1
|
Gibney A, Kellett A. Gene Editing with Artificial DNA Scissors. Chemistry 2024; 30:e202401621. [PMID: 38984588 DOI: 10.1002/chem.202401621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/11/2024]
Abstract
Artificial metallo-nucleases (AMNs) are small molecule DNA cleavage agents, also known as DNA molecular scissors, and represent an important class of chemotherapeutic with high clinical potential. This review provides a primary level of exploration on the concepts key to this area including an introduction to DNA structure, function, recognition, along with damage and repair mechanisms. Building on this foundation, we describe hybrid molecules where AMNs are covalently attached to directing groups that provide molecular scissors with enhanced or sequence specific DNA damaging capabilities. As this research field continues to evolve, understanding the applications of AMNs along with synthetic conjugation strategies can provide the basis for future innovations, particularly for designing new artificial gene editing systems.
Collapse
Affiliation(s)
- Alex Gibney
- SSPC, The Science Foundation Ireland Research Centre for Pharmaceuticals, School of Chemical Sciences, Dublin City University, Glasnevin, Dublin, 9, Ireland
| | - Andrew Kellett
- SSPC, The Science Foundation Ireland Research Centre for Pharmaceuticals, School of Chemical Sciences, Dublin City University, Glasnevin, Dublin, 9, Ireland
| |
Collapse
|
2
|
Sima Y, Ai L, Wang L, Zhang P, Zhang Q, Wu S, Xie S, Zhao Z, Tan W. A DNA Molecular Logic Circuit for Precise Tumor Identification. NANO LETTERS 2024; 24:12070-12079. [PMID: 39315658 DOI: 10.1021/acs.nanolett.4c02342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Tumor-associated antigens (TAAs) are not exclusively expressed in cancer cells, inevitably causing the "on target, off tumor" effect of molecular recognition tools. To achieve precise recognition of cancer cells, by using protein tyrosine kinase 7 (PTK7) as a model TAA, a DNA molecular logic circuit Aisgc8 was rationally developed by arranging H+-binding i-motif, ATP-binding aptamer, and PTK7-targeting aptamer Sgc8c in a DNA sequence. Aisgc8 output the conformation of Sgc8c to recognize PTK7 on cells in a simulated tumor microenvironment characterized by weak acidity and abundant ATP, but not in a simulated physiological environment. Through in vitro and in vivo results, Aisgc8 demonstrated its ability to precisely recognize cancer cells and, as a result, displayed excellent performance in tumor imaging. Thus, our studies produced a simple and efficient strategy to construct DNA logic circuits, opening new possibilities to develop convenient and intelligent precision diagnostics by using DNA logic circuits.
Collapse
Affiliation(s)
- Yingyu Sima
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Lili Ai
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Linlin Wang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Pengge Zhang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Qiang Zhang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Shanchao Wu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Sitao Xie
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Zilong Zhao
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| |
Collapse
|
3
|
Obara P, Wolski P, Pańczyk T. Insights into the Molecular Structure, Stability, and Biological Significance of Non-Canonical DNA Forms, with a Focus on G-Quadruplexes and i-Motifs. Molecules 2024; 29:4683. [PMID: 39407611 PMCID: PMC11477922 DOI: 10.3390/molecules29194683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/27/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
This article provides a comprehensive examination of non-canonical DNA structures, particularly focusing on G-quadruplexes (G4s) and i-motifs. G-quadruplexes, four-stranded structures formed by guanine-rich sequences, are stabilized by Hoogsteen hydrogen bonds and monovalent cations like potassium. These structures exhibit diverse topologies and are implicated in critical genomic regions such as telomeres and promoter regions of oncogenes, playing significant roles in gene expression regulation, genome stability, and cellular aging. I-motifs, formed by cytosine-rich sequences under acidic conditions and stabilized by hemiprotonated cytosine-cytosine (C:C+) base pairs, also contribute to gene regulation despite being less prevalent than G4s. This review highlights the factors influencing the stability and dynamics of these structures, including sequence composition, ionic conditions, and environmental pH. Molecular dynamics simulations and high-resolution structural techniques have been pivotal in advancing our understanding of their folding and unfolding mechanisms. Additionally, the article discusses the therapeutic potential of small molecules designed to selectively bind and stabilize G4s and i-motifs, with promising implications for cancer treatment. Furthermore, the structural properties of these DNA forms are explored for applications in nanotechnology and molecular devices. Despite significant progress, challenges remain in observing these structures in vivo and fully elucidating their biological functions. The review underscores the importance of continued research to uncover new insights into the genomic roles of G4s and i-motifs and their potential applications in medicine and technology. This ongoing research promises exciting developments in both basic science and applied fields, emphasizing the relevance and future prospects of these intriguing DNA structures.
Collapse
Affiliation(s)
| | | | - Tomasz Pańczyk
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, ul. Niezapominajek 8, 30239 Cracow, Poland; (P.O.); (P.W.)
| |
Collapse
|
4
|
Tao S, Run Y, Monchaud D, Zhang W. i-Motif DNA: identification, formation, and cellular functions. Trends Genet 2024; 40:853-867. [PMID: 38902139 DOI: 10.1016/j.tig.2024.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/29/2024] [Accepted: 05/29/2024] [Indexed: 06/22/2024]
Abstract
An i-motif (iM) is a four-stranded (quadruplex) DNA structure that folds from cytosine (C)-rich sequences. iMs can fold under many different conditions in vitro, which paves the way for their formation in living cells. iMs are thought to play key roles in various DNA transactions, notably in the regulation of genome stability, gene transcription, mRNA translation, DNA replication, telomere and centromere functions, and human diseases. We summarize the different techniques used to assess the folding of iMs in vitro and provide an overview of the internal and external factors that affect their formation and stability in vivo. We describe the possible biological relevance of iMs and propose directions towards their use as target in biology.
Collapse
Affiliation(s)
- Shentong Tao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production (CIC-MCP), Nanjing Agricultural University, 1 Weigang, Nanjing, Jiangsu 210095, China
| | - Yonghang Run
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production (CIC-MCP), Nanjing Agricultural University, 1 Weigang, Nanjing, Jiangsu 210095, China
| | - David Monchaud
- Institut de Chimie Moleculaire de l'Université de Bourgogne (ICMUB), Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 6302, Université Bourgogne Franche Comté (UBFC), Dijon, France
| | - Wenli Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production (CIC-MCP), Nanjing Agricultural University, 1 Weigang, Nanjing, Jiangsu 210095, China.
| |
Collapse
|
5
|
Park D, Chung WC, Gong S, Ravichandran S, Lee GM, Han M, Kim KK, Ahn JH. G-quadruplex as an essential structural element in cytomegalovirus replication origin. Nat Commun 2024; 15:7353. [PMID: 39191758 PMCID: PMC11350156 DOI: 10.1038/s41467-024-51797-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 08/16/2024] [Indexed: 08/29/2024] Open
Abstract
G-quadruplex (G4) structures are found in eukaryotic cell replication origins, but their role in origin function remains unclear. In this study G4 motifs are found in the lytic DNA replication origin (oriLyt) of human cytomegalovirus (HCMV) and recombinant viruses show that a G4 motif in oriLyt essential region I (ER-I) is necessary for viral growth. Replication assays of oriLyt-containing plasmids and biochemical/biophysical analyses show that G4 formation in ER-I is crucial for viral DNA replication. G4 pull-down analysis identifies viral DNA replication factors, such as IE2, UL84, and UL44, as G4-binding proteins. In enzyme-linked immunosorbent assays, specific G4-binding ligands inhibit G4 binding by the viral proteins. The Epstein-Barr virus oriLyt core element also forms a stable G4 that could substitute for the oriLyt ER-I G4 in HCMV. These results demonstrate that viral G4s in replication origins represent an essential structural element in recruiting replication factors and might be a therapeutic target against viral infections.
Collapse
Affiliation(s)
- Daegyu Park
- Department of Microbiology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Woo-Chang Chung
- Department of Microbiology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Shuang Gong
- Department of Microbiology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | | | - Gwang Myeong Lee
- Department of Microbiology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Minji Han
- Department of Microbiology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Kyeong Kyu Kim
- Department of Precision Medicine, Institute for Antimicrobial Resistance Research and Therapeutics, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
- Biomedical Research Institute, Samsung Medical Center, Seoul, Republic of Korea
| | - Jin-Hyun Ahn
- Department of Microbiology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea.
- Biomedical Research Institute, Samsung Medical Center, Seoul, Republic of Korea.
| |
Collapse
|
6
|
Asa TA, Seo YJ. I-motif sensor for the fluorometric detection of Monkeypox. Analyst 2024; 149:4514-4524. [PMID: 39058361 DOI: 10.1039/d4an00947a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
In this study, we developed an isothermal fluorometric diagnostic method for DNA virus-generating disorders such as Mpox. Our results showed that the release of a large number of protons during multiplex-LAMP markedly lowered the pH level, which transformed the retinoblastoma (Rb) linear ssDNA into i-motifs. Consequently, thiazole orange (TO; a fluorometric probe sensitive to the i-motif) boosted the signal-on fluorescence because of its ability to bind selectively to i-motifs. This multiplex-LAMP/i-motif-TO system enabled simultaneous detection aimed at numerous potential targets with remarkable sensitivity (1.47 pg per mL) and efficiency (30 minutes). Our method is expected to enable DNA-virus-related diseases to be efficiently and accurately assessed.
Collapse
Affiliation(s)
- Tasnima Alam Asa
- Department of Chemistry, Jeonbuk National University, Jeonju 54896, South Korea.
| | - Young Jun Seo
- Department of Chemistry, Jeonbuk National University, Jeonju 54896, South Korea.
| |
Collapse
|
7
|
Dong X, Qiu Z, Wang Z, Li J, Qin W, Dang J, Zhou W, Jia G, Chen Y, Wang C. Efficient Silver(I)-Containing I-Motif DNA Hybrid Catalyst for Enantioselective Diels-Alder Reactions. Angew Chem Int Ed Engl 2024; 63:e202407838. [PMID: 38860437 DOI: 10.1002/anie.202407838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/30/2024] [Accepted: 06/11/2024] [Indexed: 06/12/2024]
Abstract
The inherent chiral structures of DNA serve as attractive scaffolds to construct DNA hybrid catalysts for valuable enantioselective transformations. Duplex and G-quadruplex DNA-based enantioselective catalysis has made great progress, yet novel design strategies of DNA hybrid catalysts are highly demanding and atomistic analysis of active centers is still challenging. DNA i-motif structures could be finely tuned by different cytosine-cytosine base pairs, providing a new platform to design DNA catalysts. Herein, we found that a human telomeric i-motif DNA containing cytosine-silver(I)-cytosine (C-Ag+-C) base pairs interacting with Cu(II) ions (i-motif DNA(Ag+)/Cu2+) could catalyze Diels-Alder reactions with full conversions and up to 95 % enantiomeric excess. As characterized by various physicochemical techniques, the presence of Ag+ is proved to replace the protons in hemiprotonated cytosine-cytosine (C : C+) base pairs and stabilize the DNA i-motif to allow the acceptance of Cu(II) ions. The i-motif DNA(Ag+)/Cu2+ catalyst shows about 8-fold rate acceleration compared with DNA and Cu2+. Based on DNA mutation experiments, thermodynamic studies and density function theory calculations, the catalytic center of Cu(II) ion is proposed to be located in a specific loop region via binding to one nitrogen-7 atom of an unpaired adenine and two phosphate-oxygen atoms from nearby deoxythymidine monophosphate and deoxyadenosine monophosphate, respectively.
