1
|
Zheng J, Shoberu A, Zhou PJ, Sun WB, Ying L, Zou JP. NaNO2/K2S2O8-mediated selective transformation of 3-formylchromones to 2-hydroxyiminobenzofuran-3-ones and 2-alkoxy-3-(hydroxyimino)chromanones. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.133010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
2
|
Rathod GK, Jain M, Sharma KK, Das S, Basak A, Jain R. New structural classes of antimalarials. Eur J Med Chem 2022; 242:114653. [PMID: 35985254 DOI: 10.1016/j.ejmech.2022.114653] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/22/2022] [Accepted: 07/31/2022] [Indexed: 11/19/2022]
Abstract
Malaria remains a major vector borne disease claiming millions of lives worldwide due to infections caused by Plasmodium sp. Discovery and development of antimalarial drugs have previously been dominated majorly by single drug therapy. The malaria parasite has developed resistance against first line and second line antimalarial drugs used in the single drug therapy. This has drawn attention to find ways to alleviate the disease burden supplanted by combination therapy with multiple drugs to overcome drug resistance. Emergence of resistant strains even against the combination therapy has now mandated the revision of the current antimalarial pharmacotherapy. Research efforts of the past decade led to the discovery and identification of several new structural classes of antimalarial agents with improved biological attributes over the older ones. The following is a comprehensive review, addressed to the new structural classes of heterocyclic and natural compounds that have been identified during the last decade as antimalarial agents. Some of the classes included herein contain one or more pharmacophores amalgamated into a single bioactive scaffold as antimalarial agents, which act upon the conventional and novel targets.
Collapse
Affiliation(s)
- Gajanan K Rathod
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab, 160 062, India
| | - Meenakshi Jain
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab, 160 062, India
| | - Krishna K Sharma
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab, 160 062, India
| | - Samarpita Das
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab, 160 062, India
| | - Ahana Basak
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab, 160 062, India
| | - Rahul Jain
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab, 160 062, India.
| |
Collapse
|
3
|
Marsden AJ, Riley DRJ, Barry A, Khalil JS, Guinn BA, Kemp NT, Rivero F, Beltran-Alvarez P. Inhibition of Arginine Methylation Impairs Platelet Function. ACS Pharmacol Transl Sci 2021; 4:1567-1577. [PMID: 34661075 DOI: 10.1021/acsptsci.1c00135] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Indexed: 11/28/2022]
Abstract
Protein arginine methyltransferases (PRMTs) catalyze the transfer of methyl groups to arginine residues in proteins. PRMT inhibitors are novel, promising drugs against cancer that are currently in clinical trials, which include oral administration of the drugs. However, off-target activities of systemically available PRMT inhibitors have not yet been investigated. In this work, we study the relevance of arginine methylation in platelets and investigate the effect of PRMT inhibitors on platelet function and on the expression of relevant platelet receptors. We show that (1) key platelet proteins are modified by arginine methylation; (2) incubation of human platelets with PRMT inhibitors for 4 h results in impaired capacity of platelets to aggregate in response to thrombin and collagen, with IC50 values in the μM range; and (3) treatment with PRMT inhibitors leads to decreased membrane expression and reduced activation of the critical platelet integrin αIIbβ3. Our contribution opens new avenues for research on arginine methylation in platelets, including the repurposing of arginine methylation inhibitors as novel antiplatelet drugs. We also recommend that current and future clinical trials with PRMT inhibitors consider any adverse effects associated with platelet inhibition of these emerging anticancer drugs.
