1
|
Agarwal DS, Beteck RM, Ilbeigi K, Caljon G, Legoabe LJ. Design and synthesis of imidazo[1,2-a]pyridine-chalcone conjugates as antikinetoplastid agents. Chem Biol Drug Des 2024; 103:e14400. [PMID: 37994272 DOI: 10.1111/cbdd.14400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 11/01/2023] [Accepted: 11/08/2023] [Indexed: 11/24/2023]
Abstract
A library of imidazo[1,2-a]pyridine-appended chalcones were synthesized and characterized using 1 H NMR, 13 C NMR and HRMS. The synthesized analogues were screened for their antikinetoplastid activity against Trypanosoma cruzi, Trypanosoma brucei brucei, Trypanosoma brucei rhodesiense and Leishmania infantum. The analogues were also tested for their cytotoxicity activity against human lung fibroblasts and primary mouse macrophages. Among all screened derivatives, 7f was found to be the most active against T. cruzi and T. b. brucei exhibiting IC50 values of 8.5 and 1.35 μM, respectively. Against T. b. rhodesiense, 7e was found to be the most active with an IC50 value of 1.13 μM. All synthesized active analogues were found to be non-cytotoxic against MRC-5 and PMM with selectivity indices of up to more than 50.
Collapse
Affiliation(s)
- Devesh S Agarwal
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| | - Richard M Beteck
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| | - Kayhan Ilbeigi
- Laboratory of Microbiology, Parasitology and Hygiene, Infla-med Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Guy Caljon
- Laboratory of Microbiology, Parasitology and Hygiene, Infla-med Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Lesetja J Legoabe
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| |
Collapse
|
2
|
Kumar R, Singh R, das Chagas Almeida A, da Trindade Granato J, de Oliveira Lemos AS, Kumar K, Patil MT, da Silva AD, Rode AB, Coimbra ES, Salunke DB. Imidazo[1,2- a]pyrimidine as a New Antileishmanial Pharmacophore against Leishmania amazonensis Promastigotes and Amastigotes. ACS OMEGA 2023; 8:40613-40621. [PMID: 37929127 PMCID: PMC10621021 DOI: 10.1021/acsomega.3c05441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/26/2023] [Indexed: 11/07/2023]
Abstract
Leishmania poses a substantial threat to the human population all over the globe because of its visceral and cutaneous spread engendered by all 20 species. Unfortunately, the available drugs against leishmania are already hobbled with toxicity, prolonged treatment, and increasing instances of acquirement of resistance. Under these grave circumstances, the development of new drugs has become imperative to keep these harmful microbes at bay. To this end, a Groebke-Blackburn-Bienaymé multicomponent reaction-based library of different imidazo-fused heterocycles has been synthesized and screened against Leishmania amazonensis promastigotes and amastigotes. Among the library compounds, the imidazo-pyrimidine 24 has been found to be the most effective (inhibitory concentration of 50% (IC50) < 10 μM), with selective antileishmanial activity on amastigote forms, a stage of the parasite related to human disease. The compound 24 has exhibited an IC50 value of 6.63 μM, being ∼two times more active than miltefosine, a reference drug. Furthermore, this compound is >10 times more destructive to the intracellular parasites than host cells. The observed in vitro antileishmanial activity along with suitable in silico physicochemical and absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties of compound 24 reinforce the imidazo-pyrimidine scaffold as a new antileishmanial pharmacophore and encourage further murine experimental leishmaniasis studies.
Collapse
Affiliation(s)
- Ravinder Kumar
- Department
of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160 014, India
| | - Rahul Singh
- Department
of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160 014, India
| | - Ayla das Chagas Almeida
- Department
of Parasitology, Microbiology and Immunology, Institute of Biological
Sciences, Federal University of Juiz de
Fora, Juiz de
Fora 36036-900, Brazil
| | - Juliana da Trindade Granato
- Department
of Parasitology, Microbiology and Immunology, Institute of Biological
Sciences, Federal University of Juiz de
Fora, Juiz de
Fora 36036-900, Brazil
| | - Ari Sérgio de Oliveira Lemos
- Department
of Parasitology, Microbiology and Immunology, Institute of Biological
Sciences, Federal University of Juiz de
Fora, Juiz de
Fora 36036-900, Brazil
| | - Kushvinder Kumar
- Department
of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160 014, India
| | - Madhuri T. Patil
- Mehr
Chand Mahajan DAV College for Women, Sector 36, Chandigarh 160036, India
| | - Adilson D. da Silva
- Department
of Chemistry, Institute of Exacts Sciences, Federal University of Juiz de Fora, 36036-900, Juiz de Fora, Brazil
| | - Ambadas B. Rode
- Regional
Centre for Biotechnology, NCR Biotech Science
Cluster, third Milestone, Faridabad-Gurgaon Expressway, Faridabad - 121 001, India
| | - Elaine S. Coimbra
- Department
of Parasitology, Microbiology and Immunology, Institute of Biological
Sciences, Federal University of Juiz de
Fora, Juiz de
Fora 36036-900, Brazil
| | - Deepak B. Salunke
- Department
of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160 014, India
- National
Interdisciplinary Centre of Vaccine, Immunotherapeutic and Antimicrobials, Panjab University, Chandigarh 160 014, India
| |
Collapse
|
3
|
Nitro compounds against trypanosomatidae parasites: Heroes or villains? Bioorg Med Chem Lett 2022; 75:128930. [PMID: 36030001 DOI: 10.1016/j.bmcl.2022.128930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/28/2022] [Accepted: 08/08/2022] [Indexed: 11/23/2022]
Abstract
Chagas disease and Human African trypanosomiasis (HAT) are caused by Trypanosoma cruzi, T. brucei rhodesiense or T. b. gambiense parasites, respectively; while Leishmania is caused by parasites from the Leishmania genus. In recent years, many efforts have been addressed to develop inhibitors against these parasites, especially nitro-containing derivatives, which can interfere with essential enzymes from the protozoa. In this review, all anti-trypanosomatidae nitrocompounds reported so far are shown herein, highlighting their activities and SAR analyses, providing all the benefits and problems associated with this ambiguous chemical group. Finally, this review paper will be useful for many research teams around the world, which are searching for novel trypanocidal and leishmanicidal agents.
