culture using a dual fluorescent reporter HIV-2 vector virus. We found that A3F, A3G, and A3H restricted HIV-2 infectivity in the absence of Vif and were associated with significant increases in the frequency of viral mutants. These proteins increased the frequency of G-to-A mutations within the proviruses of infected cells as well. A3G and A3H also reduced HIV-2 infectivity via inhibition of reverse transcription and the accumulation of DNA products during replication. In contrast, A3D did not exhibit any restrictive activity against HIV-2, even at higher expression levels. Taken together, these results provide evidence that A3F, A3G, and A3H, but not A3D, are capable of HIV-2 restriction. Differences in A3-mediated restriction of HIV-1 and HIV-2 may serve to provide new insights in the observed mutation profiles of these viruses.
Collapse
|
6
|
Meissner ME, Julik EJ, Badalamenti JP, Arndt WG, Mills LJ, Mansky LM. Development of a User-Friendly Pipeline for Mutational Analyses of HIV Using Ultra-Accurate Maximum-Depth Sequencing. Viruses 2021; 13:v13071338. [PMID: 34372543 PMCID: PMC8310143 DOI: 10.3390/v13071338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 01/23/2023] Open
Abstract
Human immunodeficiency virus type 2 (HIV-2) accumulates fewer mutations during replication than HIV type 1 (HIV-1). Advanced studies of HIV-2 mutagenesis, however, have historically been confounded by high background error rates in traditional next-generation sequencing techniques. In this study, we describe the adaptation of the previously described maximum-depth sequencing (MDS) technique to studies of both HIV-1 and HIV-2 for the ultra-accurate characterization of viral mutagenesis. We also present the development of a user-friendly Galaxy workflow for the bioinformatic analyses of sequencing data generated using the MDS technique, designed to improve replicability and accessibility to molecular virologists. This adapted MDS technique and analysis pipeline were validated by comparisons with previously published analyses of the frequency and spectra of mutations in HIV-1 and HIV-2 and is readily expandable to studies of viral mutation across the genomes of both viruses. Using this novel sequencing pipeline, we observed that the background error rate was reduced 100-fold over standard Illumina error rates, and 10-fold over traditional unique molecular identifier (UMI)-based sequencing. This technical advancement will allow for the exploration of novel and previously unrecognized sources of viral mutagenesis in both HIV-1 and HIV-2, which will expand our understanding of retroviral diversity and evolution.
Collapse
Affiliation(s)
- Morgan E. Meissner
- Molecular, Cellular, Developmental Biology & Genetics Graduate Program, University of Minnesota, Minneapolis, MN 55455, USA;
- Bioinformatics and Computational Biology Graduate Program, University of Minnesota, Minneapolis, MN 55455, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA; (E.J.J.); (W.G.A.)
| | - Emily J. Julik
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA; (E.J.J.); (W.G.A.)
- Division of Basic Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jonathan P. Badalamenti
- University of Minnesota Genomics Center, University of Minnesota, Minneapolis, MN 55455, USA;
| | - William G. Arndt
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA; (E.J.J.); (W.G.A.)
- Division of Basic Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Lauren J. Mills
- Bioinformatics and Computational Biology Graduate Program, University of Minnesota, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
- Correspondence: (L.J.M.); (L.M.M.)
| | - Louis M. Mansky
- Molecular, Cellular, Developmental Biology & Genetics Graduate Program, University of Minnesota, Minneapolis, MN 55455, USA;
- Bioinformatics and Computational Biology Graduate Program, University of Minnesota, Minneapolis, MN 55455, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA; (E.J.J.); (W.G.A.)
- Division of Basic Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Correspondence: (L.J.M.); (L.M.M.)
| |
Collapse
|
7
|
Distinct Antiretroviral Mechanisms Elicited by a Viral Mutagen. J Mol Biol 2021; 433:167111. [PMID: 34153286 DOI: 10.1016/j.jmb.2021.167111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/12/2021] [Accepted: 06/14/2021] [Indexed: 11/22/2022]
Abstract
5-aza-cytidine (5-aza-C) has been shown to be a potent human immunodeficiency virus type 1 (HIV-1) mutagen that induces G-to-C hypermutagenesis by incorporation of the reduced form (i.e., 5-aza-dC, 5-aza-dCTP). Evidence to date suggests that this lethal mutagenesis is the primary antiretroviral mechanism for 5-aza-C. To investigate the breadth of application of 5-aza-C as an antiretroviral mutagen, we have conducted a comparative, parallel analysis of the antiviral mechanism of 5-aza-C between HIV-1 and gammaretroviruses - i.e., murine leukemia virus (MuLV) and feline leukemia virus (FeLV). Intriguingly, in contrast to the hallmark G-to-C hypermutagenesis observed with HIV-1, MuLV and FeLV did not reveal the presence of a significant increase in mutational burden, particularly that of G-to-C transversion mutations. The effect of 5-aza-dCTP on DNA synthesis revealed that while HIV-1 RT was not inhibited by 5-aza-dCTP even at 100 µM, 5-aza-dCTP was incorporated and significantly inhibited MuLV RT, generating pause sites and reducing the fully extended product. 5-aza-dCTP was found to be incorporated into DNA by MuLV RT or HIV-1 RT, but only acted as a non-obligate chain terminator for MuLV RT. This biochemical data provides an independent line of experimental evidence in support of the conclusion that HIV-1 and MuLV have distinct primary mechanisms of antiretroviral action with 5-aza-C. Taken together, our data provides striking evidence that an antiretroviral mutagen can have strong potency via distinct mechanisms of action among closely related viruses, unlinking antiviral activity from antiviral mechanism of action.