Collapse
Affiliation(s)
- Xingchen Dong
- Key Laboratory of Applied Surface and Colloid Chemistry (MOE), Xi'an Key Laboratory of Organometallic Material Chemistry, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Ziyang Qiu
- Key Laboratory of Applied Surface and Colloid Chemistry (MOE), Xi'an Key Laboratory of Organometallic Material Chemistry, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Zixiao Wang
- Key Laboratory of Applied Surface and Colloid Chemistry (MOE), Xi'an Key Laboratory of Organometallic Material Chemistry, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Jiaqi Li
- Key Laboratory of Applied Surface and Colloid Chemistry (MOE), Xi'an Key Laboratory of Organometallic Material Chemistry, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Weijun Qin
- Key Laboratory of Applied Surface and Colloid Chemistry (MOE), Xi'an Key Laboratory of Organometallic Material Chemistry, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Jingshuang Dang
- Key Laboratory of Applied Surface and Colloid Chemistry (MOE), Xi'an Key Laboratory of Organometallic Material Chemistry, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Wenqin Zhou
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Guoqing Jia
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Yashao Chen
- Key Laboratory of Applied Surface and Colloid Chemistry (MOE), Xi'an Key Laboratory of Organometallic Material Chemistry, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Changhao Wang
- Key Laboratory of Applied Surface and Colloid Chemistry (MOE), Xi'an Key Laboratory of Organometallic Material Chemistry, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| |
Collapse
|
8
|
Boissieras J, Bonnet H, Susanto MF, Gomez D, Defrancq E, Granzhan A, Dejeu J. iMab antibody binds single-stranded cytosine-rich sequences and unfolds DNA i-motifs. Nucleic Acids Res 2024; 52:8052-8062. [PMID: 38908025 PMCID: PMC11317162 DOI: 10.1093/nar/gkae531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 05/31/2024] [Accepted: 06/10/2024] [Indexed: 06/24/2024] Open
Abstract
i-Motifs (iMs) are non-canonical, four-stranded secondary structures formed by stacking of hemi-protonated CH+·C base pairs in cytosine-rich DNA sequences, predominantly at pH < 7. The presence of iM structures in cells was a matter of debate until the recent development of iM-specific antibody, iMab, which was instrumental for several studies that suggested the existence of iMs in live cells and their putative biological roles. We assessed the interaction of iMab with cytosine-rich oligonucleotides by biolayer interferometry (BLI), pull-down assay and bulk-FRET experiments. Our results suggest that binding of iMab to DNA oligonucleotides is governed by the presence of runs of at least two consecutive cytosines and is generally increased in acidic conditions, irrespectively of the capacity of the sequence to adopt, or not, an iM structure. Moreover, the results of the bulk-FRET assay indicate that interaction with iMab results in unfolding of iM structures even in acidic conditions, similarly to what has been observed with hnRNP K, well-studied single-stranded DNA binding protein. Taken together, our results strongly suggest that iMab actually binds to blocks of 2-3 cytosines in single-stranded DNA, and call for more careful interpretation of results obtained with this antibody.
Collapse
Affiliation(s)
- Joseph Boissieras
- Chemistry and Modelling for Biology of Cancer (CMBC), CNRS UMR9187, INSERM U1196, Institut Curie, Université Paris Saclay, 91405 Orsay, France
| | - Hugues Bonnet
- Département de Chimie Moléculaire (DCM), CNRS UMR5250, Université Grenoble-Alpes, 38000 Grenoble, France
| | - Maria Fidelia Susanto
- Institut de Pharmacologie et Biologie Structurale (IPBS), CNRS UMR5089, Université Toulouse III – Paul Sabatier (UT3), Toulouse, France
| | - Dennis Gomez
- Institut de Pharmacologie et Biologie Structurale (IPBS), CNRS UMR5089, Université Toulouse III – Paul Sabatier (UT3), Toulouse, France
| | - Eric Defrancq
- Département de Chimie Moléculaire (DCM), CNRS UMR5250, Université Grenoble-Alpes, 38000 Grenoble, France
| | - Anton Granzhan
- Chemistry and Modelling for Biology of Cancer (CMBC), CNRS UMR9187, INSERM U1196, Institut Curie, Université Paris Saclay, 91405 Orsay, France
| | - Jérôme Dejeu
- Département de Chimie Moléculaire (DCM), CNRS UMR5250, Université Grenoble-Alpes, 38000 Grenoble, France
- SUPMICROTECH, Université Franche-Comté, Institut FEMTO-ST, 25000 Besançon, France
| |
Collapse
|
9
|
Smith SS. The bisulfite reaction with cytosine and genomic DNA structure. Anal Biochem 2024; 691:115532. [PMID: 38609028 DOI: 10.1016/j.ab.2024.115532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/19/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024]
Abstract
The bisulfite reaction with native DNA has been extensively employed in the detection of non-B DNA structures that can form spontaneously in DNA. These sequences are dynamic in that they can adopt both normal Watson-Crick paired B-DNA or unusual structures like the Triplex, G-Quadruplex, i-motif and Cruciform or Hairpin. Considerable evidence now suggests that these dynamic sequences play roles in both epigenetics and mutagenesis. The bisulfite reaction with native DNA offers a key approach to their detection. In this application whole cells, isolated nuclei or isolated DNA are treated with bisulfite under non-denaturing conditions in order to detect bisulfite accessible regions DNA that are associated with these structures. Here I review the stereochemistry of the bisulfite reaction, the electronic structure of its DNA cytosine substrates and its application in the detection of unusual structures in native DNA.
Collapse
Affiliation(s)
- Steven S Smith
- Department of Stem Cell Biology and Regenerative Medicine, Beckman Research Institute of the City of Hope, Duarte, CA, USA.
| |
Collapse
|
10
|
Xuan J, Wang Z, Huang Y, Liu Y, Han Y, Li M, Xiao M. DNA response element-based smart drug delivery systems for precise drug release. Biomater Sci 2024; 12:3550-3564. [PMID: 38832670 DOI: 10.1039/d4bm00138a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Smart drug delivery systems (DDSs) that respond to, interact with, or are actuated by biological signals or pathological abnormalities (e.g., the tumor microenvironment) for controllable drug release are appealing therapeutic platforms for cancer treatment. Owing to their inherent self-assembled nature, nucleic acids have emerged as programmable materials for the development of multifunctional structures. In response to external environmental stimuli, DNA response elements can serve as switches to trigger conformational changes in DNA structures. Their stimulus-responsive properties make them promising candidates for constructing smart DDSs, and advancements in DNA response element-based DDSs in the field of biomedicine have been made. This review summarizes different types of DNA response elements, including DNA aptamers, DNAzymes, disulfide bond-modified DNA, pH-responsive DNA motifs, and photocleavable DNA building blocks, and highlights the advancements in DNA response element-based smart DDSs for precise drug release. Finally, future challenges and perspectives in this field are discussed.
Collapse
Affiliation(s)
- Jinnan Xuan
- Hubei Key Laboratory of Photoelectric Materials and Devices, School of Materials Science and Engineering, Hubei Normal University, 11 Cihu Road, Huangshi 435002, P. R. China
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, P. R. China.
| | - Zhen Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Shaanxi Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, P. R. China
| | - Yuting Huang
- Department of Radiotherapy, Chaohu Hospital of Anhui Medical University, 64 Chaohu North Road, Chaohu 238000, P. R. China
| | - Yisi Liu
- Hubei Key Laboratory of Photoelectric Materials and Devices, School of Materials Science and Engineering, Hubei Normal University, 11 Cihu Road, Huangshi 435002, P. R. China
| | - Yuqiang Han
- Hubei Key Laboratory of Photoelectric Materials and Devices, School of Materials Science and Engineering, Hubei Normal University, 11 Cihu Road, Huangshi 435002, P. R. China
| | - Man Li
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Shaanxi Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, P. R. China
| | - Mingshu Xiao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, P. R. China.
| |
Collapse
|
11
|
Yu H, Li F, Yang B, Qi Y, Guneri D, Chen W, Waller ZE, Li K, Ding Y. iM-Seeker: a webserver for DNA i-motifs prediction and scoring via automated machine learning. Nucleic Acids Res 2024; 52:W19-W28. [PMID: 38676949 PMCID: PMC11223794 DOI: 10.1093/nar/gkae315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/27/2024] [Accepted: 04/11/2024] [Indexed: 04/29/2024] Open
Abstract
DNA, beyond its canonical B-form double helix, adopts various alternative conformations, among which the i-motif, emerging in cytosine-rich sequences under acidic conditions, holds significant biological implications in transcription modulation and telomere biology. Despite recognizing the crucial role of i-motifs, predictive software for i-motif forming sequences has been limited. Addressing this gap, we introduce 'iM-Seeker', an innovative computational platform designed for the prediction and evaluation of i-motifs. iM-Seeker exhibits the capability to identify potential i-motifs within DNA segments or entire genomes, calculating stability scores for each predicted i-motif based on parameters such as the cytosine tracts number, loop lengths, and sequence composition. Furthermore, the webserver leverages automated machine learning (AutoML) to effortlessly fine-tune the optimal i-motif scoring model, incorporating user-supplied experimental data and customised features. As an advanced, versatile approach, 'iM-Seeker' promises to advance genomic research, highlighting the potential of i-motifs in cell biology and therapeutic applications. The webserver is freely available at https://im-seeker.org.