Collapse
|
4
|
Paoli-Lombardo R, Primas N, Bourgeade-Delmas S, Hutter S, Sournia-Saquet A, Boudot C, Brenot E, Castera-Ducros C, Corvaisier S, Since M, Malzert-Fréon A, Courtioux B, Valentin A, Verhaeghe P, Azas N, Rathelot P, Vanelle P. Improving Aqueous Solubility and In Vitro Pharmacokinetic Properties of the 3-Nitroimidazo[1,2- a]pyridine Antileishmanial Pharmacophore. Pharmaceuticals (Basel) 2022; 15:ph15080998. [PMID: 36015146 PMCID: PMC9415646 DOI: 10.3390/ph15080998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 10/25/2022] Open
Abstract
An antileishmanial structure−activity relationship (SAR) study focused on positions 2 and 8 of the imidazo[1,2-a]pyridine ring was conducted through the synthesis of 22 new derivatives. After being screened on the promatigote and axenic amastigote stages of Leishmania donovani and L. infantum, the best compounds were tested against the intracellular amastigote stage of L. infantum and evaluated regarding their in vitro physicochemical and pharmacokinetic properties, leading to the discovery of a new antileishmanial6-chloro-3-nitro-8-(pyridin-4-yl)-2-[(3,3,3-trifluoropropylsulfonyl)methyl]imidazo[1,2-a]pyridine hit. It displayed low cytotoxicities on both HepG2 and THP1 cell lines (CC50 > 100 µM) associated with a good activity against the intracellular amastigote stage of L. infantum (EC50 = 3.7 µM versus 0.4 and 15.9 µM for miltefosine and fexinidazole, used as antileishmanial drug references). Moreover, in comparison with previously reported derivatives in the studied series, this compound displayed greatly improved aqueous solubility, good mouse microsomal stability (T1/2 > 40 min) and high gastrointestinal permeability in a PAMPA model, making it an ideal candidate for further in vivo studies on an infectious mouse model.
Collapse
Affiliation(s)
- Romain Paoli-Lombardo
- CNRS, ICR UMR 7273, Team Pharmaco-Chimie Radicalaire, Faculté de Pharmacie, Aix Marseille University, 27 Boulevard Jean Moulin, CS30064, CEDEX 05, 13385 Marseille, France
| | - Nicolas Primas
- CNRS, ICR UMR 7273, Team Pharmaco-Chimie Radicalaire, Faculté de Pharmacie, Aix Marseille University, 27 Boulevard Jean Moulin, CS30064, CEDEX 05, 13385 Marseille, France
- Service Central de la Qualité et de l’Information Pharmaceutiques, Hôpital de la Conception, AP-HM, 13005 Marseille, France
- Correspondence: (N.P.); (S.B.-D.); (P.V.)
| | - Sandra Bourgeade-Delmas
- UMR 152 PHARMA-DEV, IRD, UPS, Université de Toulouse, 31062 Toulouse, France
- Correspondence: (N.P.); (S.B.-D.); (P.V.)
| | - Sébastien Hutter
- IHU Méditerranée Infection, UMR VITROME-Tropical Eukaryotic Pathogens, Aix Marseille University, 19–21 Boulevard Jean Moulin, 13005 Marseille, France
| | | | - Clotilde Boudot
- UMR Inserm 1094, Neuroépidémiologie Tropicale, Faculté de Pharmacie, Université de Limoges, 2 Rue Du Dr. Marcland, 87025 Limoges, France
| | - Emilie Brenot
- UMR Inserm 1094, Neuroépidémiologie Tropicale, Faculté de Pharmacie, Université de Limoges, 2 Rue Du Dr. Marcland, 87025 Limoges, France
| | - Caroline Castera-Ducros
- CNRS, ICR UMR 7273, Team Pharmaco-Chimie Radicalaire, Faculté de Pharmacie, Aix Marseille University, 27 Boulevard Jean Moulin, CS30064, CEDEX 05, 13385 Marseille, France
- Service Central de la Qualité et de l’Information Pharmaceutiques, Hôpital de la Conception, AP-HM, 13005 Marseille, France
| | | | - Marc Since
- UNICAEN, CERMN, Normandie University, 14000 Caen, France
| | | | - Bertrand Courtioux
- UMR Inserm 1094, Neuroépidémiologie Tropicale, Faculté de Pharmacie, Université de Limoges, 2 Rue Du Dr. Marcland, 87025 Limoges, France
| | - Alexis Valentin
- UMR 152 PHARMA-DEV, IRD, UPS, Université de Toulouse, 31062 Toulouse, France
| | - Pierre Verhaeghe
- CNRS, UPS, LCC-CNRS, Université de Toulouse, 31077 Toulouse, France
- Service de Pharmacie, CHU de Nîmes, 30029 Nîmes, France
| | - Nadine Azas
- IHU Méditerranée Infection, UMR VITROME-Tropical Eukaryotic Pathogens, Aix Marseille University, 19–21 Boulevard Jean Moulin, 13005 Marseille, France
| | - Pascal Rathelot
- CNRS, ICR UMR 7273, Team Pharmaco-Chimie Radicalaire, Faculté de Pharmacie, Aix Marseille University, 27 Boulevard Jean Moulin, CS30064, CEDEX 05, 13385 Marseille, France
- Service Central de la Qualité et de l’Information Pharmaceutiques, Hôpital de la Conception, AP-HM, 13005 Marseille, France
| | - Patrice Vanelle
- CNRS, ICR UMR 7273, Team Pharmaco-Chimie Radicalaire, Faculté de Pharmacie, Aix Marseille University, 27 Boulevard Jean Moulin, CS30064, CEDEX 05, 13385 Marseille, France
- Service Central de la Qualité et de l’Information Pharmaceutiques, Hôpital de la Conception, AP-HM, 13005 Marseille, France
- Correspondence: (N.P.); (S.B.-D.); (P.V.)
| |
Collapse
|
5
|
Filippov IP, Agafonova AV, Titov GD, Smetanin IA, Rostovskii NV, Khlebnikov AF, Novikov MS. Synthesis of Imidazo[1,2- a]pyridines via Near UV Light-Induced Cyclization of Azirinylpyridinium Salts. J Org Chem 2022; 87:6514-6519. [PMID: 35476415 DOI: 10.1021/acs.joc.2c00514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An efficient one-pot synthesis of imidazo[1,2-a]pyridines from 2-bromoazirines and pyridines has been developed. The construction of the bicyclic framework of imidazo[1,2-a]pyridines occurs in two steps through the formation of (2H-azirin-2-yl)pyridinium bromides followed by dehydrobrominative UV light-induced cyclization. The method can also be applied for the synthesis of imidazo[2,1-a]isoquinolines. Unstable in solution, (2H-azirin-2-yl)pyridinium/isoquinolinium bromides were quantitatively converted to stable tetrafluoroborates, which can be cyclized to imidazo[1,2-a]pyridines under UV irradiation in the presence of bromide ions.