Collapse
Affiliation(s)
| | - David R J Riley
- Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, Hull HU6 7RX, U.K
| | - Antonia Barry
- Department of Biomedical Sciences, University of Hull, Hull HU6 7RX, U.K
| | - Jawad S Khalil
- Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, Hull HU6 7RX, U.K
| | - Barbara-Ann Guinn
- Department of Biomedical Sciences, University of Hull, Hull HU6 7RX, U.K
| | - Neil T Kemp
- Department of Physics and Mathematics, University of Hull, Hull HU6 7RX, U.K
| | - Francisco Rivero
- Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, Hull HU6 7RX, U.K
| | | |
Collapse
|
4
|
Affiliation(s)
- Zhenrong Liu
- College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou, Gansu 730070 P. R. China
| | - Zheng Li
- College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou, Gansu 730070 P. R. China
| |
Collapse
|
5
|
Vetrichelvan M, Rakshit S, Chandrasekaran S, Chinnakalai K, Darne CP, Doddalingappa D, Gopikumar I, Gupta A, Gupta AK, Karmakar A, Lakshminarasimhan T, Leahy DK, Palani S, Radhakrishnan V, Rampulla R, Savarimuthu A, Subramanian V, Velaparthi U, Warrier J, Eastgate MD, Borzilleri RM, Mathur A, Vaidyanathan R. Development of a Scalable Synthesis of the Small Molecule TGFβR1 Inhibitor BMS-986260. Org Process Res Dev 2020. [DOI: 10.1021/acs.oprd.0c00232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Muthalagu Vetrichelvan
- Department of Discovery Synthesis, Biocon Bristol-Myers Squibb Research and Development Center, Biocon Park, Jigani Link Road, Bommasandra IV, Bangalore 560099, India
| | - Souvik Rakshit
- Chemical Development and API Supply, Biocon Bristol-Myers Squibb Research and Development Center, Biocon Park, Jigani Link Road, Bommasandra IV, Bangalore 560099, India
| | - Sathishkumar Chandrasekaran
- Chemical Development and API Supply, Biocon Bristol-Myers Squibb Research and Development Center, Biocon Park, Jigani Link Road, Bommasandra IV, Bangalore 560099, India
| | - Karthikeyan Chinnakalai
- Chemical Development and API Supply, Biocon Bristol-Myers Squibb Research and Development Center, Biocon Park, Jigani Link Road, Bommasandra IV, Bangalore 560099, India
| | - Chetan Padmakar Darne
- Small Molecule Drug Discovery, Bristol Myers Squibb Research and Early Development, P.O.
Box 5400, Princeton, New Jersey 08543-4000, United States
| | - Dyamanna Doddalingappa
- Department of Discovery Synthesis, Biocon Bristol-Myers Squibb Research and Development Center, Biocon Park, Jigani Link Road, Bommasandra IV, Bangalore 560099, India
| | - Indasi Gopikumar
- Department of Discovery Synthesis, Biocon Bristol-Myers Squibb Research and Development Center, Biocon Park, Jigani Link Road, Bommasandra IV, Bangalore 560099, India
| | - Anuradha Gupta
- Department of Discovery Synthesis, Biocon Bristol-Myers Squibb Research and Development Center, Biocon Park, Jigani Link Road, Bommasandra IV, Bangalore 560099, India
| | - Arun Kumar Gupta
- Department of Discovery Synthesis, Biocon Bristol-Myers Squibb Research and Development Center, Biocon Park, Jigani Link Road, Bommasandra IV, Bangalore 560099, India
| | - Ananta Karmakar
- Department of Discovery Synthesis, Biocon Bristol-Myers Squibb Research and Development Center, Biocon Park, Jigani Link Road, Bommasandra IV, Bangalore 560099, India
| | - Thirumalai Lakshminarasimhan
- Chemical Development and API Supply, Biocon Bristol-Myers Squibb Research and Development Center, Biocon Park, Jigani Link Road, Bommasandra IV, Bangalore 560099, India
| | - David K. Leahy
- Chemical Process Development, Bristol-Myers Squibb, 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Senthil Palani
- Chemical Development and API Supply, Biocon Bristol-Myers Squibb Research and Development Center, Biocon Park, Jigani Link Road, Bommasandra IV, Bangalore 560099, India
| | - Vignesh Radhakrishnan
- Department of Discovery Synthesis, Biocon Bristol-Myers Squibb Research and Development Center, Biocon Park, Jigani Link Road, Bommasandra IV, Bangalore 560099, India
| | - Richard Rampulla
- Small Molecule Drug Discovery, Bristol Myers Squibb Research and Early Development, P.O.