Collapse
|
8
|
|
9
|
Pastuch-Gawołek G, Gillner D, Król E, Walczak K, Wandzik I. Selected nucleos(t)ide-based prescribed drugs and their multi-target activity. Eur J Pharmacol 2019; 865:172747. [PMID: 31634460 PMCID: PMC7173238 DOI: 10.1016/j.ejphar.2019.172747] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 10/16/2019] [Accepted: 10/17/2019] [Indexed: 12/13/2022]
Abstract
Nucleos(t)ide analogues play pivotal roles as antiviral, cytotoxic or immunosuppressive agents. Here, we review recent reports of nucleoside analogues that exhibit broad-spectrum activity towards multiple life-threatening RNA and DNA viruses. We also present a discussion about nucleoside antimetabolites-approved antineoplastic agents-that have recently been shown to have antiviral and/or antibacterial activity. The approved drugs and drug combinations, as well as recently identified candidates for investigation and/or experimentation, are discussed. Several examples of repurposed drugs that have already been approved for use are presented. This strategy can be crucial for the first-line treatment of acute infections or coinfections and for the management of drug-resistant strains.
Collapse
Affiliation(s)
- Gabriela Pastuch-Gawołek
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Faculty of Chemistry, Silesian University of Technology, Krzywoustego 4, 44-100, Gliwice, Poland; Biotechnology Centre, Silesian University of Technology, Krzywoustego 8, 44-100, Gliwice, Poland
| | - Danuta Gillner
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Faculty of Chemistry, Silesian University of Technology, Krzywoustego 4, 44-100, Gliwice, Poland; Biotechnology Centre, Silesian University of Technology, Krzywoustego 8, 44-100, Gliwice, Poland
| | - Ewelina Król
- Department of Recombinant Vaccines, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307, Gdansk, Poland
| | - Krzysztof Walczak
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Faculty of Chemistry, Silesian University of Technology, Krzywoustego 4, 44-100, Gliwice, Poland
| | - Ilona Wandzik
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Faculty of Chemistry, Silesian University of Technology, Krzywoustego 4, 44-100, Gliwice, Poland; Biotechnology Centre, Silesian University of Technology, Krzywoustego 8, 44-100, Gliwice, Poland.
| |
Collapse
|
10
|
McDaniel YZ, Patterson SE, Mansky LM. Distinct dual antiviral mechanism that enhances hepatitis B virus mutagenesis and reduces viral DNA synthesis. Antiviral Res 2019; 170:104540. [PMID: 31247245 PMCID: PMC8191393 DOI: 10.1016/j.antiviral.2019.104540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/17/2019] [Accepted: 06/18/2019] [Indexed: 12/17/2022]
Abstract
Reverse transcriptase (RT) is an essential enzyme for the replication of retroviruses and hepadnaviruses. Current therapies do not eliminate the intracellular viral replication intermediate termed covalently closed circular (ccc) DNA, which has enhanced interest in hepatitis B virus (HBV) reverse transcription and cccDNA formation. The HBV cccDNA is generated as a plasmid-like episome in the host cell nucleus from the protein-linked relaxed circular (rc) DNA genome in incoming virions during HBV replication. The creation of the cccDNA via conversion from rcDNA remains not fully understood. Here, we sought to investigate whether viral mutagens can effect HBV replication. In particular, we investigated whether nucleoside analogs that act as viral mutagens with retroviruses could impact hepadnaviral DNA synthesis. We observed that a viral mutagen (e.g., 5-aza-2'-deoxycytidine, 5-aza-dC or 5-azacytidine, 5-aza-C) severely diminished the ability of a HBV vector to express a reporter gene following virus transfer and infection of target cells. As predicted, the treatment of 5-aza-dC or 5-aza-C elevated the HBV rcDNA mutation frequency, primarily by increasing the frequency of G-to-C transversion mutations. A reduction in rcDNA synthesis was also observed. Intriguingly, the cccDNA nick/gap region transcription was diminished by 5-aza-dC, but did not enhance viral mutagenesis. Taken together, our results demonstrate that viral mutagens can impact HBV reverse transcription, and propose a model in which viral mutagens can induce mutagenesis during rcDNA formation and diminish viral DNA synthesis during both rcDNA formation and the conversion of rcDNA to cccDNA.
Collapse
Affiliation(s)
- Yumeng Z McDaniel
- Veterinary Medicine Graduate Program, University of Minnesota-Twin Cities, Minneapolis, MN, 55455, USA; Institute for Molecular Virology, University of Minnesota-Twin Cities, Minneapolis, MN, 55455, USA
| | - Steven E Patterson
- Institute for Molecular Virology, University of Minnesota-Twin Cities, Minneapolis, MN, 55455, USA; Center for Drug Design, University of Minnesota-Twin Cities, Minneapolis, MN, 55455, USA
| | - Louis M Mansky
- Veterinary Medicine Graduate Program, University of Minnesota-Twin Cities, Minneapolis, MN, 55455, USA; Institute for Molecular Virology, University of Minnesota-Twin Cities, Minneapolis, MN, 55455, USA; Division of Basic Sciences, University of Minnesota School of Dentistry, Minneapolis, MN, 55455, USA; Masonic Cancer Center, University of Minnesota-Twin Cities, Minneapolis, MN, 55455, USA; Department of Microbiology & Immunology, University of Minnesota-Twin Cities, Minneapolis, MN, 55455, USA; Center for Drug Design, University of Minnesota-Twin Cities, Minneapolis, MN, 55455, USA.