Collapse
Affiliation(s)
- Ilya P Filippov
- St. Petersburg State University, Institute of Chemistry, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia
| | - Anastasiya V Agafonova
- St. Petersburg State University, Institute of Chemistry, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia
| | - Gleb D Titov
- St. Petersburg State University, Institute of Chemistry, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia
| | - Ilia A Smetanin
- St. Petersburg State University, Institute of Chemistry, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia
| | - Nikolai V Rostovskii
- St. Petersburg State University, Institute of Chemistry, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia
| | - Alexander F Khlebnikov
- St. Petersburg State University, Institute of Chemistry, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia
| | - Mikhail S Novikov
- St. Petersburg State University, Institute of Chemistry, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia
| |
Collapse
|
6
|
Cohen A, Azas N. Challenges and Tools for In Vitro Leishmania Exploratory Screening in the Drug Development Process: An Updated Review. Pathogens 2021; 10:1608. [PMID: 34959563 PMCID: PMC8703296 DOI: 10.3390/pathogens10121608] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/03/2021] [Accepted: 12/07/2021] [Indexed: 12/13/2022] Open
Abstract
Leishmaniases are a group of vector-borne diseases caused by infection with the protozoan parasites Leishmania spp. Some of them, such as Mediterranean visceral leishmaniasis, are zoonotic diseases transmitted from vertebrate to vertebrate by a hematophagous insect, the sand fly. As there is an endemic in more than 90 countries worldwide, this complex and major health problem has different clinical forms depending on the parasite species involved, with the visceral form being the most worrying since it is fatal when left untreated. Nevertheless, currently available antileishmanial therapies are significantly limited (low efficacy, toxicity, adverse side effects, drug-resistance, length of treatment, and cost), so there is an urgent need to discover new compounds with antileishmanial activity, which are ideally inexpensive and orally administrable with few side effects and a novel mechanism of action. Therefore, various powerful approaches were recently applied in many interesting antileishmanial drug development programs. The objective of this review is to focus on the very first step in developing a potential drug and to identify the exploratory methods currently used to screen in vitro hit compounds and the challenges involved, particularly in terms of harmonizing the results of work carried out by different research teams. This review also aims to identify innovative screening tools and methods for more extensive use in the drug development process.
Collapse
Affiliation(s)
- Anita Cohen
- IHU Méditerranée Infection, Aix Marseille University, IRD (Institut de Recherche pour le Développement), AP-HM (Assistance Publique—Hôpitaux de Marseille), SSA (Service de Santé des Armées), VITROME (Vecteurs—Infections Tropicales et Méditerranéennes), 13005 Marseille, France;
| | | |
Collapse
|
7
|
Antikinetoplastid SAR study in 3-nitroimidazopyridine series: Identification of a novel non-genotoxic and potent anti-T. b. brucei hit-compound with improved pharmacokinetic properties. Eur J Med Chem 2020; 206:112668. [DOI: 10.1016/j.ejmech.2020.112668] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 11/24/2022]
|
8
|
Albino SL, da Silva JM, de C Nobre MS, de M E Silva YMS, Santos MB, de Araújo RSA, do C A de Lima M, Schmitt M, de Moura RO. Bioprospecting of Nitrogenous Heterocyclic Scaffolds with Potential Action for Neglected Parasitosis: A Review. Curr Pharm Des 2020; 26:4112-4150. [PMID: 32611290 DOI: 10.2174/1381612826666200701160904] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 04/24/2020] [Indexed: 11/22/2022]
Abstract
Neglected parasitic diseases are a group of infections currently considered as a worldwide concern. This fact can be attributed to the migration of these diseases to developed and developing countries, associated with therapeutic insufficiency resulted from the low investment in the research and development of new drugs. In order to overcome this situation, bioprospecting supports medicinal chemistry in the identification of new scaffolds with therapeutically appropriate physicochemical and pharmacokinetic properties. Among them, we highlight the nitrogenous heterocyclic compounds, as they are secondary metabolites of many natural products with potential biological activity. The objective of this work was to review studies within a 10-year timeframe (2009- 2019), focusing on the pharmacological application of nitrogen bioprospectives (pyrrole, pyridine, indole, quinoline, acridine, and their respective derivatives) against neglected parasitic infections (malaria, leishmania, trypanosomiases, and schistosomiasis), and their application as a template for semi-synthesis or total synthesis of potential antiparasitic agents. In our studies, it was observed that among the selected articles, there was a higher focus on the attempt to identify and obtain novel antimalarial compounds, in a way that an extensive amount of studies involving all heterocyclic nitrogen nuclei were found. On the other hand, the parasites with the lowest number of publications up until the present date have been trypanosomiasis, especially those caused by Trypanosoma cruzi, and schistosomiasis, where some heterocyclics have not even been cited in recent years. Thus, we conclude that despite the great biodiversity on the planet, little attention has been given to certain neglected tropical diseases, especially those that reach countries with a high poverty rate.