Collapse
Affiliation(s)
- Haopeng Yu
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Fan Li
- Department of Computer Science, University of Exeter, Exeter EX4 4QF, UK
| | - Bibo Yang
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Yiman Qi
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Dilek Guneri
- School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Wenqian Chen
- School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Zoë A E Waller
- School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Ke Li
- Department of Computer Science, University of Exeter, Exeter EX4 4QF, UK
| | - Yiliang Ding
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| |
Collapse
|
12
|
Mir B, Serrano-Chacón I, Medina P, Macaluso V, Terrazas M, Gandioso A, Garavís M, Orozco M, Escaja N, González C. Site-specific incorporation of a fluorescent nucleobase analog enhances i-motif stability and allows monitoring of i-motif folding inside cells. Nucleic Acids Res 2024; 52:3375-3389. [PMID: 38366792 PMCID: PMC11014255 DOI: 10.1093/nar/gkae106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 01/17/2024] [Accepted: 02/09/2024] [Indexed: 02/18/2024] Open
Abstract
The i-motif is an intriguing non-canonical DNA structure, whose role in the cell is still controversial. Development of methods to study i-motif formation under physiological conditions in living cells is necessary to study its potential biological functions. The cytosine analog 1,3-diaza-2-oxophenoxazine (tCO) is a fluorescent nucleobase able to form either hemiprotonated base pairs with cytosine residues, or neutral base pairs with guanines. We show here that when tCO is incorporated in the proximity of a G:C:G:C minor groove tetrad, it induces a strong thermal and pH stabilization, resulting in i-motifs with Tm of 39ºC at neutral pH. The structural determination by NMR methods reveals that the enhanced stability is due to a large stacking interaction between the guanines of the tetrad with the tCO nucleobase, which forms a tCO:C+ in the folded structure at unusually-high pHs, leading to an increased quenching in its fluorescence at neutral conditions. This quenching is much lower when tCO is base-paired to guanines and totally disappears when the oligonucleotide is unfolded. By taking profit of this property, we have been able to monitor i-motif folding in cells.
Collapse
Affiliation(s)
- Bartomeu Mir
- Instituto de Química Física ‘Blas Cabrera’. CSIC. Serrano 119. 28006 Madrid. Spain
- Inorganic and Organic Chemistry Department. Organic Chemistry Section and IBUB. University of Barcelona, Martí i Franquès 1-11, 08028 Barcelona. Spain
| | - Israel Serrano-Chacón
- Instituto de Química Física ‘Blas Cabrera’. CSIC. Serrano 119. 28006 Madrid. Spain
- Institute for Research in Biomedicine (IRB Barcelona). The Barcelona Institute of Science and Technology (BIST). 08028 Barcelona. Spain
| | - Pedro Medina
- Institute for Research in Biomedicine (IRB Barcelona). The Barcelona Institute of Science and Technology (BIST). 08028 Barcelona. Spain
- Departament de Bioquímica i Biomedicina. Facultat de Biologia. Universitat de Barcelona. 08028 Barcelona. Spain
| | - Veronica Macaluso
- Institute for Research in Biomedicine (IRB Barcelona). The Barcelona Institute of Science and Technology (BIST). 08028 Barcelona. Spain
| | - Montserrat Terrazas
- Institute for Research in Biomedicine (IRB Barcelona). The Barcelona Institute of Science and Technology (BIST). 08028 Barcelona. Spain
- Inorganic and Organic Chemistry Department. Organic Chemistry Section and IBUB. University of Barcelona, Martí i Franquès 1-11, 08028 Barcelona. Spain
| | - Albert Gandioso
- Institute for Research in Biomedicine (IRB Barcelona). The Barcelona Institute of Science and Technology (BIST). 08028 Barcelona. Spain
| | - Miguel Garavís
- Instituto de Química Física ‘Blas Cabrera’. CSIC. Serrano 119. 28006 Madrid. Spain
| | - Modesto Orozco
- Institute for Research in Biomedicine (IRB Barcelona). The Barcelona Institute of Science and Technology (BIST). 08028 Barcelona. Spain
- Departament de Bioquímica i Biomedicina. Facultat de Biologia. Universitat de Barcelona. 08028 Barcelona. Spain
| | - Núria Escaja
- Inorganic and Organic Chemistry Department. Organic Chemistry Section and IBUB. University of Barcelona, Martí i Franquès 1-11, 08028 Barcelona. Spain
| | - Carlos González
- Instituto de Química Física ‘Blas Cabrera’. CSIC. Serrano 119. 28006 Madrid. Spain
| |
Collapse
|
13
|
Klose JW, Begbie AJ, Toronjo-Urquiza L, Pukala TL. Native Mass Spectrometric Insights into the Formation and Stability of DNA Triplexes. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:613-621. [PMID: 38393825 DOI: 10.1021/jasms.3c00425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
Deoxyribonucleic acid is a genetic biomacromolecule that contains the inherited information required to build and maintain a living organism. While the canonical duplex DNA structure is rigorously characterized, the structure and function of higher order DNA structures such as DNA triplexes are comparatively poorly understood. Previous literature has shown that these triplexes can form under physiological conditions, and native mass spectrometry offers a useful platform to study their formation and stability. However, experimental conditions including buffer salt concentration, pH, and instrumentation parameters such as ion mode can confound analysis by impacting the amount of triplex observed by mass spectrometry. Using model 30mer Y-type triplex sequences, we demonstrate the influence a range of experimental variables have on the detection of DNA triplex structures, informing suitable conditions for the study. When carefully considered conditions are used, mass spectrometry offers a powerful complementary tool for the analysis of higher order DNA assemblies.
Collapse
Affiliation(s)
- Jack W Klose
- Discipline of Chemistry, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Alexander J Begbie
- Discipline of Chemistry, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Luis Toronjo-Urquiza
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Tara L Pukala
- Discipline of Chemistry, The University of Adelaide, Adelaide, South Australia 5005, Australia
| |
Collapse
|
14
|
Martinez-Fernandez L, Improta R. The photophysics of protonated cytidine and hemiprotonated cytidine base pair: A computational study. Photochem Photobiol 2024; 100:314-322. [PMID: 37409732 DOI: 10.1111/php.13832] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/25/2023] [Accepted: 06/19/2023] [Indexed: 07/07/2023]
Abstract
We here study the effect that a lowering of the pH has on the excited state processes of cytidine and a cytidine/cytidine pair in solution, by integrating time-dependent density functional theory and CASSCF/CASPT2 calculations, and including solvent by a mixed discrete/continuum model. Our calculations reproduce the effect of protonation at N3 on the steady-state infrared and absorption spectra of a protonated cytidine (CH+ ), and predict that an easily accessible non-radiative deactivation route exists for the spectroscopic state, explaining its sub-ps lifetime. Indeed, an extremely small energy barrier separates the minimum of the lowest energy bright state from a crossing region with the ground electronic state, reached by out-of-plane motion of the hydrogen substituents of the CC double bond, the so-called ethylenic conical intersection typical of cytidine and other pyrimidine bases. This deactivation route is operative for the two bases forming an hemiprotonated cytidine base pair, [CH·C]+ , the building blocks of I-motif secondary structures, whereas interbase processes play a minor role. N3 protonation disfavors instead the nπ* transitions, associated with the long-living components of cytidine photoactivated dynamics.
Collapse
Affiliation(s)
- Lara Martinez-Fernandez
- Departamento de Química, Facultad de Ciencias and Institute for Advanced Research in Chemical Sciences (IADCHEM), Universidad Autónoma de Madrid, Campus de Excelencia UAM-CSIC, Madrid, Spain
| | - Roberto Improta
- Consiglio Nazionale delle Ricerche, Istituto di Biostrutture e Bioimmagini (IBB-CNR), Naples, Italy
| |
Collapse
|
15
|
Feng Y, Ma X, Yang Y, Tao S, Ahmed A, Gong Z, Cheng X, Zhang W. The roles of DNA methylation on pH dependent i-motif (iM) formation in rice. Nucleic Acids Res 2024; 52:1243-1257. [PMID: 38180820 PMCID: PMC10853798 DOI: 10.1093/nar/gkad1245] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 12/14/2023] [Accepted: 12/19/2023] [Indexed: 01/07/2024] Open
Abstract
I-motifs (iMs) are four-stranded non-B DNA structures containing C-rich DNA sequences. The formation of iMs is sensitive to pH conditions and DNA methylation, although the extent of which is still unknown in both humans and plants. To investigate this, we here conducted iMab antibody-based immunoprecipitation and sequencing (iM-IP-seq) along with bisulfite sequencing using CK (original genomic DNA without methylation-related treatments) and hypermethylated or demethylated DNA at both pH 5.5 and 7.0 in rice, establishing a link between pH, DNA methylation and iM formation on a genome-wide scale. We found that iMs folded at pH 7.0 displayed higher methylation levels than those formed at pH 5.5. DNA demethylation and hypermethylation differently influenced iM formation at pH 7.0 and 5.5. Importantly, CG hypo-DMRs (differentially methylated regions) and CHH (H = A, C and T) hyper-DMRs alone or coordinated with CG/CHG hyper-DMRs may play determinant roles in the regulation of pH dependent iM formation. Thus, our study shows that the nature of DNA sequences alone or combined with their methylation status plays critical roles in determining pH-dependent formation of iMs. It therefore deepens the understanding of the pH and methylation dependent modulation of iM formation, which has important biological implications and practical applications.
Collapse
Affiliation(s)
- Yilong Feng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, CIC-MCP, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu 210095, China
| | - Xing Ma
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, CIC-MCP, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu 210095, China
| | - Ying Yang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, CIC-MCP, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu 210095, China
| | - Shentong Tao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, CIC-MCP, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu 210095, China
| | - Asgar Ahmed
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, CIC-MCP, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu 210095, China
- Bangladesh Wheat and Maize Research Institute (BWMRI), Nashipur, Dinajpur 5200, Bangladesh
| | - Zhiyun Gong
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou 225009, China
| | - Xuejiao Cheng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, CIC-MCP, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu 210095, China
| | - Wenli Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, CIC-MCP, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu 210095, China
| |
Collapse
|
16
|
Essola JM, Zhang M, Yang H, Li F, Xia B, Mavoungou JF, Hussain A, Huang Y. Exosome regulation of immune response mechanism: Pros and cons in immunotherapy. Bioact Mater 2024; 32:124-146. [PMID: 37927901 PMCID: PMC10622742 DOI: 10.1016/j.bioactmat.2023.09.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/06/2023] [Accepted: 09/25/2023] [Indexed: 11/07/2023] Open
Abstract
Due to its multiple features, including the ability to orchestrate remote communication between different tissues, the exosomes are the extracellular vesicles arousing the highest interest in the scientific community. Their size, established as an average of 30-150 nm, allows them to be easily uptaken by most cells. According to the type of cells-derived exosomes, they may carry specific biomolecular cargoes used to reprogram the cells they are interacting with. In certain circumstances, exosomes stimulate the immune response by facilitating or amplifying the release of foreign antigens-killing cells, inflammatory factors, or antibodies (immune activation). Meanwhile, in other cases, they are efficiently used by malignant elements such as cancer cells to mislead the immune recognition mechanism, carrying and transferring their cancerous cargoes to distant healthy cells, thus contributing to antigenic invasion (immune suppression). Exosome dichotomic patterns upon immune system regulation present broad advantages in immunotherapy. Its perfect comprehension, from its early biogenesis to its specific interaction with recipient cells, will promote a significant enhancement of immunotherapy employing molecular biology, nanomedicine, and nanotechnology.