| |
Collapse
|
11
|
Maldonado JO, Mansky LM. The HIV-1 Reverse Transcriptase A62V Mutation Influences Replication Fidelity and Viral Fitness in the Context of Multi-Drug-Resistant Mutations. Viruses 2018; 10:v10070376. [PMID: 30029500 PMCID: PMC6070896 DOI: 10.3390/v10070376] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 07/03/2018] [Accepted: 07/11/2018] [Indexed: 02/04/2023] Open
Abstract
Emergence of human immunodeficiency virus type 1 (HIV-1) drug resistance arises from mutation fixation in the viral genome during antiretroviral therapy. Primary mutations directly confer antiviral drug resistance, while secondary mutations arise that do not confer drug resistance. The A62V amino acid substitution in HIV-1 reverse transcriptase (RT) was observed to be associated with multi-drug resistance, but is not known to be a resistance-conferring mutation. In particular, A62V was observed in various multi-dideoxynucleoside resistant (MDR) mutation complexes, including the Q151M complex (i.e., A62V, V75I, F77L, F116Y, and Q151M), and the T69SSS insertion complex, which has a serine–serine insertion between amino acid positions 69 and 70 (i.e., M41L, A62V, T69SSS, K70R, and T215Y). However, what selective advantage is conferred to the virus remains unresolved. In this study, we hypothesized that A62V could influence replication fidelity and viral fitness with viruses harboring the Q151M and T69SSS MDR mutation complexes. A single-cycle replication assay and a dual-competition fitness assay were used to assess viral mutant frequency and viral fitness, respectively. A62V was found to increase the observed lower mutant frequency identified with each of the viruses harboring the MDR mutation complexes in the single-cycle assay. Furthermore, A62V was observed to improve viral fitness of replication-competent MDR viruses. Taken together, these observations indicate an adaptive role of A62V in virus replication fidelity and viral fitness, which would likely enhance virus persistence during drug-selective pressure.
Collapse
Affiliation(s)
- José O Maldonado
- Institute for Molecular Virology & DDS-PhD Dual Degree Program, University of Minnesota-Twin Cities, 18-242 Moos Tower, 515 Delaware Street SE, Minneapolis, MN 55455, USA.
| | - Louis M Mansky
- Institute for Molecular Virology, University of Minnesota-Twin Cities, 18-242 Moos Tower, 515 Delaware Street SE, Minneapolis, MN 55455, USA.
| |
Collapse
|
12
|
Disparate Contributions of Human Retrovirus Capsid Subdomains to Gag-Gag Oligomerization, Virus Morphology, and Particle Biogenesis. J Virol 2017; 91:JVI.00298-17. [PMID: 28446667 DOI: 10.1128/jvi.00298-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 04/19/2017] [Indexed: 12/24/2022] Open
Abstract
The capsid domain (CA) of the retroviral Gag protein is a primary determinant of Gag oligomerization, which is a critical step for immature Gag lattice formation and virus particle budding. Although the human immunodeficiency virus type 1 (HIV-1) CA carboxy-terminal domain (CTD) is essential for CA-CA interactions, the CA CTD has been suggested to be largely dispensable for human T-cell leukemia virus type 1 (HTLV-1) particle biogenesis. To more clearly define the roles of the HTLV-1 CA amino-terminal domain (NTD) and CA CTD in particle biogenesis, we generated and analyzed a panel of Gag proteins with chimeric HIV-1/HTLV-1 CA domains. Subcellular distribution and protein expression levels indicated that Gag proteins with a chimeric HIV-1 CA NTD/HTLV-1 CA CTD did not result in Gag oligomerization regardless of the parent Gag background. Furthermore, chimeric Gag proteins with the HTLV-1 CA NTD produced particles phenotypically similar to HTLV-1 immature particles, highlighting the importance of the HTLV-1 CA NTD in HTLV-1 immature particle morphology. Taken together, these observations support the conclusion that the HTLV-1 CA NTD can functionally replace the HIV-1 CA CTD, but the HIV-1 CA NTD cannot replace the HTLV-1 CA CTD, indicating that the HTLV-1 CA subdomains provide distinct contributions to Gag-Gag oligomerization, particle morphology, and biogenesis. Furthermore, we have shown for the first time that HIV-1 and HTLV-1 Gag domains outside the CA (e.g., matrix and nucleocapsid) impact Gag oligomerization as well as immature particle size and morphology.IMPORTANCE A key aspect in virus replication is virus particle assembly, which is a poorly understood process for most viruses. For retroviruses, the Gag structural protein is the primary driver of virus particle biogenesis, and the CA CTD is the primary determinant of Gag-Gag interactions for HIV-1. In this study, the HTLV-1 capsid amino-terminal domain was found to provide distinct contributions to Gag-Gag oligomerization, particle morphology, and biogenesis. This study provides information that will aid efforts for discovery of therapeutic targets for intervention.
Collapse
|
13
|
Rawson JMO, Gohl DM, Landman SR, Roth ME, Meissner ME, Peterson TS, Hodges JS, Beckman KB, Mansky LM. Single-Strand Consensus Sequencing Reveals that HIV Type but not Subtype Significantly Impacts Viral Mutation Frequencies and Spectra. J Mol Biol 2017; 429:2290-2307. [PMID: 28502791 DOI: 10.1016/j.jmb.2017.05.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 05/07/2017] [Accepted: 05/08/2017] [Indexed: 10/19/2022]
Abstract
A long-standing question of human immunodeficiency virus (HIV) genetic variation and evolution has been whether differences exist in mutation rate and/or mutation spectra among HIV types (i.e., HIV-1 versus HIV-2) and among HIV groups (i.e., HIV-1 groups M-P and HIV-2 groups A-H) and HIV-1 Group M subtypes (i.e., subtypes A-D, F-H, and J-K). To address this, we developed a new single-strand consensus sequencing assay for the determination of HIV mutation frequencies and spectra using the Illumina sequencing platform. This assay enables parallel and standardized comparison of HIV mutagenesis among various viral vectors with lower background error than traditional methods of Illumina library preparation. We found significant differences in viral mutagenesis between HIV types but intriguingly no significant differences among HIV-1 Group M subtypes. More specifically, HIV-1 exhibited higher transition frequencies than HIV-2, due mostly to single G-to-A mutations and (to a lesser extent) G-to-A hypermutation. These data suggest that HIV-2 RT exhibits higher fidelity during viral replication, and taken together, these findings demonstrate that HIV type but not subtype significantly affects viral mutation frequencies and spectra. These differences may inform antiviral and vaccine strategies.