Collapse
Affiliation(s)
- Sonaly L Albino
- Universidade Estadual da Paraiba, R. Baraunas, 351, Cidade Universitaria, Campina Grande, Paraiba, 58429-500, Brazil
| | - Jamire M da Silva
- Universidade Federal de Pernambuco, Av. Prof. Moraes Rego 1235, Cidade Universitaria, Recife, Pernambuco, 50670-901, Brazil
| | - Michelangela S de C Nobre
- Universidade Federal de Pernambuco, Av. Prof. Moraes Rego 1235, Cidade Universitaria, Recife, Pernambuco, 50670-901, Brazil
| | - Yvnni M S de M E Silva
- Universidade Estadual da Paraiba, R. Baraunas, 351, Cidade Universitaria, Campina Grande, Paraiba, 58429-500, Brazil
| | - Mirelly B Santos
- Universidade Estadual da Paraiba, R. Baraunas, 351, Cidade Universitaria, Campina Grande, Paraiba, 58429-500, Brazil
| | - Rodrigo S A de Araújo
- Universidade Estadual da Paraiba, R. Baraunas, 351, Cidade Universitaria, Campina Grande, Paraiba, 58429-500, Brazil
| | - Maria do C A de Lima
- Universidade Federal de Pernambuco, Av. Prof. Moraes Rego 1235, Cidade Universitaria, Recife, Pernambuco, 50670-901, Brazil
| | - Martine Schmitt
- Universite de Strasbourg, CNRS, LIT UMR 7200, Laboratoire d'innovation therapeutique, Illkirch, France
| | - Ricardo O de Moura
- Universidade Federal de Pernambuco, Av. Prof. Moraes Rego 1235, Cidade Universitaria, Recife, Pernambuco, 50670-901, Brazil
| |
Collapse
|
9
|
Canever MF, Miletti LC. Screening and Identification of Pathogen Box® Compounds with anti-Trypanosoma evansi Activity. Acta Trop 2020; 206:105421. [PMID: 32112721 DOI: 10.1016/j.actatropica.2020.105421] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 02/06/2020] [Accepted: 02/24/2020] [Indexed: 11/18/2022]
Abstract
The development of new drugs targeting neglected animal diseases is imperative. In Asia and South America, Trypanosoma evansi is a pathogen that affects horses and other species, causing economic losses associated with reduced animal productivity and death. In order to accelerate the identification of drugs with activity against neglected diseases, Medicines for Malaria Venture has developed Pathogen Box®, a library of 400 different molecules. The present work aimed to identify compounds present in the Pathogen Box® library, measuring in vitro activity against T. evansi. Among the 400 compounds, 5 showed anti-T.evansi activity: pentamidine, MMV688410, MMV687273, MMV022478 and auranofin. Suramin, a trypanocidal activity molecule present on the Pathogen Box® reference compound list, demonstrated no anti-T. evansi activity in the in vitro assays. MMV688410 is the most promising candidate because it induces death and reduces the number of parasites in cell culture, and mainly because its mechanism of action is probably associated with inhibition of trypanosomal reductase enzyme, an exclusive target of trypanosomatides. Further in vitro and in vivo assays are needed to determine the efficacy of the compounds identified in this work, especially by associating tissue distribution and the ability of drugs to cross the blood brain barrier, as T. evansi is able to invade the central nervous system.
Collapse
Affiliation(s)
- Mariana Feltrin Canever
- Departamento de Produção Animal e Alimentos, Centro de Ciências Agroveterinárias (CAV), Universidade do Estado de Santa Catarina (UDESC), Av. Luís de Camões, 2090, Lages, SC 88520-000 Brazil
| | - Luiz Claudio Miletti
- Departamento de Produção Animal e Alimentos, Centro de Ciências Agroveterinárias (CAV), Universidade do Estado de Santa Catarina (UDESC), Av. Luís de Camões, 2090, Lages, SC 88520-000 Brazil.
| |
Collapse
|
10
|
Nandikolla A, Srinivasarao S, Karan Kumar B, Murugesan S, Aggarwal H, Major LL, Smith TK, Chandra Sekhar KVG. Synthesis, study of antileishmanial and antitrypanosomal activity of imidazo pyridine fused triazole analogues. RSC Adv 2020; 10:38328-38343. [PMID: 35517538 PMCID: PMC9057266 DOI: 10.1039/d0ra07881f] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 10/13/2020] [Indexed: 11/21/2022] Open
Abstract
Thirty-five novel 1,2,3-triazole analogues of imidazo-[1,2-a]-pyridine-3-carboxamides were designed, synthesized and evaluated for in vitro antileishmanial and antitrypanosomal activity against L. major and T. brucei parasites, respectively.
Collapse
Affiliation(s)
- Adinarayana Nandikolla
- Department of Chemistry
- Birla Institute of Technology and Science, Pilani
- Hyderabad Campus
- Hyderabad – 500078
- India
| | - Singireddi Srinivasarao
- Department of Chemistry
- Birla Institute of Technology and Science, Pilani
- Hyderabad Campus
- Hyderabad – 500078
- India
| | - Banoth Karan Kumar
- Medicinal Chemistry Research Laboratory
- Department of Pharmacy
- Birla Institute of Technology and Science Pilani
- Pilani Campus
- Pilani-333031
| | - Sankaranarayanan Murugesan
- Medicinal Chemistry Research Laboratory
- Department of Pharmacy
- Birla Institute of Technology and Science Pilani
- Pilani Campus
- Pilani-333031
| | - Himanshu Aggarwal
- Department of Chemistry
- Birla Institute of Technology and Science, Pilani
- Hyderabad Campus
- Hyderabad – 500078
- India
| | - Louise L. Major
- Schools of Biology & Chemistry
- BSRC
- The University, St. Andrews
- Fife
- UK
| | - Terry K. Smith
- Schools of Biology & Chemistry
- BSRC
- The University, St. Andrews
- Fife
- UK
| | | |
Collapse
|
11
|
Bakhta S, Kabri Y, Crozet MD, Nedjar-Kolli B, Vanelle P. Synthesis of new substituted imidazo[1,2- a]pyridinylpropenenitriles through sequential one-pot Suzuki–Miyaura/Knoevenagel reactions in aqueous medium. SYNTHETIC COMMUN 2019. [DOI: 10.1080/00397911.2019.1634213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Saléha Bakhta
- Faculty of Chemistry, Laboratory of Applied Organic Chemistry, Houari Boumediene University of Sciences and Technology, Algiers, Algeria
| | - Youssef Kabri
- Laboratoire de Pharmaco-Chimie Radicalaire, Faculté de Pharmacie, Institut de Chimie Radicalaire ICR, UMR CNRS 7273, Aix Marseille University, Marseille, France
| | - Maxime D. Crozet
- Laboratoire de Pharmaco-Chimie Radicalaire, Faculté de Pharmacie, Institut de Chimie Radicalaire ICR, UMR CNRS 7273, Aix Marseille University, Marseille, France
| | - Bellara Nedjar-Kolli
- Faculty of Chemistry, Laboratory of Applied Organic Chemistry, Houari Boumediene University of Sciences and Technology, Algiers, Algeria
| | - Patrice Vanelle
- Laboratoire de Pharmaco-Chimie Radicalaire, Faculté de Pharmacie, Institut de Chimie Radicalaire ICR, UMR CNRS 7273, Aix Marseille University, Marseille, France
| |
Collapse
|
12
|
Insights into the current status of privileged N-heterocycles as antileishmanial agents. Mol Divers 2019; 24:525-569. [DOI: 10.1007/s11030-019-09953-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 04/16/2019] [Indexed: 02/04/2023]
|
13
|
Fersing C, Basmaciyan L, Boudot C, Pedron J, Hutter S, Cohen A, Castera-Ducros C, Primas N, Laget M, Casanova M, Bourgeade-Delmas S, Piednoel M, Sournia-Saquet A, Belle Mbou V, Courtioux B, Boutet-Robinet É, Since M, Milne R, Wyllie S, Fairlamb AH, Valentin A, Rathelot P, Verhaeghe P, Vanelle P, Azas N. Nongenotoxic 3-Nitroimidazo[1,2- a]pyridines Are NTR1 Substrates That Display Potent in Vitro Antileishmanial Activity. ACS Med Chem Lett 2019; 10:34-39. [PMID: 30655943 DOI: 10.1021/acsmedchemlett.8b00347] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 12/19/2018] [Indexed: 12/22/2022] Open
Abstract
Twenty nine original 3-nitroimidazo[1,2-a]pyridine derivatives, bearing a phenylthio (or benzylthio) moiety at position 8 of the scaffold, were synthesized. In vitro evaluation highlighted compound 5 as an antiparasitic hit molecule displaying low cytotoxicity for the human HepG2 cell line (CC50 > 100 μM) alongside good antileishmanial activities (IC50 = 1-2.1 μM) against L. donovani, L. infantum, and L. major; and good antitrypanosomal activities (IC50 = 1.3-2.2 μM) against T. brucei brucei and T. cruzi, in comparison to several reference drugs such as miltefosine, fexinidazole, eflornithine, and benznidazole (IC50 = 0.6 to 13.3 μM). Molecule 5, presenting a low reduction potential (E° = -0.63 V), was shown to be selectively bioactivated by the L. donovani type 1 nitroreductase (NTR1). Importantly, molecule 5 was neither mutagenic (negative Ames test), nor genotoxic (negative comet assay), in contrast to many other nitroaromatics. Molecule 5 showed poor microsomal stability; however, its main metabolite (sulfoxide) remained both active and nonmutagenic, making 5 a good candidate for further in vivo studies.