Box 5400, Princeton, New Jersey 08543-4000, United States
| | - Antony Savarimuthu
- Chemical Development and API Supply, Biocon Bristol-Myers Squibb Research and Development Center, Biocon Park, Jigani Link Road, Bommasandra IV, Bangalore 560099, India
| | - Varadharajan Subramanian
- Chemical Development and API Supply, Biocon Bristol-Myers Squibb Research and Development Center, Biocon Park, Jigani Link Road, Bommasandra IV, Bangalore 560099, India
| | - Upender Velaparthi
- Small Molecule Drug Discovery, Bristol Myers Squibb Research and Early Development, P.O.
Box 5400, Princeton, New Jersey 08543-4000, United States
| | - Jayakumar Warrier
- Medicinal Chemistry, Biocon Bristol-Myers Squibb Research and Development Center, Biocon Park, Jigani Link Road, Bommasandra IV, Bangalore 560099, India
| | - Martin D. Eastgate
- Chemical Process Development, Bristol-Myers Squibb, 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Robert M. Borzilleri
- Small Molecule Drug Discovery, Bristol Myers Squibb Research and Early Development, P.O.
Box 5400, Princeton, New Jersey 08543-4000, United States
| | - Arvind Mathur
- Small Molecule Drug Discovery, Bristol Myers Squibb Research and Early Development, P.O.
Box 5400, Princeton, New Jersey 08543-4000, United States
| | - Rajappa Vaidyanathan
- Chemical Development and API Supply, Biocon Bristol-Myers Squibb Research and Development Center, Biocon Park, Jigani Link Road, Bommasandra IV, Bangalore 560099, India
| |
Collapse
|
6
|
Veale CGL. Unpacking the Pathogen Box-An Open Source Tool for Fighting Neglected Tropical Disease. ChemMedChem 2019; 14:386-453. [PMID: 30614200 DOI: 10.1002/cmdc.201800755] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Indexed: 12/13/2022]
Abstract
The Pathogen Box is a 400-strong collection of drug-like compounds, selected for their potential against several of the world's most important neglected tropical diseases, including trypanosomiasis, leishmaniasis, cryptosporidiosis, toxoplasmosis, filariasis, schistosomiasis, dengue virus and trichuriasis, in addition to malaria and tuberculosis. This library represents an ensemble of numerous successful drug discovery programmes from around the globe, aimed at providing a powerful resource to stimulate open source drug discovery for diseases threatening the most vulnerable communities in the world. This review seeks to provide an in-depth analysis of the literature pertaining to the compounds in the Pathogen Box, including structure-activity relationship highlights, mechanisms of action, related compounds with reported activity against different diseases, and, where appropriate, discussion on the known and putative targets of compounds, thereby providing context and increasing the accessibility of the Pathogen Box to the drug discovery community.
Collapse
Affiliation(s)
- Clinton G L Veale
- School of Chemistry and Physics, Pietermaritzburg Campus, University of KwaZulu-Natal, Private Bag X01, Scottsville, 3209, South Africa
| |
Collapse
|
7
|
Baleeva NS, Zaitseva SO, Mineev KS, Khavroshechkina AV, Zagudaylova MB, Baranov MS. Enamine–azide [2+3]-cycloaddition as a method to introduce functional groups into fluorescent dyes. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.01.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
Kalaria PN, Karad SC, Raval DK. A review on diverse heterocyclic compounds as the privileged scaffolds in antimalarial drug discovery. Eur J Med Chem 2018; 158:917-936. [PMID: 30261467 DOI: 10.1016/j.ejmech.2018.08.040] [Citation(s) in RCA: 173] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 04/18/2018] [Accepted: 08/14/2018] [Indexed: 12/11/2022]
Abstract
The upward extend of malaria collectively with the emergence of resistance against predictable drugs has put enormous pressure on public health systems to introduce new malaria treatments. Heterocycles play an important role in the design and discovery of new malaria active compounds. Heterocyclic compounds have attracted significant attention for malaria treatment because of simplicity of parallelization and the examining power with regard to chemical space. Introduction of a variety of heterocyclic compounds have enabled to maintain the high levels of antimalarial potency observed for other more lipophilic analogues whilst improving the solubility and the oral bioavailability in pre-clinical species. In this review, we present an overview of recent literature to provide imminent into the applications of different heterocyclic scaffolds in fighting against malaria.