Collapse
Affiliation(s)
- Jonathan M O Rawson
- Molecular, Cellular, Developmental Biology & Genetics Graduate Program, University of Minnesota-Twin Cities, Minneapolis, MN, 55455, USA; Institute for Molecular Virology, University of Minnesota-Twin Cities, Minneapolis, MN, 55455, USA
| | - Daryl M Gohl
- University of Minnesota Genomics Center, University of Minnesota-Twin Cities, Minneapolis, MN, 55455, USA
| | - Sean R Landman
- Department of Computer Science and Engineering, University of Minnesota-Twin Cities, Minneapolis, MN, 55455, USA
| | - Megan E Roth
- Institute for Molecular Virology, University of Minnesota-Twin Cities, Minneapolis, MN, 55455, USA
| | - Morgan E Meissner
- Molecular, Cellular, Developmental Biology & Genetics Graduate Program, University of Minnesota-Twin Cities, Minneapolis, MN, 55455, USA; Institute for Molecular Virology, University of Minnesota-Twin Cities, Minneapolis, MN, 55455, USA
| | - Tara S Peterson
- Institute for Molecular Virology, University of Minnesota-Twin Cities, Minneapolis, MN, 55455, USA
| | - James S Hodges
- Division of Biostatistics, School of Public Health, University of Minnesota-Twin Cities, Minneapolis, MN, 55455, USA
| | - Kenneth B Beckman
- University of Minnesota Genomics Center, University of Minnesota-Twin Cities, Minneapolis, MN, 55455, USA
| | - Louis M Mansky
- Molecular, Cellular, Developmental Biology & Genetics Graduate Program, University of Minnesota-Twin Cities, Minneapolis, MN, 55455, USA; Institute for Molecular Virology, University of Minnesota-Twin Cities, Minneapolis, MN, 55455, USA; Division of Basic Sciences, School of Dentistry, University of Minnesota-Twin Cities, Minneapolis, MN, 55455, USA; Department of Microbiology & Immunology, University of Minnesota-Twin Cities, Minneapolis, MN, 55455, USA.
| |
Collapse
|
14
|
Rawson JMO, Roth ME, Xie J, Daly MB, Clouser CL, Landman SR, Reilly CS, Bonnac L, Kim B, Patterson SE, Mansky LM. Synergistic reduction of HIV-1 infectivity by 5-azacytidine and inhibitors of ribonucleotide reductase. Bioorg Med Chem 2016; 24:2410-2422. [PMID: 27117260 DOI: 10.1016/j.bmc.2016.03.052] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 03/18/2016] [Accepted: 03/27/2016] [Indexed: 11/29/2022]
Abstract
Although many compounds have been approved for the treatment of human immunodeficiency type-1 (HIV-1) infection, additional anti-HIV-1 drugs (particularly those belonging to new drug classes) are still needed due to issues such as long-term drug-associated toxicities, transmission of drug-resistant variants, and development of multi-class resistance. Lethal mutagenesis represents an antiviral strategy that has not yet been clinically translated for HIV-1 and is based on the use of small molecules to induce excessive levels of deleterious mutations within the viral genome. Here, we show that 5-azacytidine (5-aza-C), a ribonucleoside analog that induces the lethal mutagenesis of HIV-1, and multiple inhibitors of the enzyme ribonucleotide reductase (RNR) interact in a synergistic fashion to more effectively reduce the infectivity of HIV-1. In these drug combinations, RNR inhibitors failed to significantly inhibit the conversion of 5-aza-C to 5-aza-2'-deoxycytidine, suggesting that 5-aza-C acts primarily as a deoxyribonucleoside even in the presence of RNR inhibitors. The mechanism of antiviral synergy was further investigated for the combination of 5-aza-C and one specific RNR inhibitor, resveratrol, as this combination improved the selectivity index of 5-aza-C to the greatest extent. Antiviral synergy was found to be primarily due to the reduced accumulation of reverse transcription products rather than the enhancement of viral mutagenesis. To our knowledge, these observations represent the first demonstration of antiretroviral synergy between a ribonucleoside analog and RNR inhibitors, and encourage the development of additional ribonucleoside analogs and RNR inhibitors with improved antiretroviral activity.
Collapse
Affiliation(s)
- Jonathan M O Rawson
- Institute for Molecular Virology, University of Minnesota, 18-242 Moos Tower, 515 Delaware Street SE, Minneapolis, MN 55455, USA; Molecular, Cellular, Developmental Biology & Genetics Graduate Program, University of Minnesota, 321 Church Street SE, Minneapolis, MN 55455, USA
| | - Megan E Roth
- Institute for Molecular Virology, University of Minnesota, 18-242 Moos Tower, 515 Delaware Street SE, Minneapolis, MN 55455, USA; Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, 515 Delaware Street SE, Minneapolis, MN 55455, USA
| | - Jiashu Xie
- Center for Drug Design, Academic Health Center, University of Minnesota, 516 Delaware Street SE, Minneapolis, MN 55455, USA
| | - Michele B Daly
- Emory Center for AIDS Research, Emory University, 1518 Clifton Road NE, Suite 8050, Atlanta, GA 30322, USA
| | - Christine L Clouser
- Institute for Molecular Virology, University of Minnesota, 18-242 Moos Tower, 515 Delaware Street SE, Minneapolis, MN 55455, USA; Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, 515 Delaware Street SE, Minneapolis, MN 55455, USA
| | - Sean R Landman
- Department of Computer Science and Engineering, University of Minnesota, 4-192 Keller Hall, 200 Union Street SE, Minneapolis, MN 55455, USA
| | - Cavan S Reilly
- Institute for Molecular Virology, University of Minnesota, 18-242 Moos Tower, 515 Delaware Street SE, Minneapolis, MN 55455, USA; Division of Biostatistics, School of Public Health, University of Minnesota, 420 Delaware Street SE, Minneapolis, MN 55455, USA
| | - Laurent Bonnac
- Center for Drug Design, Academic Health Center, University of Minnesota, 516 Delaware Street SE, Minneapolis, MN 55455, USA
| | - Baek Kim
- Emory Center for AIDS Research, Emory University, 1518 Clifton Road NE, Suite 8050, Atlanta, GA 30322, USA
| | - Steven E Patterson
- Institute for Molecular Virology, University of Minnesota, 18-242 Moos Tower, 515 Delaware Street SE, Minneapolis, MN 55455, USA; Center for Drug Design, Academic Health Center, University of Minnesota, 516 Delaware Street SE, Minneapolis, MN 55455, USA
| | - Louis M Mansky
- Institute for Molecular Virology, University of Minnesota, 18-242 Moos Tower, 515 Delaware Street SE, Minneapolis, MN 55455, USA; Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, 515 Delaware Street SE, Minneapolis, MN 55455, USA; Department of Microbiology and Immunology, Medical School, University of Minnesota, 689 23rd Avenue SE, Minneapolis, MN 55455, USA; Molecular, Cellular, Developmental Biology & Genetics Graduate Program, University of Minnesota, 321 Church Street SE, Minneapolis, MN 55455, USA; Center for Drug Design, Academic Health Center, University of Minnesota, 516 Delaware Street SE, Minneapolis, MN 55455, USA.