Collapse
Affiliation(s)
- Cyril Fersing
- Aix Marseille Univ, CNRS, ICR UMR 7273, Équipe Pharmaco-Chimie Radicalaire, Faculté de Pharmacie, 27 Boulevard Jean Moulin, 13385 Marseille, France
| | | | - Clotilde Boudot
- Université de Limoges, UMR INSERM 1094, Neuroépidémiologie Tropicale, Faculté de Pharmacie, 2 rue du Dr Marcland, 87025 Limoges, France
| | - Julien Pedron
- LCC−CNRS Université de Toulouse, CNRS, UPS, Toulouse, France
| | | | - Anita Cohen
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France
| | - Caroline Castera-Ducros
- Aix Marseille Univ, CNRS, ICR UMR 7273, Équipe Pharmaco-Chimie Radicalaire, Faculté de Pharmacie, 27 Boulevard Jean Moulin, 13385 Marseille, France
| | - Nicolas Primas
- Aix Marseille Univ, CNRS, ICR UMR 7273, Équipe Pharmaco-Chimie Radicalaire, Faculté de Pharmacie, 27 Boulevard Jean Moulin, 13385 Marseille, France
| | - Michèle Laget
- Aix Marseille Univ, INSERM, UMR MD1, U1261,
SSA, MCT, Marseille, France
| | - Magali Casanova
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France
| | | | - Mélanie Piednoel
- Aix Marseille Univ, CNRS, ICR UMR 7273, Équipe Pharmaco-Chimie Radicalaire, Faculté de Pharmacie, 27 Boulevard Jean Moulin, 13385 Marseille, France
| | | | - Valère Belle Mbou
- CHU de Limoges, Service d’anatomopathologie, 2 avenue Martin Luther King, 87042 Limoges, France
| | - Bertrand Courtioux
- Université de Limoges, UMR INSERM 1094, Neuroépidémiologie Tropicale, Faculté de Pharmacie, 2 rue du Dr Marcland, 87025 Limoges, France
| | - Élisa Boutet-Robinet
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT,
INP-Purpan, UPS, Toulouse, France
| | - Marc Since
- Centre d’Etudes et de Recherche sur le Médicament de Normandie, Normandie Univ., UNICAEN, CERMN, 14000 Caen, France
| | - Rachel Milne
- University of Dundee, School of Life Sciences, Division of Biological Chemistry and Drug Discovery, Dow Street, Dundee DD1 5EH, Scotland, United Kingdom
| | - Susan Wyllie
- University of Dundee, School of Life Sciences, Division of Biological Chemistry and Drug Discovery, Dow Street, Dundee DD1 5EH, Scotland, United Kingdom
| | - Alan H. Fairlamb
- University of Dundee, School of Life Sciences, Division of Biological Chemistry and Drug Discovery, Dow Street, Dundee DD1 5EH, Scotland, United Kingdom
| | - Alexis Valentin
- UMR 152 PharmaDev, Université de Toulouse, IRD, UPS, Toulouse, France
| | - Pascal Rathelot
- Aix Marseille Univ, CNRS, ICR UMR 7273, Équipe Pharmaco-Chimie Radicalaire, Faculté de Pharmacie, 27 Boulevard Jean Moulin, 13385 Marseille, France
| | | | - Patrice Vanelle
- Aix Marseille Univ, CNRS, ICR UMR 7273, Équipe Pharmaco-Chimie Radicalaire, Faculté de Pharmacie, 27 Boulevard Jean Moulin, 13385 Marseille, France
| | - Nadine Azas
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France
| |
Collapse
|
14
|
Fersing C, Boudot C, Pedron J, Hutter S, Primas N, Castera-Ducros C, Bourgeade-Delmas S, Sournia-Saquet A, Moreau A, Cohen A, Stigliani JL, Pratviel G, Crozet MD, Wyllie S, Fairlamb A, Valentin A, Rathelot P, Azas N, Courtioux B, Verhaeghe P, Vanelle P. 8-Aryl-6-chloro-3-nitro-2-(phenylsulfonylmethyl)imidazo[1,2-a]pyridines as potent antitrypanosomatid molecules bioactivated by type 1 nitroreductases. Eur J Med Chem 2018; 157:115-126. [PMID: 30092366 PMCID: PMC7089781 DOI: 10.1016/j.ejmech.2018.07.064] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 07/26/2018] [Accepted: 07/28/2018] [Indexed: 11/28/2022]
Abstract
Based on a previously identified antileishmanial 6,8-dibromo-3-nitroimidazo[1,2-a]pyridine derivative, a Suzuki-Miyaura coupling reaction at position 8 of the scaffold was studied and optimized from a 8-bromo-6-chloro-3-nitroimidazo[1,2-a]pyridine substrate. Twenty-one original derivatives were prepared, screened in vitro for activity against L. infantum axenic amastigotes and T. brucei brucei trypomastigotes and evaluated for their cytotoxicity on the HepG2 human cell line. Thus, 7 antileishmanial hit compounds were identified, displaying IC50 values in the 1.1-3 μM range. Compounds 13 and 23, the 2 most selective molecules (SI = >18 or >17) were additionally tested on both the promastigote and intramacrophage amastigote stages of L. donovani. The two molecules presented a good activity (IC50 = 1.2-1.3 μM) on the promastigote stage but only molecule 23, bearing a 4-pyridinyl substituent at position 8, was active on the intracellular amastigote stage, with a good IC50 value (2.3 μM), slightly lower than the one of miltefosine (IC50 = 4.3 μM). The antiparasitic screening also revealed 8 antitrypanosomal hit compounds, including 14 and 20, 2 very active (IC50 = 0.04-0.16 μM) and selective (SI = >313 to 550) molecules toward T. brucei brucei, in comparison with drug-candidate fexinidazole (IC50 = 0.6 & SI > 333) or reference drugs suramin and eflornithine (respective IC50 = 0.03 and 13.3 μM). Introducing an aryl moiety at position 8 of the scaffold quite significantly increased the antitrypanosomal activity of the pharmacophore. Antikinetoplastid molecules 13, 14, 20 and 23 were assessed for bioactivation by parasitic nitroreductases (either in L. donovani or in T. brucei brucei), using genetically modified parasite strains that over-express NTRs: all these molecules are substrates of type 1 nitroreductases (NTR1), such as those that are responsible for the bioactivation of fexinidazole. Reduction potentials measured for these 4 hit compounds were higher than that of fexinidazole (-0.83 V), ranging from -0.70 to -0.64 V.