Collapse
Affiliation(s)
- Julien Milon Essola
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, School of Medical Technology, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing, 100081, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing, 100190, PR China
- University of Chinese Academy of Sciences. Beijing 100049, PR China
| | - Mengjie Zhang
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, School of Medical Technology, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Haiyin Yang
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, School of Medical Technology, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Fangzhou Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing, 100190, PR China
| | - Bozhang Xia
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing, 100190, PR China
- University of Chinese Academy of Sciences. Beijing 100049, PR China
| | - Jacques François Mavoungou
- Université Internationale de Libreville, Libreville, 20411, Gabon
- Central and West African Virus Epidemiology, Libreville, 2263, Gabon
- Département de phytotechnologies, Institut National Supérieur d’Agronomie et de Biotechnologie, Université des Sciences et Techniques de Masuku, Franceville, 901, Gabon
- Institut de Recherches Agronomiques et Forestiers, Centre National de la Recherche Scientifique et du développement Technologique, Libreville, 16182, Gabon
| | - Abid Hussain
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, School of Medical Technology, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Yuanyu Huang
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, School of Medical Technology, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing, 100081, China
- Rigerna Therapeutics Co. Ltd., China
| |
Collapse
|
17
|
Dong T, Yu P, Zhao J, Wang J. Site specifically probing the unfolding process of human telomere i-motif DNA using vibrationally enhanced alkynyl stretch. Phys Chem Chem Phys 2024; 26:3857-3868. [PMID: 38224126 DOI: 10.1039/d3cp05328h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
The microscopic unfolding process of a cytosine-rich DNA forming i-motif by hemi-protonated base pairs is related to gene regulation. However, the detailed thermal unfolding mechanism and the protonation/deprotonation status of site-specific cytosine in DNA in a physiological environment are still obscure. To address this issue, a vibration-enhanced CC probe tagged on 5'E terminal cytosine of human telomere i-motif DNA was examined using linear and nonlinear infrared (IR) spectroscopies and quantum-chemistry calculations. The CC probe extended into the major groove of the i-motif was found using nonlinear IR results only to introduce a minor steric effect on both steady-state structure and local structure dynamics; however, its IR absorption profile effectively reports the cleavage of the hemi-protonated base pair of C1-C13 upon the unfolding with C1 remaining protonated. The temperature mid-point (Tm) of the local transition reported using the CC tag was slightly lower than the Tm of global transition, and the enthalpy of the former exceeds 60% of the global transition. It is shown that the base-pair unraveling is noncooperative, with outer base pairs breaking first and being likely the rate limiting step. Our results offered an in-depth understanding of the macroscopic unfolding characteristics of the i-motif DNA and provided a nonlinear IR approach to monitoring the local structural transition and dynamics of DNA and its complexes.
Collapse
Affiliation(s)
- Tiantian Dong
- Beijing National Laboratory for Molecular Sciences, Molecular Reaction Dynamics Laboratory, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Pengyun Yu
- Beijing National Laboratory for Molecular Sciences, Molecular Reaction Dynamics Laboratory, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Juan Zhao
- Beijing National Laboratory for Molecular Sciences, Molecular Reaction Dynamics Laboratory, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jianping Wang
- Beijing National Laboratory for Molecular Sciences, Molecular Reaction Dynamics Laboratory, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
18
|
Bachurin SS, Yurushkin MV, Slynko IA, Kletskii ME, Burov ON, Berezovskiy DP. Structural peculiarities of tandem repeats and their clinical significance. Biochem Biophys Res Commun 2024; 692:149349. [PMID: 38056160 DOI: 10.1016/j.bbrc.2023.149349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 11/27/2023] [Indexed: 12/08/2023]
Abstract
While it is well established that a mere 2% of human DNA nucleotides are involved in protein coding, the remainder of the DNA plays a vital role in the preservation of normal cellular genetic function. A significant proportion of tandem repeats (TRs) are present in non-coding DNA. TRs - specific sequences of nucleotides that entail numerous repetitions of a given fragment. In this study, we employed our novel algorithm grounded in finite automata theory, which we refer to as Dafna, to investigate for the first time the likelihood of these nucleotide sequences forming non-canonical DNA structures (NS). Such structures include G-quadruplexes, i-motifs, hairpins, and triplexes. The tandem repeats under consideration in our research encompassed sequences containing 1 to 6 nucleotides per repeated fragment. For comparison, we employed a set of randomly generated sequences of the same length (60 nucleotides) as a benchmark. The outcomes of our research exposed a disparity between the potential for NS formation in random sequences and tandem repeats. Our findings affirm that the propensity of DNA and RNA to form NS is closely tied to various genetic disorders, including Huntington's disease, Fragile X syndrome, and Friedreich's ataxia. In the concluding discussion, we present a proposal for a new therapeutic mechanism to address these diseases. This novel approach revolves around the ability of specific nucleic acid fragments to form multiple types of NS.
Collapse
Affiliation(s)
- Stanislav S Bachurin
- Department of General and Clinical Biochemistry N2, Rostov State Medical University, 29 Nakhichevanskiy Lane, Rostov-on-Don, 344022, Russian Federation; LambasLab, Bar Rav Hai David 30, Haifa, 3559203, Israel.
| | | | - Ilya A Slynko
- LambasLab, Bar Rav Hai David 30, Haifa, 3559203, Israel
| | - Mikhail E Kletskii
- Department of Chemistry, Southern Federal University, 7 Zorge Str., Rostov-on-Don, 344090, Russian Federation
| | - Oleg N Burov
- Department of Chemistry, Southern Federal University, 7 Zorge Str., Rostov-on-Don, 344090, Russian Federation
| | - Dmitriy P Berezovskiy
- Department of Forensic Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), Build. 4, 2 Bolshaya Pirogovskaya Str., Moscow, 119435, Russian Federation
| |
Collapse
|
19
|
Badalyan M, Vardanyan IV, Haroutiunian SG, Dalyan YB. Structural Transitions in Complementary G-Rich and C-Rich Strands and Their Mixture at Various pH Conditions. ACS OMEGA 2023; 8:47051-47056. [PMID: 38107945 PMCID: PMC10719991 DOI: 10.1021/acsomega.3c06934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/11/2023] [Accepted: 11/14/2023] [Indexed: 12/19/2023]
Abstract
We used circular dichroism spectroscopy, UV spectrophotometry, and differential scanning calorimetry to investigate pH-dependent structural transitions in an equimolar mixture of complementary G-rich d[5'-A(GGGTTA)3GGG-3'] (TelG) and C-rich d[3'-T(CCCAAT)3CCC-5'] (TelC) human telomeric DNA strands. Our studies were conducted at neutral (pH 7.0) and slightly acidic (pH 5.5 and 6.5) pH. We analyzed the melting thermodynamics of TelG and TelC and their equimolar mixture. Our analysis revealed that the preferred conformation of an equimolar mixture of TelG and TelC is the duplex. At pH 5.5, however, in addition to the duplex state, we observed a significant population of the i-motif state formed by TelC. Our results are consistent with the picture in which an increase in pH from 5.5 to 7.0 has little effect on the melting enthalpy of an isolated G-quadruplex while causing a strong reduction in the melting enthalpy of an isolated i-motif (the latter diminishes to 0 at pH 7.0). These effects summarily lead to a decrease in the contribution of the i-motif to the melting enthalpy of the mixture and, hence, an increase in the apparent melting enthalpy and overall stability of the duplex state.
Collapse
Affiliation(s)
- Milena
Kh. Badalyan
- Department of Molecular Physics, Yerevan State University, Yerevan 0025, Armenia
| | - Ishkhan V. Vardanyan
- Department of Molecular Physics, Yerevan State University, Yerevan 0025, Armenia
| | | | - Yeva B. Dalyan
- Department of Molecular Physics, Yerevan State University, Yerevan 0025, Armenia
| |
Collapse
|
20
|
Yazdani K, Seshadri S, Tillo D, Yang M, Sibley CD, Vinson C, Schneekloth JS. Decoding complexity in biomolecular recognition of DNA i-motifs with microarrays. Nucleic Acids Res 2023; 51:12020-12030. [PMID: 37962331 PMCID: PMC10711443 DOI: 10.1093/nar/gkad981] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 09/28/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
DNA i-motifs (iMs) are non-canonical C-rich secondary structures implicated in numerous cellular processes. Though iMs exist throughout the genome, our understanding of iM recognition by proteins or small molecules is limited to a few examples. We designed a DNA microarray containing 10976 genomic iM sequences to examine the binding profiles of four iM-binding proteins, mitoxantrone and the iMab antibody. iMab microarray screens demonstrated that pH 6.5, 5% BSA buffer was optimal, and fluorescence was correlated with iM C-tract length. hnRNP K broadly recognizes diverse iM sequences, favoring 3-5 cytosine repeats flanked by thymine-rich loops of 1-3 nucleotides. Array binding mirrored public ChIP-Seq datasets, in which 35% of well-bound array iMs are enriched in hnRNP K peaks. In contrast, other reported iM-binding proteins had weaker binding or preferred G-quadruplex (G4) sequences instead. Mitoxantrone broadly binds both shorter iMs and G4s, consistent with an intercalation mechanism. These results suggest that hnRNP K may play a role in iM-mediated regulation of gene expression in vivo, whereas hnRNP A1 and ASF/SF2 are possibly more selective in their binding preferences. This powerful approach represents the most comprehensive investigation of how biomolecules selectively recognize genomic iMs to date.