| |
Collapse
|
15
|
Abstract
Herpes simplex virus (HSV), a member of the Herpesviridae family, is a significant human pathogen that results in mucocutaneous lesions in the oral cavity or genital infections. Acyclovir (ACV) and related nucleoside analogues can successfully treat HSV infections, but the emergence of drug resistance to ACV has created a barrier for the treatment of HSV infections, especially in immunocompromised patients. There is an urgent need to explore new and effective tactics to circumvent drug resistance to HSV. This review summarises the current strategies in the development of new targets (the DNA helicase/primase (H/P) complex), new types of molecules (nature products) and new antiviral mechanisms (lethal mutagenesis of Janus-type nucleosides) to fight the drug resistance of HSV.
Collapse
|
16
|
5-Azacytidine Enhances the Mutagenesis of HIV-1 by Reduction to 5-Aza-2'-Deoxycytidine. Antimicrob Agents Chemother 2016; 60:2318-25. [PMID: 26833151 DOI: 10.1128/aac.03084-15] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 01/25/2016] [Indexed: 11/20/2022] Open
Abstract
5-Azacytidine (5-aza-C) is a ribonucleoside analog that induces the lethal mutagenesis of human immunodeficiency virus type 1 (HIV-1) by causing predominantly G-to-C transversions during reverse transcription. 5-Aza-C could potentially act primarily as a ribonucleotide (5-aza-CTP) or as a deoxyribonucleotide (5-aza-2'-deoxycytidine triphosphate [5-aza-dCTP]) during reverse transcription. In order to determine the primary form of 5-aza-C that is active against HIV-1, Illumina sequencing was performed using proviral DNA from cells treated with 5-aza-C or 5-aza-dC. 5-Aza-C and 5-aza-dC were found to induce highly similar patterns of mutation in HIV-1 in terms of the types of mutations observed, the magnitudes of effects, and the distributions of mutations at individual sequence positions. Further, 5-aza-dCTP was detected by liquid chromatography-tandem mass spectrometry in cells treated with 5-aza-C, demonstrating that 5-aza-C was a substrate for ribonucleotide reductase. Notably, levels of 5-aza-dCTP were similar in cells treated with equivalent effective concentrations of 5-aza-C or 5-aza-dC. Lastly, HIV-1 reverse transcriptase was found to incorporate 5-aza-CTPin vitroat least 10,000-fold less efficiently than 5-aza-dCTP. Taken together, these data support the model that 5-aza-C enhances the mutagenesis of HIV-1 primarily after reduction to 5-aza-dC, which can then be incorporated during reverse transcription and lead to G-to-C hypermutation. These findings may have important implications for the design of new ribonucleoside analogs directed against retroviruses.
Collapse
|
17
|
Daly MB, Roth ME, Bonnac L, Maldonado JO, Xie J, Clouser CL, Patterson SE, Kim B, Mansky LM. Dual anti-HIV mechanism of clofarabine. Retrovirology 2016; 13:20. [PMID: 27009333 PMCID: PMC4806454 DOI: 10.1186/s12977-016-0254-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 03/17/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND HIV-1 replication kinetics inherently depends on the availability of cellular dNTPs for viral DNA synthesis. In activated CD4(+) T cells and other rapidly dividing cells, the concentrations of dNTPs are high and HIV-1 reverse transcription occurs in an efficient manner. In contrast, nondividing cells such as macrophages have lower dNTP pools, which restricts efficient reverse transcription. Clofarabine is an FDA approved ribonucleotide reductase inhibitor, which has shown potent antiretroviral activity in transformed cell lines. Here, we explore the potency, toxicity and mechanism of action of clofarabine in the human primary HIV-1 target cells: activated CD4(+) T cells and macrophages. RESULTS Clofarabine is a potent HIV-1 inhibitor in both activated CD4(+) T cells and macrophages. Due to its minimal toxicity in macrophages, clofarabine displays a selectivity index over 300 in this nondividing cell type. The anti-HIV-1 activity of clofarabine correlated with a significant decrease in both cellular dNTP levels and viral DNA synthesis. Additionally, we observed that clofarabine triphosphate was directly incorporated into DNA by HIV-1 reverse transcriptase and blocked processive DNA synthesis, particularly at the low dNTP levels found in macrophages. CONCLUSIONS Taken together, these data provide strong mechanistic evidence that clofarabine is a dual action inhibitor of HIV-1 replication that both limits dNTP substrates for viral DNA synthesis and directly inhibits the DNA polymerase activity of HIV-1 reverse transcriptase.