Collapse
Affiliation(s)
- Cyril Fersing
- Aix Marseille Univ, CNRS, ICR UMR 7273, Equipe Pharmaco-Chimie Radicalaire, FAC PHARM, 27 Boulevard Jean Moulin, CS30064, 13385, Marseille Cedex 05, France
| | - Clotilde Boudot
- Université de Limoges, UMR Inserm 1094, Neuroépidémiologie Tropicale, Faculté de Pharmacie, 2 rue du Dr Marcland, 87025, Limoges, France
| | - Julien Pedron
- LCC-CNRS Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Sébastien Hutter
- IHU Méditerranée Infection, Aix-Marseille Univ, UMR VITROME, 19-21 Boulevard Jean Moulin, 13005, Marseille, France
| | - Nicolas Primas
- Aix Marseille Univ, CNRS, ICR UMR 7273, Equipe Pharmaco-Chimie Radicalaire, FAC PHARM, 27 Boulevard Jean Moulin, CS30064, 13385, Marseille Cedex 05, France
| | - Caroline Castera-Ducros
- Aix Marseille Univ, CNRS, ICR UMR 7273, Equipe Pharmaco-Chimie Radicalaire, FAC PHARM, 27 Boulevard Jean Moulin, CS30064, 13385, Marseille Cedex 05, France
| | | | | | - Alain Moreau
- LCC-CNRS Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Anita Cohen
- IHU Méditerranée Infection, Aix-Marseille Univ, UMR VITROME, 19-21 Boulevard Jean Moulin, 13005, Marseille, France
| | | | | | - Maxime D Crozet
- Aix Marseille Univ, CNRS, ICR UMR 7273, Equipe Pharmaco-Chimie Radicalaire, FAC PHARM, 27 Boulevard Jean Moulin, CS30064, 13385, Marseille Cedex 05, France
| | - Susan Wyllie
- University of Dundee, School of Life Sciences, Division of Biological Chemistry and Drug Discovery, Dow Street, Dundee, DD1 5EH, Scotland, United Kingdom
| | - Alan Fairlamb
- University of Dundee, School of Life Sciences, Division of Biological Chemistry and Drug Discovery, Dow Street, Dundee, DD1 5EH, Scotland, United Kingdom
| | - Alexis Valentin
- UMR 152 PHARMA-DEV, Université de Toulouse, IRD, UPS, Toulouse, France
| | - Pascal Rathelot
- Aix Marseille Univ, CNRS, ICR UMR 7273, Equipe Pharmaco-Chimie Radicalaire, FAC PHARM, 27 Boulevard Jean Moulin, CS30064, 13385, Marseille Cedex 05, France
| | - Nadine Azas
- IHU Méditerranée Infection, Aix-Marseille Univ, UMR VITROME, 19-21 Boulevard Jean Moulin, 13005, Marseille, France
| | - Bertrand Courtioux
- Université de Limoges, UMR Inserm 1094, Neuroépidémiologie Tropicale, Faculté de Pharmacie, 2 rue du Dr Marcland, 87025, Limoges, France
| | | | - Patrice Vanelle
- Aix Marseille Univ, CNRS, ICR UMR 7273, Equipe Pharmaco-Chimie Radicalaire, FAC PHARM, 27 Boulevard Jean Moulin, CS30064, 13385, Marseille Cedex 05, France.