Collapse
Affiliation(s)
- Kamyar Yazdani
- Chemical Biology Laboratory, National Cancer Institute, 1050 Boyle St., Frederick, MD 21702, USA
| | - Srinath Seshadri
- Chemical Biology Laboratory, National Cancer Institute, 1050 Boyle St., Frederick, MD 21702, USA
| | - Desiree Tillo
- Genome Analysis Unit, National Cancer Institute, 37 Convent Dr., Bethesda, MD 20892, USA
| | - Mo Yang
- Chemical Biology Laboratory, National Cancer Institute, 1050 Boyle St., Frederick, MD 21702, USA
| | - Christopher D Sibley
- Chemical Biology Laboratory, National Cancer Institute, 1050 Boyle St., Frederick, MD 21702, USA
| | - Charles Vinson
- Laboratory of Metabolism, National Cancer Institute, 37 Convent Dr., Bethesda, MD 20892, USA
| | - John S Schneekloth
- Chemical Biology Laboratory, National Cancer Institute, 1050 Boyle St., Frederick, MD 21702, USA
| |
Collapse
|
21
|
Boissieras J, Granzhan A. Potentiometric titrations to study ligand interactions with DNA i-motifs. Methods Enzymol 2023; 695:233-254. [PMID: 38521587 DOI: 10.1016/bs.mie.2023.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2024]
Abstract
i-Motifs are non-canonical secondary structures of DNA formed by mutual intercalation of hemi-protonated cytosine-cytosine base pairs, most typically in slightly acidic conditions (pH<7.0). These structures are well-studied in vitro and have recently been suggested to exist in cells. Despite nearly a decade of active research, the quest for small-molecule ligands that could selectively bind to and stabilize i-motifs continues, and no reference, bona fide i-motif ligand is currently available. This is, at least in part, due to the lack of robust methods to assess the interaction of ligands with i-motifs, since many techniques well-established for studies of other secondary structures (such as CD-, UV-, and FRET-melting) may generate artifacts when applied to i-motifs. Here, we describe an implementation of automated, potentiometric (pH) titrations as a robust isothermal method to assess the impact of ligands or cosolutes on thermodynamic stability of i-motifs. This approach is validated through the use of a cosolute previously known to stabilize i-motifs (PEG2000) and three small-molecule ligands that are able to stabilize, destabilize, or have no effect on the stability of i-motifs, respectively.
Collapse
Affiliation(s)
- Joseph Boissieras
- CMBC, CNRS UMR9187, INSERM U1196, Institut Curie, PSL Research University, Orsay, France; CMBC, CNRS UMR9187, INSERM U1196, Université Paris Saclay, Orsay, France
| | - Anton Granzhan
- CMBC, CNRS UMR9187, INSERM U1196, Institut Curie, PSL Research University, Orsay, France; CMBC, CNRS UMR9187, INSERM U1196, Université Paris Saclay, Orsay, France.
| |
Collapse
|
22
|
El-Khoury R, Roman M, Assi HA, Moye AL, Bryan T, Damha M. Telomeric i-motifs and C-strands inhibit parallel G-quadruplex extension by telomerase. Nucleic Acids Res 2023; 51:10395-10410. [PMID: 37742080 PMCID: PMC10602923 DOI: 10.1093/nar/gkad764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/23/2023] [Accepted: 09/11/2023] [Indexed: 09/25/2023] Open
Abstract
Telomeric C-rich repeated DNA sequences fold into tetrahelical i-motif structures in vitro at acidic pH. While studies have suggested that i-motifs may form in cells, little is known about their potential role in human telomere biology. In this study, we explore the effect of telomeric C-strands and i-motifs on the ability of human telomerase to extend G-rich substrates. To promote i-motif formation at neutral pH, we use telomeric sequences where the cytidines have been substituted with 2'-fluoroarabinocytidine. Using FRET-based studies, we show that the stabilized i-motifs resist hybridization to concomitant parallel G-quadruplexes, implying that both structures could exist simultaneously at telomeric termini. Moreover, through telomerase activity assays, we show that both unstructured telomeric C-strands and telomeric i-motifs can inhibit the activity and processivity of telomerase extension of parallel G-quadruplexes and linear telomeric DNA. The data suggest at least three modes of inhibition by C-strands and i-motifs: direct hybridization to the substrate DNA, hybridization to nascent product DNA resulting in early telomerase dissociation, and interference with the unique mechanism of telomerase unwinding and extension of a G-quadruplex. Overall, this study highlights a potential inhibitory role for the telomeric C-strand in telomere maintenance.
Collapse
Affiliation(s)
- Roberto El-Khoury
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| | - Morgane Roman
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| | - Hala Abou Assi
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| | - Aaron L Moye
- Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, NSW 2145, Australia
| | - Tracy M Bryan
- Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, NSW 2145, Australia
| | - Masad J Damha
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| |
Collapse
|
23
|
Roy L, Roy A, Bose D, Banerjee N, Chatterjee S. Unraveling the structural aspects of the G-quadruplex in SMO promoter and elucidating its contribution in transcriptional regulation. J Biomol Struct Dyn 2023:1-16. [PMID: 37878583 DOI: 10.1080/07391102.2023.2268200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/03/2023] [Indexed: 10/27/2023]
Abstract
We located a 25 nt G-rich sequence in the promoter region of SMO oncogene. We performed an array of biophysical and biochemical assays and confirmed the formation of a parallel G quadruplex (SMO1-GQ) by the identified sequence. SMO1-GQ is highly conserved in primates. For a comprehensive characterization of the SMO quadruplex structure, we have performed spectroscopic and in silico analysis with established GQ binder small molecules TMPyP4 and BRACO-19. We observed comparatively higher stable interaction of BRACO-19 with SMO1-GQ. Structure-based, rational drug design against SMO1-GQ to target SMO oncogene requires a detailed molecular anatomy of the G-quadruplex. We structurally characterised the SMO1-GQ using DMS footprinting assay and molecular modelling, docking, and MD simulation to identify the probable atomic regions that interact with either of the small molecules. We further investigated SMO1-GQ in vivo by performing chromatin immunoprecipitation (ChIP) assay. ChIP data revealed that this gene element functions as a scaffold for a number of transcription factors: specificity protein (Sp1), nucleolin (NCL), non-metastatic cell 2 (NM23-H2), cellular nucleic acid binding protein (CNBP), and heterogeneous nuclear ribonucleoprotein K (hnRNPK) which reflects the SMO1-P1 G-quadruplex to be the master regulator of SMO1 transcriptional activity. The strong binding interaction detected between SMO1-GQ and BRACO-19 contemplates the potential of the G quadruplex as a promising anti-cancer druggable target to downregulate SMO1 oncogene driven cancers.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Laboni Roy
- Department of Biological Science, Bose Institute, Kolkata, West Bengal, India
| | - Ananya Roy
- Department of Biological Science, Bose Institute, Kolkata, West Bengal, India
| | - Debopriya Bose
- Department of Biological Science, Bose Institute, Kolkata, West Bengal, India
| | - Nilanjan Banerjee
- Department of Biological Science, Bose Institute, Kolkata, West Bengal, India
| | | |
Collapse
|
24
|
Gubu A, Zhang X, Lu A, Zhang B, Ma Y, Zhang G. Nucleic acid amphiphiles: Synthesis, properties, and applications. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 33:144-163. [PMID: 37456777 PMCID: PMC10345231 DOI: 10.1016/j.omtn.2023.05.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Nucleic acid amphiphiles, referring to nucleic acids modified with large hydrophobic groups, have been widely used in programmable bioengineering. Since nucleic acids are intrinsically hydrophilic, the hydrophobic groups endow nucleic acid amphiphiles with unique properties, such as self-assembling, interactions with artificial or biological membranes, and transmembrane transport. Importantly, the hybridization or target binding capability of oligonucleotide itself supplies nucleic acid amphiphiles with excellent programmability. As a result, this type of molecule has attracted considerable attention in academic studies and has enormous potential for further applications. For a comprehensive understanding of nucleic acid amphiphiles, we review the reported research on nucleic acid amphiphiles from their molecular design to final applications, in which we summarize the synthetic strategies for nucleic acid amphiphiles and draw much attention to their unique properties in different contexts. Finally, a summary of the applications of nucleic acid amphiphiles in drug development, bioengineering, and bioanalysis are critically discussed.
Collapse
Affiliation(s)
- Amu Gubu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Aptacure Therapeutics Limited, Kowloon, Hong Kong SAR, China
| | - Xueli Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences and Chemical Biology Center, Peking University, No. 38 Xueyuan Road, Beijing, China
| | - Aiping Lu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tsai, Hong Kong 999077, China
- Institute of Precision Medicine and Innovative Drug Discovery, HKBU Institute for Research and Continuing Education, Shenzhen 518000, China
| | - Baoting Zhang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yuan Ma
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tsai, Hong Kong 999077, China
- Institute of Precision Medicine and Innovative Drug Discovery, HKBU Institute for Research and Continuing Education, Shenzhen 518000, China
| | - Ge Zhang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tsai, Hong Kong 999077, China
- Institute of Precision Medicine and Innovative Drug Discovery, HKBU Institute for Research and Continuing Education, Shenzhen 518000, China
| |
Collapse
|
25
|
Das S, Takahashi S, Ohyama T, Bhowmik S, Sugimoto N. Theranostic approach to specifically targeting the interloop region of BCL2 i-motif DNA by crystal violet. Sci Rep 2023; 13:14338. [PMID: 37658102 PMCID: PMC10474294 DOI: 10.1038/s41598-023-39407-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/25/2023] [Indexed: 09/03/2023] Open
Abstract
Ligands that recognise specific i-motif DNAs are helpful in cancer diagnostics and therapeutics, as i-motif formation can cause cancer. Although the loop regions of i-motifs are promising targets for ligands, the interaction between a ligand and the loop regions based on sequence information remains unexplored. Herein, we investigated the loop regions of various i-motif DNAs to determine whether these regions specifically interact with fluorescent ligands. Crystal violet (CV), a triphenylmethane dye, exhibited strong fluorescence with the i-motif derived from the promoter region of the human BCL2 gene in a sequence- and structure-specific manner. Our systematic sequence analysis indicated that CV was bound to the site formed by the first and third loops through inter-loop interactions between the guanine bases present in these loops. As the structural stability of the BCL2 i-motif was unaffected by CV, the local stabilisation of the loops by CV could inhibit the interaction of transcription factors with these loops, repressing the BCL2 expression of MCF-7 cells. Our finding suggests that the loops of the i-motif can act as a novel platform for the specific binding of small molecules; thus, they could be utilised for the theranostics of diseases associated with i-motif DNAs.
Collapse
Affiliation(s)
- Sinjan Das
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 7-1-20 Minatojima-Minamimachi, Kobe, 650-0047, Japan
| | - Shuntaro Takahashi
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 7-1-20 Minatojima-Minamimachi, Kobe, 650-0047, Japan
| | - Tatsuya Ohyama
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 7-1-20 Minatojima-Minamimachi, Kobe, 650-0047, Japan
| | - Sudipta Bhowmik
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92, A.P.C Road, Kolkata, 700009, India
- Mahatma Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed to be University), Pondy-Cuddalore Main Road, Pillayarkuppam, Pondicherry, 607402, India
| | - Naoki Sugimoto
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 7-1-20 Minatojima-Minamimachi, Kobe, 650-0047, Japan.