Collapse
Affiliation(s)
- Piyush N Kalaria
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, 388120, Gujarat, India.
| | - Sharad C Karad
- Department of Chemistry, Marwadi University, Rajkot, Gujarat, India.
| | - Dipak K Raval
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, 388120, Gujarat, India.
| |
Collapse
|
9
|
Abstract
INTRODUCTION Despite the fact that diseases caused by protozoan parasites represent serious challenges for public health, animal production and welfare, only a limited panel of drugs has been marketed for clinical applications. AREAS COVERED Herein, the authors investigate two strategies, namely whole organism screening and target-based drug design. The present pharmacopoeia has resulted from whole organism screening, and the mode of action and targets of selected drugs are discussed. However, the more recent extensive genome sequencing efforts and the development of dry and wet lab genomics and proteomics that allow high-throughput screening of interactions between micromolecules and recombinant proteins has resulted in target-based drug design as the predominant focus in anti-parasitic drug development. Selected examples of target-based drug design studies are presented, and calcium-dependent protein kinases, important drug targets in apicomplexan parasites, are discussed in more detail. EXPERT OPINION Despite the enormous efforts in target-based drug development, this approach has not yet generated market-ready antiprotozoal drugs. However, whole-organism screening approaches, comprising of both in vitro and in vivo investigations, should not be disregarded. The repurposing of already approved and marketed drugs could be a suitable strategy to avoid fastidious approval procedures, especially in the case of neglected or veterinary parasitoses.
Collapse
Affiliation(s)
- Joachim Müller
- a Institute of Parasitology, Vetsuisse Faculty , University of Bern , Bern , Switzerland
| | - Andrew Hemphill
- a Institute of Parasitology, Vetsuisse Faculty , University of Bern , Bern , Switzerland
| |
Collapse
|
10
|
Patrick DA, Wenzler T, Yang S, Weiser PT, Wang MZ, Brun R, Tidwell RR. Synthesis of novel amide and urea derivatives of thiazol-2-ethylamines and their activity against Trypanosoma brucei rhodesiense. Bioorg Med Chem 2016; 24:2451-2465. [PMID: 27102161 PMCID: PMC4862372 DOI: 10.1016/j.bmc.2016.04.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 03/24/2016] [Accepted: 04/01/2016] [Indexed: 11/24/2022]
Abstract
2-(2-Benzamido)ethyl-4-phenylthiazole (1) was one of 1035 molecules (grouped into 115 distinct scaffolds) found to be inhibitory to Trypanosoma brucei, the pathogen causing human African trypanosomiasis, at concentrations below 3.6μM and non-toxic to mammalian (Huh7) cells in a phenotypic high-throughput screen of a 700,000 compound library performed by the Genomics Institute of the Novartis Research Foundation (GNF). Compound 1 and 72 analogues were synthesized in this lab by one of two general pathways. These plus 10 commercially available analogues were tested against T. brucei rhodesiense STIB900 and L6 rat myoblast cells (for cytotoxicity) in vitro. Forty-four derivatives were more potent than 1, including eight with IC50 values below 100nM. The most potent and most selective for the parasite was the urea analogue 2-(2-piperidin-1-ylamido)ethyl-4-(3-fluorophenyl)thiazole (70, IC50=9nM, SI>18,000). None of 33 compounds tested were able to cure mice infected with the parasite; however, seven compounds caused temporary reductions of parasitemia (⩾97%) but with subsequent relapses. The lack of in vivo efficacy was at least partially due to their poor metabolic stability, as demonstrated by the short half-lives of 15 analogues against mouse and human liver microsomes.