Collapse
Affiliation(s)
- Michele B Daly
- Center for Drug Discovery, Department of Pediatrics, Emory Center for AIDS Research, Emory University, Children's Healthcare of Atlanta, 1760 Haygood Dr., Atlanta, GA, 30322, USA
| | - Megan E Roth
- Institute for Molecular Virology, University of Minnesota, 18-242 Moos Tower, 515 Delaware St SE, Minneapolis, MN, 55455, USA.,Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, 55455, USA.,Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Laurent Bonnac
- Center for Drug Design, Academic Health Center, University of Minnesota, Minneapolis, MN, 55455, USA
| | - José O Maldonado
- Institute for Molecular Virology, University of Minnesota, 18-242 Moos Tower, 515 Delaware St SE, Minneapolis, MN, 55455, USA.,Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, 55455, USA.,Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Jiashu Xie
- Center for Drug Design, Academic Health Center, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Christine L Clouser
- Institute for Molecular Virology, University of Minnesota, 18-242 Moos Tower, 515 Delaware St SE, Minneapolis, MN, 55455, USA
| | - Steven E Patterson
- Center for Drug Design, Academic Health Center, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Baek Kim
- Center for Drug Discovery, Department of Pediatrics, Emory Center for AIDS Research, Emory University, Children's Healthcare of Atlanta, 1760 Haygood Dr., Atlanta, GA, 30322, USA.
| | - Louis M Mansky
- Institute for Molecular Virology, University of Minnesota, 18-242 Moos Tower, 515 Delaware St SE, Minneapolis, MN, 55455, USA. .,Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, 55455, USA. .,Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN, 55455, USA. .,Center for Drug Design, Academic Health Center, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
18
|
Rawson JMO, Clouser CL, Mansky LM. Rapid Determination of HIV-1 Mutant Frequencies and Mutation Spectra Using an mCherry/EGFP Dual-Reporter Viral Vector. Methods Mol Biol 2016; 1354:71-88. [PMID: 26714706 DOI: 10.1007/978-1-4939-3046-3_6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
The high mutation rate of human immunodeficiency virus type-1 (HIV-1) has been a pivotal factor in its evolutionary success as a human pathogen, driving the emergence of drug resistance, immune system escape, and invasion of distinct anatomical compartments. Extensive research has focused on understanding how various cellular and viral factors alter the rates and types of mutations produced during viral replication. Here, we describe a single-cycle dual-reporter vector assay that relies upon the detection of mutations that eliminate either expression of mCherry or enhanced green fluorescent protein (EGFP). The reporter-based method can be used to efficiently quantify changes in mutant frequencies and mutation spectra that arise due to a variety of factors, including viral mutagens, drug resistance mutations, cellular physiology, and APOBEC3 proteins.
Collapse
Affiliation(s)
- Jonathan M O Rawson
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN, 55455, USA
- Molecular, Cellular, Developmental Biology & Genetics Graduate Program, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Christine L Clouser
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN, 55455, USA
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Louis M Mansky
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN, 55455, USA.
- Molecular, Cellular, Developmental Biology & Genetics Graduate Program, University of Minnesota, Minneapolis, MN, 55455, USA.
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, 55455, USA.
- Department of Microbiology, University of Minnesota, Graduate Program, Mayo Mail Code 196, 1460 Mayo Building, 420 Delaware Street SE, Minneapolis, MN, 55455, USA.
| |
Collapse
|
19
|
Kang H, Kim C, Kim DE, Song JH, Choi M, Choi K, Kang M, Lee K, Kim HS, Shin JS, Kim J, Han SB, Lee MY, Lee SU, Lee CK, Kim M, Ko HJ, van Kuppeveld FJM, Cho S. Synergistic antiviral activity of gemcitabine and ribavirin against enteroviruses. Antiviral Res 2015; 124:1-10. [PMID: 26526589 DOI: 10.1016/j.antiviral.2015.10.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 09/25/2015] [Accepted: 10/10/2015] [Indexed: 12/21/2022]
Abstract
Enteroviruses are major causative agents of various human diseases, and some of them are currently considered to be an enormous threat to public health. However, no effective therapy is currently available for the treatment of these infections. We identified gemcitabine, a nucleoside-analog drug used for cancer treatment, from a screen of bioactive chemicals as a novel inhibitor of coxsackievirus B3 (CVB3) and enterovirus 71 (EV71). Gemcitabine potently inhibited the proliferation of CVB3 and EV71, as well as the replication of CVB3 and EV71 replicons, in cells with a low micromolar IC50 (1-5 μM). Its strong inhibitory effect was also observed in cells infected with human rhinoviruses, demonstrating broad-spectrum antiviral effects on enteroviruses. Mechanistically, an extensive analysis excluded the involvement of 2C, 3A, IRES-dependent translation, and also that of polyprotein processing in the antiviral effects of gemcitabine. Importantly, gemcitabine in combination with ribavirin, an antiviral drug currently being used against a few RNA viruses, exhibited a synergistic antiviral effect on the replication of CVB3 and EV71 replicons. Consequently, our results clearly demonstrate a new indication for gemcitabine as an effective broad-spectrum inhibitor of enteroviruses and strongly suggest a new therapeutic strategy using gemcitabine alone or in combination with ribavirin for the treatment of various diseases associated with enterovirus infection.