- Graduate School of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 7-1-20 Minatojima-Minamimachi, Kobe, 650-0047, Japan.
| |
Collapse
|
26
|
Pandey A, Roy S, Srivatsan SG. Probing the Competition between Duplex, G-Quadruplex and i-Motif Structures of the Oncogenic c-Myc DNA Promoter Region. Chem Asian J 2023; 18:e202300510. [PMID: 37541298 DOI: 10.1002/asia.202300510] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/09/2023] [Indexed: 08/06/2023]
Abstract
Development of probe systems that provide unique spectral signatures for duplex, G-quadruplex (GQ) and i-motif (iM) structures is very important to understand the relative propensity of a G-rich-C-rich promoter region to form these structures. Here, we devise a platform using a combination of two environment-sensitive nucleoside analogs namely, 5-fluorobenzofuran-modified 2'-deoxyuridine (FBF-dU) and 5-fluoro-2'-deoxyuridine (F-dU) to study the structures adopted by a promoter region of the c-Myc oncogene. FBF-dU serves as a dual-purpose probe containing a fluorescent and 19 F NMR label. When incorporated into the C-rich sequence, it reports the formation of different iMs via changes in its fluorescence properties and 19 F signal. F-dU incorporated into the G-rich ON reports the formation of a GQ structure whose 19 F signal is clearly different from the signals obtained for iMs. Rewardingly, the labeled ONs when mixed with respective complementary strands allows us to determine the relative population of different structures formed by the c-Myc promoter by the virtue of the probe's ability to produce distinct and resolved 19 F signatures for different structures. Our results indicate that at physiological pH and temperature the c-Myc promoter forms duplex, random coil and GQ structures, and does not form an iM. Whereas at acidic pH, the mixture largely forms iM and GQ structures. Taken together, our system will complement existing tools and provide unprecedented insights on the population equilibrium and dynamics of nucleic acid structures under different conditions.
Collapse
Affiliation(s)
- Akanksha Pandey
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Dr. Homi Bhabha Road, Pune, 411008, India
| | - Sarupa Roy
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Dr. Homi Bhabha Road, Pune, 411008, India
| | - Seergazhi G Srivatsan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Dr. Homi Bhabha Road, Pune, 411008, India
| |
Collapse
|
27
|
Improta R. Shedding Light on the Photophysics and Photochemistry of I-Motifs Using Quantum Mechanical Calculations. Int J Mol Sci 2023; 24:12614. [PMID: 37628797 PMCID: PMC10454157 DOI: 10.3390/ijms241612614] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
I-motifs are non-canonical DNA structures formed by intercalated hemiprotonated (CH·C)+ pairs, i.e., formed by a cytosine (C) and a protonated cytosine (CH+), which are currently drawing great attention due to their biological relevance and promising nanotechnological properties. It is important to characterize the processes occurring in I-motifs following irradiation by UV light because they can lead to harmful consequences for genetic code and because optical spectroscopies are the most-used tools to characterize I-motifs. By using time-dependent DFT calculations, we here provide the first comprehensive picture of the photoactivated behavior of the (CH·C)+ core of I-motifs, from absorption to emission, while also considering the possible photochemical reactions. We reproduce and assign their spectral signatures, i.e., infrared, absorption, fluorescence and circular dichroism spectra, disentangling the underlying chemical-physical effects. We show that the main photophysical paths involve C and CH+ bases on adjacent steps and, using this basis, interpret the available time-resolved spectra. We propose that a photodimerization reaction can occur on an excited state with strong C→CH+ charge transfer character and examine some of the possible photoproducts. Based on the results reported, some future perspectives for the study of I-motifs are discussed.
Collapse
Affiliation(s)
- Roberto Improta
- Consiglio Nazionale delle Ricerche, Istituto di Biostrutture e Bioimmagini (IBB-CNR), Via De Amicis 95, I-80145 Napoli, Italy
| |
Collapse
|
28
|
Li KS, Jordan D, Lin LY, McCarthy SE, Schneekloth JS, Yatsunyk LA. Crystal Structure of an i-Motif from the HRAS Oncogene Promoter. Angew Chem Int Ed Engl 2023; 62:e202301666. [PMID: 36995904 PMCID: PMC10330059 DOI: 10.1002/anie.202301666] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/22/2023] [Accepted: 03/28/2023] [Indexed: 03/31/2023]
Abstract
An i-motif is a non-canonical DNA structure implicated in gene regulation and linked to cancers. The C-rich strand of the HRAS oncogene, 5'-CGCCCGTGCCCTGCGCCCGCAACCCGA-3' (herein referred to as iHRAS), forms an i-motif in vitro but its exact structure was unknown. HRAS is a member of the RAS proto-oncogene family. About 19 % of US cancer patients carry mutations in RAS genes. We solved the structure of iHRAS at 1.77 Å resolution. The structure reveals that iHRAS folds into a double hairpin. The two double hairpins associate in an antiparallel fashion, forming an i-motif dimer capped by two loops on each end and linked by a connecting region. Six C-C+ base pairs form each i-motif core, and the core regions are extended by a G-G base pair and a cytosine stacking. Extensive canonical and non-canonical base pairing and stacking stabilizes the connecting region and loops. The iHRAS structure is the first atomic resolution structure of an i-motif from a human oncogene. This structure sheds light on i-motifs folding and function in the cell.
Collapse
Affiliation(s)
- Kevin S Li
- Department Chemistry and Biochemistry, Swarthmore College, 500 College Ave, Swarthmore, PA 19081, USA
| | - Deondre Jordan
- Department Chemistry and Biochemistry, Swarthmore College, 500 College Ave, Swarthmore, PA 19081, USA
| | - Linda Y Lin
- Department Chemistry and Biochemistry, Swarthmore College, 500 College Ave, Swarthmore, PA 19081, USA
| | - Sawyer E McCarthy
- Department Chemistry and Biochemistry, Swarthmore College, 500 College Ave, Swarthmore, PA 19081, USA
| | - John S Schneekloth
- Chemical Biology Laboratory, National Cancer Institute, National Institute of Health, Frederick, MD 21702, USA
| | - Liliya A Yatsunyk
- Department Chemistry and Biochemistry, Swarthmore College, 500 College Ave, Swarthmore, PA 19081, USA
| |
Collapse
|
29
|
Cadoni E, De Paepe L, Colpaert G, Tack R, Waegeman D, Manicardi A, Madder A. A red light-triggered chemical tool for sequence-specific alkylation of G-quadruplex and I-motif DNA. Nucleic Acids Res 2023; 51:4112-4125. [PMID: 36971129 PMCID: PMC10201448 DOI: 10.1093/nar/gkad189] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 02/03/2023] [Accepted: 03/12/2023] [Indexed: 08/21/2023] Open
Abstract
The importance of non-canonical DNA structures such as G-quadruplexes (G4) and intercalating-motifs (iMs) in the fine regulation of a variety of cellular processes has been recently demonstrated. As the crucial roles of these structures are being unravelled, it is becoming more and more important to develop tools that allow targeting these structures with the highest possible specificity. While targeting methodologies have been reported for G4s, this is not the case for iMs, as evidenced by the limited number of specific ligands able to bind the latter and the total absence of selective alkylating agents for their covalent targeting. Furthermore, strategies for the sequence-specific covalent targeting of G4s and iMs have not been reported thus far. Herein, we describe a simple methodology to achieve sequence-specific covalent targeting of G4 and iM DNA structures based on the combination of (i) a peptide nucleic acid (PNA) recognizing a specific sequence of interest, (ii) a pro-reactive moiety enabling a controlled alkylation reaction, and (iii) a G4 or iM ligand orienting the alkylating warhead to the reactive residues. This multi-component system allows for the targeting of specific G4 or iM sequences of interest in the presence of competing DNA sequences and under biologically relevant conditions.
Collapse
Affiliation(s)
- Enrico Cadoni
- Organic and Biomimetic Chemistry Research Group, Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium
| | - Lessandro De Paepe
- Organic and Biomimetic Chemistry Research Group, Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium
| | - Gertjan Colpaert
- Organic and Biomimetic Chemistry Research Group, Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium
| | - Ruben Tack
- Organic and Biomimetic Chemistry Research Group, Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium
| | - Dries Waegeman
- Organic and Biomimetic Chemistry Research Group, Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium
| | - Alex Manicardi
- Organic and Biomimetic Chemistry Research Group, Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium
| | - Annemieke Madder
- Organic and Biomimetic Chemistry Research Group, Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium
| |
Collapse
|
30
|
Rodriguez J, Domínguez A, Aviñó A, Borgonovo G, Eritja R, Mazzini S, Gargallo R. Exploring the stabilizing effect on the i-motif of neighboring structural motifs and drugs. Int J Biol Macromol 2023; 242:124794. [PMID: 37182626 DOI: 10.1016/j.ijbiomac.2023.124794] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/18/2023] [Accepted: 04/25/2023] [Indexed: 05/16/2023]
Abstract
Cytosine-rich DNA sequences may fold into a structure known as i-motif, with potential in vivo modulation of gene expression. The stability of the i-motif is residual at neutral pH values. To increase it, the addition of neighboring moieties, such as Watson-Crick stabilized loops, tetrads, or non-canonical base pairs have been proposed. Taking a recently described i-motif structure as a model, the relative effect of these structural moieties, as well as several DNA ligands, on the stabilization of the i-motif has been studied. To this end, not only the original sequence but different mutants were considered. Spectroscopic techniques, PAGE, and multivariate data analysis methods have been used to model the folding/unfolding equilibria induced by changes of pH, temperature, and the presence of ligands. The results have shown that the duplex is the moiety that is responsible of the stabilization of the i-motif structure at neutral pH. The T:T base pair, on the contrary, shows little stabilization of the i-motif. From several selected DNA-binding ligands, the G-quadruplex ligand BA41 is shown to interact with the duplex moiety, whereas non-specific interaction and little stabilization has been observed within the i-motif.