| |
Collapse
|
15
|
Zhao C, Li F, Yang S, Liu L, Huang Z, Chai H. Chemoselective iodination of 6-substituted imidazo[1,2-a]pyridine. Chem Heterocycl Compd (N Y) 2018. [DOI: 10.1007/s10593-018-2307-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
16
|
Baeva LA, Nugumanov RM, Fatykhov AA, Lyapina NK. Synthesis of 4-[Alkylsulfanyl(sulfonyl)methyl]isoxazoles and -1H-pyrazoles from 3-[(Alkylsulfanyl)methyl]- pentane-2,4-diones. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2018. [DOI: 10.1134/s1070428018030120] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
17
|
Chaturvedi RN, Arish M, Kashif M, Kumar V, Reenu, Pendem K, Rub A, Malhotra S. Synthesis, Biological Evaluation, Molecular Docking and DFT Study of Potent Antileishmanial Agents Based on the Thiazolo[3, 2-a
]pyrimidine Chemical Scaffold. ChemistrySelect 2018. [DOI: 10.1002/slct.201800056] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Radha N. Chaturvedi
- Research & Development Center; Ind-Swift Laboratories Ltd. S.A.S Nagar; Punjab 160055 India
- School of Sciences, Discipline of Chemistry; Indira Gandhi National Open University, Maidan Garhi; New Delhi 110068 India
| | - Mohd Arish
- Infection & Immunity lab, Department of Biotechnology; Jamia Millia Islamia (A Central University); New Delhi 110025 India
| | - Mohammad Kashif
- Infection & Immunity lab, Department of Biotechnology; Jamia Millia Islamia (A Central University); New Delhi 110025 India
- Immuniobiology Laboratory, Department of Zoology, Institute of Science; Banaras Hindu University; Varanasi 221005 India
| | - Varinder Kumar
- Department of Bioinformatics; Goswami Ganesh Dutta S. D. College, Sector 32C; Chandigarh 160030 India
| | - Reenu
- Department of Applied Sciences; PEC University of Technology, Sector12; Chandigarh 160012 India
| | | | - Abdur Rub
- Infection & Immunity lab, Department of Biotechnology; Jamia Millia Islamia (A Central University); New Delhi 110025 India
- Department of Medical Laboratory Sciences; College of Applied Medical Sciences; Majmaah University; Al Majmaah Saudi Arabia
| | - Sunita Malhotra
- School of Sciences, Discipline of Chemistry; Indira Gandhi National Open University, Maidan Garhi; New Delhi 110068 India
| |
Collapse
|
18
|
N'Guessan JPDU, Delaye PO, Pénichon M, Charvet CL, Neveu C, Ouattara M, Enguehard-Gueiffier C, Gueiffier A, Allouchi H. Discovery of imidazo[1,2-a]pyridine-based anthelmintic targeting cholinergic receptors of Haemonchus contortus. Bioorg Med Chem 2017; 25:6695-6706. [DOI: 10.1016/j.bmc.2017.11.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 10/26/2017] [Accepted: 11/05/2017] [Indexed: 01/25/2023]
|
19
|
Synthesis, characterization, and antileishmanial activity of neutral N-heterocyclic carbenes gold(I) complexes. Eur J Med Chem 2017; 143:1635-1643. [PMID: 29133045 DOI: 10.1016/j.ejmech.2017.10.060] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 10/17/2017] [Accepted: 10/20/2017] [Indexed: 01/08/2023]
Abstract
A series of five new mononuclear neutral gold(I) complexes containing N-heterocyclic carbenes (NHCs) was synthesized and fully characterized by spectroscopic methods. The X-ray structures of four complexes are presented. These gold(I) complexes together with four other neutral gold(I)-NHC complexes previously described were evaluated in vitro against Leishmania infantum promastigotes and axenic amastigotes. Moreover, their cytotoxicity was assessed on the murine macrophages J774A.1. Except one complex (10), eight gold(I)-NHC-Cl complexes show potent activity against the pathological relevant form of L. infantum amastigote with IC50 in the low micromolar and submicromolar range and five of them exhibit a SI close to 10. The lead-complex 11 displays a very high and selective activity (IC50 = 190 nM, SI = 40.29) and constitutes the best promising gold(I)-based drug of this series.
Collapse
|
20
|
Redon S, Obah Kosso AR, Broggi J, Vanelle P. Easy and efficient selenocyanation of imidazoheterocycles using triselenodicyanide. Tetrahedron Lett 2017. [DOI: 10.1016/j.tetlet.2017.06.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
21
|
Facile synthesis, structural evaluation, antimicrobial activity and synergistic effects of novel imidazo[1,2- a ]pyridine based organoselenium compounds. Eur J Med Chem 2016; 123:916-924. [DOI: 10.1016/j.ejmech.2016.07.076] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 07/28/2016] [Accepted: 07/31/2016] [Indexed: 12/22/2022]
|
22
|
Reddy KR, Gupta AP, Das P. Metal-Free Aminooxygenation of Alkynes: Efficient Synthesis of 3-Aroylimidazo[1,2-a]-N-Heterocycles. ASIAN J ORG CHEM 2016. [DOI: 10.1002/ajoc.201600120] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- K. Ranjith Reddy
- Academy of Scientific and Innovative Research (AcSIR); New Delhi 110020
| | - Ajai Prakash Gupta
- Quality Control and Quality Assurance (QC & QA); Indian Institute of Integrative Medicine (IIIM); Jammu 180001 India
| | - Parthasarathi Das
- Academy of Scientific and Innovative Research (AcSIR); New Delhi 110020
- Indian Institute of Integrative medicine; Jammu 180001 India
| |
Collapse
|
23
|
Mowbray CE, Braillard S, Speed W, Glossop PA, Whitlock GA, Gibson KR, Mills JEJ, Brown AD, Gardner JMF, Cao Y, Hua W, Morgans GL, Feijens PB, Matheeussen A, Maes LJ. Novel Amino-pyrazole Ureas with Potent In Vitro and In Vivo Antileishmanial Activity. J Med Chem 2015; 58:9615-24. [PMID: 26571076 DOI: 10.1021/acs.jmedchem.5b01456] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Visceral leishmaniasis is a severe parasitic disease that is one of the most neglected tropical diseases. Treatment options are limited, and there is an urgent need for new therapeutic agents. Following an HTS campaign and hit optimization, a novel series of amino-pyrazole ureas has been identified with potent in vitro antileishmanial activity. Furthermore, compound 26 shows high levels of in vivo efficacy (>90%) against Leishmania infantum, thus demonstrating proof of concept for this series.