Collapse
Affiliation(s)
- Donald A Patrick
- University of North Carolina, Pathology & Laboratory Medicine, 805 Brinkhous-Bullitt Bldg, CB7525, Chapel Hill, NC 27599-7525, USA
| | - Tanja Wenzler
- Swiss Tropical and Public Health Institute, Socinstrasse 57, CH-4002 Basel, Switzerland; University of Basel, 4003 Basel, Switzerland
| | - Sihyung Yang
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66047, USA
| | - Patrick T Weiser
- University of North Carolina, Pathology & Laboratory Medicine, 805 Brinkhous-Bullitt Bldg, CB7525, Chapel Hill, NC 27599-7525, USA
| | - Michael Zhuo Wang
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66047, USA
| | - Reto Brun
- Swiss Tropical and Public Health Institute, Socinstrasse 57, CH-4002 Basel, Switzerland; University of Basel, 4003 Basel, Switzerland
| | - Richard R Tidwell
- University of North Carolina, Pathology & Laboratory Medicine, 805 Brinkhous-Bullitt Bldg, CB7525, Chapel Hill, NC 27599-7525, USA.
| |
Collapse
|
11
|
Galenko AV, Khlebnikov AF, Novikov MS, Pakalnis VV, Rostovskii NV. Recent advances in isoxazole chemistry. RUSSIAN CHEMICAL REVIEWS 2015. [DOI: 10.1070/rcr4503] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
12
|
Musso L, Cincinelli R, Giannini G, Manetti F, Dallavalle S. Synthesis of 5,6-dihydro-4H-benzo[d]isoxazol-7-one and 5,6-dihydro-4H-isoxazolo[5,4-c]pyridin-7-one derivatives as potential Hsp90 inhibitors. Chem Biol Drug Des 2015; 86:1030-5. [PMID: 25855505 DOI: 10.1111/cbdd.12570] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 04/03/2015] [Indexed: 11/30/2022]
Abstract
A novel class of 5,6-dihydro-4H-benzo[d]isoxazol-7-ones and 5,6-dihydro-4H-isoxazolo[5,4-c]pyridin-7-ones was designed, synthesized, and assayed to investigate the affinity toward Hsp90 protein. The synthetic route was based on a 1,3-dipolar cycloaddition of nitriloxides, generated in situ from suitable benzaldoximes, with 2-bromocyclohex-2-enones or 3-bromo-5,6-dihydro-1H-pyridin-2-ones. Whereas all the compounds bearing a benzamide group on the bicyclic scaffold were devoid of activity, the derivatives carrying a resorcinol-like fragment showed a remarkable inhibitory effect on Hsp90. Docking calculations were performed to investigate the orientation of the new compounds within the binding site of the enzyme.
Collapse
Affiliation(s)
- Loana Musso
- Department of Food, Environmental and Nutritional Sciences, Division of Chemistry and Molecular Biology, University of Milano, via Celoria 2, Milan, I-20133, Italy
| | - Raffaella Cincinelli
- Department of Food, Environmental and Nutritional Sciences, Division of Chemistry and Molecular Biology, University of Milano, via Celoria 2, Milan, I-20133, Italy
| | - Giuseppe Giannini
- R&D Sigma-Tau Industrie Farmaceutiche Riunite S.p.A., via Pontina Km 30,400, Pomezia, I-00040, Italy
| | - Fabrizio Manetti
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, via A. Moro 2, Siena, I-53100, Italy
| | - Sabrina Dallavalle
- Department of Food, Environmental and Nutritional Sciences, Division of Chemistry and Molecular Biology, University of Milano, via Celoria 2, Milan, I-20133, Italy
| |
Collapse
|
13
|
Lu LY, Kuo HM, Sheu HS, Lee GH, Lai CK. Polarization effects in mesogenic isoxazoles and 1,3,4-oxadiazoles. Tetrahedron 2014. [DOI: 10.1016/j.tet.2014.05.036] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|