Collapse
Affiliation(s)
- Judit Rodriguez
- Department of Chemical Engineering and Analytical Chemistry, Faculty of Chemistry, University of Barcelona, Marti i Franqués 1-11, E-08028 Barcelona, Spain
| | - Arnau Domínguez
- Institute for Advanced Chemistry of Catalonia (IQAC), CSIC, Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain
| | - Anna Aviñó
- Institute for Advanced Chemistry of Catalonia (IQAC), CSIC, Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain
| | - Gigliola Borgonovo
- Department of Food, Environmental and Nutritional Sciences (DEFENS), University of Milan (Università degli Studi di Milano), Milan, Italy
| | - Ramon Eritja
- Institute for Advanced Chemistry of Catalonia (IQAC), CSIC, Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain
| | - Stefania Mazzini
- Department of Food, Environmental and Nutritional Sciences (DEFENS), University of Milan (Università degli Studi di Milano), Milan, Italy
| | - Raimundo Gargallo
- Department of Chemical Engineering and Analytical Chemistry, Faculty of Chemistry, University of Barcelona, Marti i Franqués 1-11, E-08028 Barcelona, Spain.
| |
Collapse
|
31
|
Yazdani K, Seshadri S, Tillo D, Vinson C, Schneekloth JS. DECODING COMPLEXITY IN BIOMOLECULAR RECOGNITION OF DNA I-MOTIFS. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.19.537548. [PMID: 37131644 PMCID: PMC10153190 DOI: 10.1101/2023.04.19.537548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
DNA i-motifs (iMs) are non-canonical C-rich secondary structures implicated in numerous cellular processes. Though iMs exist throughout the genome, our understanding of iM recognition by proteins or small molecules is limited to a few examples. We designed a DNA microarray containing 10,976 genomic iM sequences to examine the binding profiles of four iM-binding proteins, mitoxantrone, and the iMab antibody. iMab microarray screens demonstrated that pH 6.5, 5% BSA buffer was optimal, and fluorescence was correlated with iM C-tract length. hnRNP K broadly recognizes diverse iM sequences, favoring 3-5 cytosine repeats flanked by thymine-rich loops of 1-3 nucleotides. Array binding mirrored public ChIP-Seq datasets, in which 35% of well-bound array iMs are enriched in hnRNP K peaks. In contrast, other reported iM-binding proteins had weaker binding or preferred G-quadruplex (G4) sequences instead. Mitoxantrone broadly binds both shorter iMs and G4s, consistent with an intercalation mechanism. These results suggest that hnRNP K may play a role in iM-mediated regulation of gene expression in vivo, whereas hnRNP A1 and ASF/SF2 are possibly more selective in their binding preferences. This powerful approach represents the most comprehensive investigation of how biomolecules selectively recognize genomic iMs to date.
Collapse
Affiliation(s)
- Kamyar Yazdani
- Chemical Biology Laboratory, National Cancer Institute, 1050 Boyle St., Frederick, MD 21702
| | - Srinath Seshadri
- Chemical Biology Laboratory, National Cancer Institute, 1050 Boyle St., Frederick, MD 21702
| | - Desiree Tillo
- Genome Analysis Unit, National Cancer Institute, 37 Convent Dr., Bethesda, MD 20892
| | - Charles Vinson
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, 37 Convent Dr., Bethesda MD 20892
| | - John S Schneekloth
- Chemical Biology Laboratory, National Cancer Institute, 1050 Boyle St., Frederick, MD 21702
| |
Collapse
|
32
|
Luo X, Zhang J, Gao Y, Pan W, Yang Y, Li X, Chen L, Wang C, Wang Y. Emerging roles of i-motif in gene expression and disease treatment. Front Pharmacol 2023; 14:1136251. [PMID: 37021044 PMCID: PMC10067743 DOI: 10.3389/fphar.2023.1136251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 02/27/2023] [Indexed: 03/22/2023] Open
Abstract
As non-canonical nucleic acid secondary structures consisting of cytosine-rich nucleic acids, i-motifs can form under certain conditions. Several i-motif sequences have been identified in the human genome and play important roles in biological regulatory functions. Due to their physicochemical properties, these i-motif structures have attracted attention and are new targets for drug development. Herein, we reviewed the characteristics and mechanisms of i-motifs located in gene promoters (including c-myc, Bcl-2, VEGF, and telomeres), summarized various small molecule ligands that interact with them, and the possible binding modes between ligands and i-motifs, and described their effects on gene expression. Furthermore, we discussed diseases closely associated with i-motifs. Among these, cancer is closely associated with i-motifs since i-motifs can form in some regions of most oncogenes. Finally, we introduced recent advances in the applications of i-motifs in multiple areas.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Chang Wang
- *Correspondence: Chang Wang, ; Yuqing Wang,
| | | |
Collapse
|
33
|
Zhang M, Hu S, Liu L, Dang P, Liu Y, Sun Z, Qiao B, Wang C. Engineered exosomes from different sources for cancer-targeted therapy. Signal Transduct Target Ther 2023; 8:124. [PMID: 36922504 PMCID: PMC10017761 DOI: 10.1038/s41392-023-01382-y] [Citation(s) in RCA: 104] [Impact Index Per Article: 104.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/31/2023] [Accepted: 02/22/2023] [Indexed: 03/17/2023] Open
Abstract
Exosome is a subgroup of extracellular vesicles, which has been serving as an efficient therapeutic tool for various diseases. Engineered exosomes are the sort of exosomes modified with surface decoration and internal therapeutic molecules. After appropriate modification, engineered exosomes are able to deliver antitumor drugs to tumor sites efficiently and precisely with fewer treatment-related adverse effects. However, there still exist many challenges for the clinical translation of engineered exosomes. For instance, what sources and modification strategies could endow exosomes with the most efficient antitumor activity is still poorly understood. Additionally, how to choose appropriately engineered exosomes in different antitumor therapies is another unresolved problem. In this review, we summarized the characteristics of engineered exosomes, especially the spatial and temporal properties. Additionally, we concluded the recent advances in engineered exosomes in the cancer fields, including the sources, isolation technologies, modification strategies, and labeling and imaging methods of engineered exosomes. Furthermore, the applications of engineered exosomes in different antitumor therapies were summarized, such as photodynamic therapy, gene therapy, and immunotherapy. Consequently, the above provides the cancer researchers in this community with the latest ideas on engineered exosome modification and new direction of new drug development, which is prospective to accelerate the clinical translation of engineered exosomes for cancer-targeted therapy.
Collapse
Affiliation(s)
- Menghui Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Shengyun Hu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Lin Liu
- Henan Institute of Interconnected Intelligent Health Management, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450001, China.,Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Pengyuan Dang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Yang Liu
- Department of Radiotherapy, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, 450001, China
| | - Zhenqiang Sun
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450001, China. .,Henan Institute of Interconnected Intelligent Health Management, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450001, China.
| | - Bingbing Qiao
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450001, China.
| | - Chengzeng Wang
- Henan Institute of Interconnected Intelligent Health Management, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450001, China. .,Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450001, China.
| |
Collapse
|
34
|
Khater M, Brazier JA, Greco F, Osborn HMI. Anticancer evaluation of new organometallic ruthenium(ii) flavone complexes. RSC Med Chem 2023; 14:253-267. [PMID: 36846373 PMCID: PMC9945865 DOI: 10.1039/d2md00304j] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/22/2022] [Indexed: 12/23/2022] Open
Abstract
Targeting multiple malignancy features such as angiogenesis, proliferation and metastasis with one molecule is an effective strategy in developing potent anticancer agents. Ruthenium metal complexation to bioactive scaffolds is reported to enhance their biological activities. Herein, we evaluate the impact of Ru chelation on the pharmacological activities of two bioactive flavones (1 and 2) as anticancer candidates. The novel Ru complexes (1Ru and 2Ru) caused a loss of their parent molecules' antiangiogenic activities in an endothelial cell tube formation assay. 1Ru enhanced the antiproliferative and antimigratory activities of its 4-oxoflavone 1 on MCF-7 breast cancer cells (IC50 = 66.15 ± 5 μM and 50% migration inhibition, p < 0.01 at 1 μM). 2Ru diminished 4-thioflavone's (2) cytotoxic activity on MCF-7 and MDA-MB-231 yet significantly enhanced 2's migration inhibition (p < 0.05) particularly on the MDA-MB-231 cell line. The test derivatives also showed non-intercalative interaction with VEGF and c-myc i-motif DNA sequences.
Collapse
Affiliation(s)
- Mai Khater
- School of Pharmacy, University of Reading Whiteknights Reading RG6 6AD UK .,Therapeutic Chemistry Department, Pharmaceutical & Drug Industries Research Division, National Research Centre Cairo Egypt
| | - John A. Brazier
- School of Pharmacy, University of ReadingWhiteknightsReadingRG6 6ADUK
| | - Francesca Greco
- School of Pharmacy, University of Reading Whiteknights Reading RG6 6AD UK
| | | |
Collapse
|
35
|
i-Motif folding intermediates with zero-nucleotide loops are trapped by 2'-fluoroarabinocytidine via F···H and O···H hydrogen bonds. Commun Chem 2023; 6:31. [PMID: 36797370 PMCID: PMC9935537 DOI: 10.1038/s42004-023-00831-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/03/2023] [Indexed: 02/18/2023] Open
Abstract
G-quadruplex and i-motif nucleic acid structures are believed to fold through kinetic partitioning mechanisms. Such mechanisms explain the structural heterogeneity of G-quadruplex metastable intermediates which have been extensively reported. On the other hand, i-motif folding is regarded as predictable, and research on alternative i-motif folds is limited. While TC5 normally folds into a stable tetrameric i-motif in solution, we report that 2'-deoxy-2'-fluoroarabinocytidine (araF-C) substitutions can prompt TC5 to form an off-pathway and kinetically-trapped dimeric i-motif, thereby expanding the scope of i-motif folding landscapes. This i-motif is formed by two strands, associated head-to-head, and featuring zero-nucleotide loops which have not been previously observed. Through spectroscopic and computational analyses, we also establish that the dimeric i-motif is stabilized by fluorine and non-fluorine hydrogen bonds, thereby explaining the superlative stability of araF-C modified i-motifs. Comparative experimental findings suggest that the strength of these interactions depends on the flexible sugar pucker adopted by the araF-C residue. Overall, the findings reported here provide a new role for i-motifs in nanotechnology and also pose the question of whether unprecedented i-motif folds may exist in vivo.
Collapse
|
36
|
Serrano-Chacón I, Mir B, Cupellini L, Colizzi F, Orozco M, Escaja N, González C. pH-Dependent Capping Interactions Induce Large-Scale Structural Transitions in i-Motifs. J Am Chem Soc 2023; 145:3696-3705. [PMID: 36745195 PMCID: PMC9936585 DOI: 10.1021/jacs.2c13043] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Indexed: 02/07/2023]
Abstract
We study here a DNA oligonucleotide having the ability to form two different i-motif structures whose relative stability depends on pH and temperature. The major species at neutral pH is stabilized by two C:C+ base pairs capped by two minor groove G:C:G:C tetrads. The high pH and thermal stability of this structure are mainly due to the favorable effect of the minor groove tetrads on their adjacent positively charged C:C+ base pairs. At pH 5, we observe a more elongated i-motif structure consisting of four C:C+ base pairs capped by two G:T:G:T tetrads. Molecular dynamics calculations show that the conformational transition between the two structures is driven by the protonation state of key cytosines. In spite of large conformational differences, the transition between the acidic and neutral structures can occur without unfolding of the i-motif. These results represent the first case of a conformational switch between two different i-motif structures and illustrate the dramatic pH-dependent plasticity of this fascinating DNA motif.