Collapse
Affiliation(s)
- Hyunju Kang
- Incurable Diseases Therapeutics Research Center, Korea Research Institute of Bioscience & Biotechnology, Cheongju, South Korea; College of Pharmacy, Chungbuk National University, Cheongju, South Korea
| | - Chonsaeng Kim
- Virus Research and Testing Center, Korea Research Institute of Chemical Technology, Daejeon, South Korea
| | - Dong-eun Kim
- Incurable Diseases Therapeutics Research Center, Korea Research Institute of Bioscience & Biotechnology, Cheongju, South Korea; College of Pharmacy, Chungbuk National University, Cheongju, South Korea
| | - Jae-Hyoung Song
- Laboratory of Microbiology and Immunology, College of Pharmacy, Kangwon National University, Chuncheon, South Korea
| | - Miri Choi
- Incurable Diseases Therapeutics Research Center, Korea Research Institute of Bioscience & Biotechnology, Cheongju, South Korea; College of Pharmacy, Chungbuk National University, Cheongju, South Korea
| | - Kwangman Choi
- Incurable Diseases Therapeutics Research Center, Korea Research Institute of Bioscience & Biotechnology, Cheongju, South Korea; Department of Medical Science, Soonchunhyang University, Asan, South Korea
| | - Mingu Kang
- Incurable Diseases Therapeutics Research Center, Korea Research Institute of Bioscience & Biotechnology, Cheongju, South Korea
| | - Kyungjin Lee
- Virus Research and Testing Center, Korea Research Institute of Chemical Technology, Daejeon, South Korea
| | - Hae Soo Kim
- Virus Research and Testing Center, Korea Research Institute of Chemical Technology, Daejeon, South Korea
| | - Jin Soo Shin
- Virus Research and Testing Center, Korea Research Institute of Chemical Technology, Daejeon, South Korea
| | - Janghwan Kim
- Stem Cell Research Center, Korea Research Institute of Bioscience & Biotechnology, Daejeon, South Korea
| | - Sang-Bae Han
- College of Pharmacy, Chungbuk National University, Cheongju, South Korea
| | - Mi-Young Lee
- Department of Medical Science, Soonchunhyang University, Asan, South Korea
| | - Su Ui Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience & Biotechnology, Cheongju, South Korea
| | - Chong-Kyo Lee
- Virus Research and Testing Center, Korea Research Institute of Chemical Technology, Daejeon, South Korea
| | - Meehyein Kim
- Virus Research and Testing Center, Korea Research Institute of Chemical Technology, Daejeon, South Korea
| | - Hyun-Jeong Ko
- Laboratory of Microbiology and Immunology, College of Pharmacy, Kangwon National University, Chuncheon, South Korea
| | - Frank J M van Kuppeveld
- Section of Virology, Department Infectious Diseases & Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Sungchan Cho
- Incurable Diseases Therapeutics Research Center, Korea Research Institute of Bioscience & Biotechnology, Cheongju, South Korea; Department of Biomolecular Science, Korea University of Science and Technology, Daejeon, South Korea.
| |
Collapse
|
20
|
Yang T, Li S, Zhang X, Pang X, Lin Q, Cao J. Resveratrol, sirtuins, and viruses. Rev Med Virol 2015; 25:431-45. [DOI: 10.1002/rmv.1858] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 09/19/2015] [Indexed: 12/25/2022]
Affiliation(s)
- Tao Yang
- College of Food Science and Technology; Central South University of Forestry and Technology; Changsha Hunan Province China
| | - Shugang Li
- Construction Corps Key Laboratory of Deep Processing on Featured Agricultural Products in South Xinjiang; Tarim University; Alar Xinjiang China
| | - Xuming Zhang
- Department of Microbiology and Immunology; University of Arkansas for Medical Sciences; Little Rock AR USA
| | - Xiaowu Pang
- Departments of Oral Pathology, College of Dentistry; Howard University; Washington DC USA
| | - Qinlu Lin
- College of Food Science and Technology; Central South University of Forestry and Technology; Changsha Hunan Province China
| | - Jianzhong Cao
- College of Food Science and Technology; Central South University of Forestry and Technology; Changsha Hunan Province China
| |
Collapse
|
21
|
Rawson JMO, Landman SR, Reilly CS, Mansky LM. HIV-1 and HIV-2 exhibit similar mutation frequencies and spectra in the absence of G-to-A hypermutation. Retrovirology 2015; 12:60. [PMID: 26160407 PMCID: PMC4496919 DOI: 10.1186/s12977-015-0180-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 06/08/2015] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Human immunodeficiency virus type 2 (HIV-2) is often distinguished clinically by lower viral loads, reduced transmissibility, and longer asymptomatic periods than for human immunodeficiency virus type 1 (HIV-1). Differences in the mutation frequencies of HIV-1 and HIV-2 have been hypothesized to contribute to the attenuated progression of HIV-2 observed clinically. RESULTS To address this hypothesis, we performed Illumina sequencing of multiple amplicons prepared from cells infected with HIV-1 or HIV-2, resulting in ~4.7 million read pairs and the identification of ~200,000 mutations after data processing. We observed that: (1) HIV-2 displayed significantly lower total mutation, substitution, and transition mutation frequencies than that of HIV-1, along with a mutation spectrum markedly less biased toward G-to-A transitions, (2) G-to-A hypermutation consistent with the activity of APOBEC3 proteins was observed for both HIV-1 and HIV-2 despite the presence of Vif, (3) G-to-A hypermutation was significantly higher for HIV-1 than for HIV-2, and (4) HIV-1 and HIV-2 total mutation frequencies were not significantly different in the absence of G-to-A hypermutants. CONCLUSIONS Taken together, these data demonstrate that HIV-2 exhibits a distinct mutational spectrum and a lower mutation frequency relative to HIV-1. However, the observed differences were primarily due to reduced levels of G-to-A hypermutation for HIV-2. These findings suggest that HIV-2 may be less susceptible than HIV-1 to APOBEC3-mediated hypermutation, but that the fidelities of other mutational sources (such as reverse transcriptase) are relatively similar for HIV-1 and HIV-2. Overall, these data imply that differences in replication fidelity are likely not a major contributing factor to the unique clinical features of HIV-2 infection.