Collapse
Affiliation(s)
- Charles E Mowbray
- Drugs for Neglected Diseases initiative (DNDi) , 15 Chemin Louis-Dunant, 1202 Geneva, Switzerland
| | - Stéphanie Braillard
- Drugs for Neglected Diseases initiative (DNDi) , 15 Chemin Louis-Dunant, 1202 Geneva, Switzerland
| | - William Speed
- Drugs for Neglected Diseases initiative (DNDi) , 15 Chemin Louis-Dunant, 1202 Geneva, Switzerland
| | - Paul A Glossop
- Sandexis Medicinal Chemistry Ltd., Innovation House , Discovery Park, Ramsgate Road, Sandwich, Kent CT13 9ND, United Kingdom
| | - Gavin A Whitlock
- Sandexis Medicinal Chemistry Ltd., Innovation House , Discovery Park, Ramsgate Road, Sandwich, Kent CT13 9ND, United Kingdom
| | - Karl R Gibson
- Sandexis Medicinal Chemistry Ltd., Innovation House , Discovery Park, Ramsgate Road, Sandwich, Kent CT13 9ND, United Kingdom
| | - James E J Mills
- Sandexis Medicinal Chemistry Ltd., Innovation House , Discovery Park, Ramsgate Road, Sandwich, Kent CT13 9ND, United Kingdom
| | - Alan D Brown
- Pfizer Worldwide Medicinal Chemistry , The Portway Building, Granta Park, Great Abington, Cambridge CB21 6GS, United Kingdom
| | - J Mark F Gardner
- AMG Consultants Ltd., Discovery Park House , Discovery Park, Ramsgate Road, Sandwich, Kent CT13 9ND, United Kingdom
| | - Yafeng Cao
- WuXi AppTec (Wuhan) Company Ltd. , 666 Gaoxin Road, East Lake High-Tech Development Zone, Wuhan 430075, People's Republic of China
| | - Wen Hua
- WuXi AppTec (Wuhan) Company Ltd. , 666 Gaoxin Road, East Lake High-Tech Development Zone, Wuhan 430075, People's Republic of China
| | - Garreth L Morgans
- iThemba Pharmaceuticals , Building T5, Pinelands Site, High Street, Modderfontein 1609, Gauteng, South Africa
| | - Pim-Bart Feijens
- Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp , S7, Universiteitsplein 1, 2610 Wilrijk, Antwerp, Belgium
| | - An Matheeussen
- Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp , S7, Universiteitsplein 1, 2610 Wilrijk, Antwerp, Belgium
| | - Louis J Maes
- Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp , S7, Universiteitsplein 1, 2610 Wilrijk, Antwerp, Belgium
| |
Collapse
|
24
|
Adiyala PR, Mani GS, Nanubolu JB, Shekar KC, Maurya RA. Access to Imidazo[1,2-a]pyridines via Annulation of α-Keto Vinyl Azides and 2-Aminopyridines. Org Lett 2015; 17:4308-11. [PMID: 26308984 DOI: 10.1021/acs.orglett.5b02124] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A novel strategy for the synthesis of imidazo[1,2-a]pyridines via efficient catalyst/metal-free annulations of α-keto vinyl azides and 2-aminopyridines is described. Several imidazo[1,2-a]pyridines were synthesized from readily available vinyl azides and 2-aminopyridines and obtained in highly pure form by simply evaporating the reaction solvent. This remarkably high yielding and atom economical protocol allows the formation of three new C-N bonds through cascade reactions and rearrangements.
Collapse
Affiliation(s)
- Praveen Reddy Adiyala
- Medicinal Chemistry and Pharmacology Division, CSIR-Indian Institute of Chemical Technology (IICT) , Hyderabad-500007, India
| | - Geeta Sai Mani
- Medicinal Chemistry and Pharmacology Division, CSIR-Indian Institute of Chemical Technology (IICT) , Hyderabad-500007, India
| | | | - Kunta Chandra Shekar
- Medicinal Chemistry and Pharmacology Division, CSIR-Indian Institute of Chemical Technology (IICT) , Hyderabad-500007, India
| | - Ram Awatar Maurya
- Medicinal Chemistry and Pharmacology Division, CSIR-Indian Institute of Chemical Technology (IICT) , Hyderabad-500007, India
| |
Collapse
|
25
|
Kieffer C, Cohen A, Verhaeghe P, Paloque L, Hutter S, Castera-Ducros C, Laget M, Rault S, Valentin A, Rathelot P, Azas N, Vanelle P. Antileishmanial pharmacomodulation in 8-nitroquinolin-2(1H)-one series. Bioorg Med Chem 2015; 23:2377-86. [DOI: 10.1016/j.bmc.2015.03.064] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 03/23/2015] [Accepted: 03/24/2015] [Indexed: 10/23/2022]
|
26
|
Kieffer C, Cohen A, Verhaeghe P, Hutter S, Castera-Ducros C, Laget M, Remusat V, M'Rabet MK, Rault S, Rathelot P, Azas N, Vanelle P. Looking for new antileishmanial derivatives in 8-nitroquinolin-2(1H)-one series. Eur J Med Chem 2015; 92:282-94. [DOI: 10.1016/j.ejmech.2014.12.056] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 12/03/2014] [Accepted: 12/30/2014] [Indexed: 12/31/2022]
|
27
|
Paloque L, Hemmert C, Valentin A, Gornitzka H. Synthesis, characterization, and antileishmanial activities of gold(I) complexes involving quinoline functionalized N-heterocyclic carbenes. Eur J Med Chem 2015; 94:22-9. [PMID: 25747497 DOI: 10.1016/j.ejmech.2015.02.046] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 02/05/2015] [Accepted: 02/23/2015] [Indexed: 11/19/2022]
Abstract
A series of new mononuclear cationic or neutral gold(I) complexes containing quinoline functionalized N-heterocyclic carbene(s) (NHC(s)) were synthesized and fully characterized by spectroscopic methods. The X-ray structures of two key compounds are presented. Proligands and their corresponding gold(I) complexes together with previously described silver(I) and gold(I) bis(NHC-quinoline) and gold(I) bis(NHC-methylbipyridine) complexes were evaluated in vitro towards Leishmania infantum. In parallel, the in vitro cytotoxicity of these molecules was assessed on the murine macrophages J774A.1. All gold(I) compounds show potent antileishmanial activity against L. infantum promastigotes and three of them are also efficient against L. infantum intracellular amastigotes. Structure-activity and toxicity relationships enables to evidence a lead-compound (6) displaying both a high activity and a good selectivity index.
Collapse
Affiliation(s)
- Lucie Paloque
- Université de Toulouse, UPS, UMR 152 Pharma-DEV, Université Toulouse 3, Faculté des sciences pharmaceutiques, 35 Chemin des maraîchers, F-31062 Toulouse Cedex 9, France; Institut de Recherche pour le Développement, IRD, UMR 152 Pharma-DEV, F-31062 Toulouse Cedex 9, France
| | - Catherine Hemmert
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 Route de Narbonne, BP 44099, F-31077 Toulouse Cedex 4, France; Université de Toulouse, UPS, INPT, F-31077 Toulouse Cedex 4, France.
| | - Alexis Valentin
- Université de Toulouse, UPS, UMR 152 Pharma-DEV, Université Toulouse 3, Faculté des sciences pharmaceutiques, 35 Chemin des maraîchers, F-31062 Toulouse Cedex 9, France; Institut de Recherche pour le Développement, IRD, UMR 152 Pharma-DEV, F-31062 Toulouse Cedex 9, France
| | - Heinz Gornitzka
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 Route de Narbonne, BP 44099, F-31077 Toulouse Cedex 4, France; Université de Toulouse, UPS, INPT, F-31077 Toulouse Cedex 4, France
| |
Collapse
|
28
|
First single electron transfer reaction on propargylic chloride in 5-nitroimidazole series. Tetrahedron Lett 2014. [DOI: 10.1016/j.tetlet.2014.04.100] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
29
|
Koubachi J, El Kazzouli S, Bousmina M, Guillaumet G. Functionalization of Imidazo[1,2-a]pyridines by Means of Metal-Catalyzed Cross-Coupling Reactions. European J Org Chem 2014. [DOI: 10.1002/ejoc.201400065] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|