Collapse
Affiliation(s)
- Jonathan M O Rawson
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN, USA.
- Molecular, Cellular, Developmental Biology and Genetics Graduate Program, University of Minnesota, Minneapolis, MN, USA.
| | - Sean R Landman
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN, USA.
| | - Cavan S Reilly
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN, USA.
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN, USA.
| | - Louis M Mansky
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN, USA.
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, USA.
- Department of Microbiology, University of Minnesota, Minneapolis, MN, USA.
- Molecular, Cellular, Developmental Biology and Genetics Graduate Program, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
22
|
Rawson JMO, Mansky LM. Retroviral vectors for analysis of viral mutagenesis and recombination. Viruses 2014; 6:3612-42. [PMID: 25254386 PMCID: PMC4189041 DOI: 10.3390/v6093612] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 09/15/2014] [Accepted: 09/17/2014] [Indexed: 12/29/2022] Open
Abstract
Retrovirus population diversity within infected hosts is commonly high due in part to elevated rates of replication, mutation, and recombination. This high genetic diversity often complicates the development of effective diagnostics, vaccines, and antiviral drugs. This review highlights the diverse vectors and approaches that have been used to examine mutation and recombination in retroviruses. Retroviral vectors for these purposes can broadly be divided into two categories: those that utilize reporter genes as mutation or recombination targets and those that utilize viral genes as targets of mutation or recombination. Reporter gene vectors greatly facilitate the detection, quantification, and characterization of mutants and/or recombinants, but may not fully recapitulate the patterns of mutagenesis or recombination observed in native viral gene sequences. In contrast, the detection of mutations or recombination events directly in viral genes is more biologically relevant but also typically more challenging and inefficient. We will highlight the advantages and disadvantages of the various vectors and approaches used as well as propose ways in which they could be improved.
Collapse
Affiliation(s)
- Jonathan M O Rawson
- Institute for Molecular Virology, University of Minnesota, Moos Tower 18-242, 515 Delaware St SE, Minneapolis, MN 55455, USA.
| | - Louis M Mansky
- Institute for Molecular Virology, University of Minnesota, Moos Tower 18-242, 515 Delaware St SE, Minneapolis, MN 55455, USA.
| |
Collapse
|
23
|
Beach LB, Rawson JM, Kim B, Patterson SE, Mansky LM. Novel inhibitors of human immunodeficiency virus type 2 infectivity. J Gen Virol 2014; 95:2778-2783. [PMID: 25103850 DOI: 10.1099/vir.0.069864-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Human immunodeficiency virus type 2 (HIV-2) infects about two million people worldwide. HIV-2 has fewer treatment options than HIV-1, yet may evolve drug resistance more quickly. We have analysed several novel drugs for anti-HIV-2 activity. It was observed that 5-azacytidine, clofarabine, gemcitabine and resveratrol have potent anti-HIV-2 activity. The EC50 values for 5-azacytidine, clofarabine and resveratrol were found to be significantly lower with HIV-2 than with HIV-1. A time-of-addition assay was used to analyse the ability of these drugs to interfere with HIV-2 replication. Reverse transcription was the likely target for antiretroviral activity. Taken together, several novel drugs have been discovered to have activity against HIV-2. Based upon their known activities, these drugs may elicit enhanced HIV-2 mutagenesis and therefore be useful for inducing HIV-2 lethal mutagenesis. In addition, the data are consistent with HIV-2 reverse transcriptase being more sensitive than HIV-1 reverse transcriptase to dNTP pool alterations.
Collapse
Affiliation(s)
- Lauren B Beach
- Molecular, Cellular, Developmental Biology & Genetics Graduate Program, University of Minnesota, Minneapolis, MN 55455, USA.,Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jonathan M Rawson
- Molecular, Cellular, Developmental Biology & Genetics Graduate Program, University of Minnesota, Minneapolis, MN 55455, USA.,Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Baek Kim
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Steven E Patterson
- Center for Drug Design, University of Minnesota, Minneapolis, MN 55455, USA.,Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Louis M Mansky
- Center for Drug Design, University of Minnesota, Minneapolis, MN 55455, USA.,Molecular, Cellular, Developmental Biology & Genetics Graduate Program, University of Minnesota, Minneapolis, MN 55455, USA.,Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA.,Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN 55455, USA.,Department of Microbiology, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
24
|
Discovery of novel ribonucleoside analogs with activity against human immunodeficiency virus type 1. J Virol 2013; 88:354-63. [PMID: 24155391 DOI: 10.1128/jvi.02444-13] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Reverse transcription is an important early step in retrovirus replication and is a key point targeted by evolutionarily conserved host restriction factors (e.g., APOBEC3G, SamHD1). Human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) is a major target of antiretroviral drugs, and concerns regarding drug resistance and off-target effects have led to continued efforts for identifying novel approaches to targeting HIV-1 RT. Several observations, including those obtained from monocyte-derived macrophages, have argued that ribonucleotides and their analogs can, intriguingly, impact reverse transcription. For example, we have previously demonstrated that 5-azacytidine has its greatest antiviral potency during reverse transcription by enhancement of G-to-C transversion mutations. In the study described here, we investigated a panel of ribonucleoside analogs for their ability to affect HIV-1 replication during the reverse transcription process. We discovered five ribonucleosides-8-azaadenosine, formycin A, 3-deazauridine, 5-fluorocytidine, and 2'-C-methylcytidine-that possess anti-HIV-1 activity, and one of these (i.e., 3-deazauridine) has a primary antiviral mechanism that involves increased HIV-1 mutational loads, while quantitative PCR analysis determined that the others resulted in premature chain termination. Taken together, our findings provide the first demonstration of a series of ribonucleoside analogs that can target HIV-1 reverse transcription with primary antiretroviral mechanisms that include premature termination of viral DNA synthesis or enhanced viral mutagenesis.
Collapse
|