Collapse
Affiliation(s)
- Israel Serrano-Chacón
- Instituto
de Química Física ”Rocasolano”, CSIC, Serrano 119, 28006Madrid, Spain
- Institute
for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028Barcelona, Spain
| | - Bartomeu Mir
- Instituto
de Química Física ”Rocasolano”, CSIC, Serrano 119, 28006Madrid, Spain
- Inorganic
and Organic Chemistry Department, Organic Chemistry Section, and IBUB, University of Barcelona, Martí i Franquès 1-11, 08028Barcelona, Spain
| | - Lorenzo Cupellini
- Institute
for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028Barcelona, Spain
| | - Francesco Colizzi
- Institute
for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028Barcelona, Spain
| | - Modesto Orozco
- Institute
for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028Barcelona, Spain
- Departament
de Bioquímica i Biomedicina. Facultat de Biologia, Universitat de Barcelona, 08028Barcelona, Spain
| | - Núria Escaja
- Inorganic
and Organic Chemistry Department, Organic Chemistry Section, and IBUB, University of Barcelona, Martí i Franquès 1-11, 08028Barcelona, Spain
- BIOESTRAN
Associated Unit UB-CSIC, 08028Barcelona, Spain
| | - Carlos González
- Instituto
de Química Física ”Rocasolano”, CSIC, Serrano 119, 28006Madrid, Spain
- BIOESTRAN
Associated Unit UB-CSIC, 08028Barcelona, Spain
| |
Collapse
|
37
|
Di Paola V, Morrone M, Poli V, Fuso A, Pascale E, Adriani W. How Can CpG Methylations, and Pair-to-Pair Correlations between the Main (Gene) and the Opposite Strands, Suggest a Bending DNA Loop: Insights into the 5'-UTR of DAT1. Genes (Basel) 2023; 14:190. [PMID: 36672931 PMCID: PMC9859484 DOI: 10.3390/genes14010190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/22/2022] [Accepted: 01/04/2023] [Indexed: 01/13/2023] Open
Abstract
A working hypothesis issues from patterns of methylation in the 5'-UTR of the DAT1 gene. We considered relationships between pairs of CpGs, of which one on the main-gene strand and another on the complementary opposite strand (COS). We elaborated on data from ADHD children: we calculated all possible combinations of probabilities (estimated by multiplying two raw values of methylation) in pairs of CpGs from either strand. We analyzed all correlations between any given pair and all other pairs. For pairs correlating with M6-M6COS, some pairs had cytosines positioning to the reciprocal right (e.g., M3-M2COS and M6-M5COS), other pairs had cytosines positioning to the reciprocal left (e.g., M2-M3COS; M5-M6COS). Significant pair-to-pair correlations emerged between main-strand and COS CpG pairs. Through graphic representations, we hypothesized that DNA folded to looping conformations: the C1GG C2GG C3GG and C5G C6G motifs would become close enough to allow cytosines 1-2-3 to interact with cytosines 5-6 (on both strands). Data further suggest a sliding, with left- and right-ward oscillations of DNA strands. While thorough empirical verification is needed, we hypothesize simultaneous methylation of main-strand and COS DNA ("methylation dynamics") to serve as a promising biomarker.
Collapse
Affiliation(s)
| | - Martina Morrone
- Faculty of Psychology, Uninettuno University, 00186 Rome, Italy
| | - Valentina Poli
- Faculty of Psychology, Uninettuno University, 00186 Rome, Italy
| | - Andrea Fuso
- Department of Experimental Medicine, “Sapienza” University of Rome, 00161 Rome, Italy
| | - Esterina Pascale
- Department of Medical-Surgical Sciences and of Biotechnologies, “Sapienza” University of Rome, 00161 Rome, Italy
| | - Walter Adriani
- Faculty of Psychology, Uninettuno University, 00186 Rome, Italy
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| |
Collapse
|
38
|
Berthiol F, Boissieras J, Bonnet H, Pierrot M, Philouze C, Poisson JF, Granzhan A, Dejeu J, Defrancq E. Novel Synthesis of IMC-48 and Affinity Evaluation with Different i-Motif DNA Sequences. Molecules 2023; 28:molecules28020682. [PMID: 36677740 PMCID: PMC9865601 DOI: 10.3390/molecules28020682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/12/2023] Open
Abstract
During the last decade, the evidence for the biological relevance of i-motif DNA (i-DNA) has been accumulated. However, relatively few molecules were reported to interact with i-DNA, and a controversy concerning their binding mode, affinity, and selectivity persists in the literature. In this context, the cholestane derivative IMC-48 has been reported to modulate bcl-2 gene expression by stabilizing an i-motif structure in its promoter. In the present contribution, we report on a novel, more straightforward, synthesis of IMC-48 requiring fewer steps compared to the previous approach. Furthermore, the interaction of IMC-48 with four different i-motif DNA sequences was thoroughly investigated by bio-layer interferometry (BLI) and circular dichroism (CD) spectroscopy. Surprisingly, our results show that IMC-48 is a very weak ligand of i-DNA as no quantifiable interaction or significant stabilization of i-motif structures could be observed, stimulating a quest for an alternative mechanism of its biological activity.
Collapse
Affiliation(s)
- Florian Berthiol
- Department of Molecular Chemistry (DCM), CNRS, UMR 5250, Université Grenoble-Alpes, 38000 Grenoble, France
- Correspondence: (F.B.); (J.D.); (E.D.)
| | - Joseph Boissieras
- CNRS UMR9187, INSERM U1196, Institut Curie, PSL Research University, F-91405 Orsay, France
- CNRS UMR9187, INSERM U1196, Université Paris Saclay, F-91405 Orsay, France
| | - Hugues Bonnet
- Department of Molecular Chemistry (DCM), CNRS, UMR 5250, Université Grenoble-Alpes, 38000 Grenoble, France
| | - Marie Pierrot
- Department of Molecular Chemistry (DCM), CNRS, UMR 5250, Université Grenoble-Alpes, 38000 Grenoble, France
| | - Christian Philouze
- Department of Molecular Chemistry (DCM), CNRS, UMR 5250, Université Grenoble-Alpes, 38000 Grenoble, France
| | - Jean-François Poisson
- Department of Molecular Chemistry (DCM), CNRS, UMR 5250, Université Grenoble-Alpes, 38000 Grenoble, France
| | - Anton Granzhan
- CNRS UMR9187, INSERM U1196, Institut Curie, PSL Research University, F-91405 Orsay, France
- CNRS UMR9187, INSERM U1196, Université Paris Saclay, F-91405 Orsay, France
| | - Jérôme Dejeu
- Department of Molecular Chemistry (DCM), CNRS, UMR 5250, Université Grenoble-Alpes, 38000 Grenoble, France
- FEMTO-ST Institute, CNRS UMR-6174, Université de Bourgogne Franche-Comté, F-25000 Besançon, France
- Correspondence: (F.B.); (J.D.); (E.D.)
| | - Eric Defrancq
- Department of Molecular Chemistry (DCM), CNRS, UMR 5250, Université Grenoble-Alpes, 38000 Grenoble, France
- Correspondence: (F.B.); (J.D.); (E.D.)
| |
Collapse
|
39
|
Yang D, Xu F, Wang P. Reconfigurable Two-Dimensional DNA Molecular Arrays. Methods Mol Biol 2023; 2639:69-81. [PMID: 37166711 DOI: 10.1007/978-1-0716-3028-0_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
In biology, molecular cascade signaling is an essential tool to mediate various pathways and downstream behaviors. Mimicking these molecular cascades plays an important role in synthetic biology. The use of DNA self-assembly represents an elegant way to build sophisticated molecular cascades. For instance, a DNA molecular array connected by a number of dynamic anti-junction units was able to realize prescribed, multistep, long-range cascaded transformation. The dynamic DNA molecular array is able to execute transformations with programmable initiation, propagation, and regulation. The transformation of the array can be initiated at selected units and then propagated, without addition of extra triggers, to neighboring units and eventually the entire array.
Collapse
Affiliation(s)
- Donglei Yang
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao, Tong University, Shanghai, China
| | - Fan Xu
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao, Tong University, Shanghai, China
| | - Pengfei Wang
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao, Tong University, Shanghai, China.
| |
Collapse
|
40
|
Zhao L, Ahmed F, Zeng Y, Xu W, Xiong H. Recent Developments in G-Quadruplex Binding Ligands and Specific Beacons on Smart Fluorescent Sensor for Targeting Metal Ions and Biological Analytes. ACS Sens 2022; 7:2833-2856. [PMID: 36112358 DOI: 10.1021/acssensors.2c00992] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The G-quadruplex structure is crucial in several biological processes, including DNA replication, transcription, and genomic maintenance. G-quadruplex-based fluorescent probes have recently gained popularity because of their ease of use, low cost, excellent selectivity, and sensitivity. This review summarizes the latest applications of G-quadruplex structures as detectors of genome-wide, enantioselective catalysts, disease therapeutics, promising drug targets, and smart fluorescence probes. In every section, sensing of G-quadruplex and employing G4 for the detection of other analytes were introduced, respectively. Since the discovery of the G-quadruplex structure, several studies have been conducted to investigate its conformations, biological potential, stability, reactivity, selectivity for chemical modification, and optical properties. The formation mechanism and advancements for detecting different metal ions (Na+, K+, Ag+, Tl+, Cu+/Cu2+, Hg2+, and Pb2+) and biomolecules (AMP, ATP, DNA/RNA, microRNA, thrombin, T4 PNK, RNase H, ALP, CEA, lipocalin 1, and UDG) using fluorescent sensors based on G-quadruplex modification, such as dye labels, artificial nucleobase moieties, dye complexes, intercalating dyes, and bioconjugated nanomaterials (AgNCs, GO, QDs, CDs, and MOF) is described herein. To investigate these extremely efficient responsive agents for diagnostic and therapeutic applications in medicine, fluorescence sensors based on G-quadruplexes have also been employed as a quantitative visualization technique.
Collapse
Affiliation(s)
- Long Zhao
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China.,College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Farid Ahmed
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Yating Zeng
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Weiqing Xu
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Hai Xiong
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China
| |
Collapse
|
41
|
Oblak D, Hadži S, Podlipnik Č, Lah J. Binding-Induced Diversity of a Human Telomeric G-Quadruplex Stability Phase Space. Pharmaceuticals (Basel) 2022; 15:ph15091150. [PMID: 36145371 PMCID: PMC9501445 DOI: 10.3390/ph15091150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/06/2022] [Accepted: 09/11/2022] [Indexed: 11/25/2022] Open
Abstract
The structural polymorphism of G-quadruplex nucleic acids is an important factor in their recognition by proteins and small-molecule ligands. However, it is not clear why the binding of several ligands alters G-quadruplex topology. We addressed this question by following the (un)folding and binding of the human telomeric fragment 5′-(GGGTTA)3GGGT-3′ (22GT) by calorimetry (DSC, ITC) and spectroscopy (CD). A thermodynamic analysis of the obtained data led to a detailed description of the topological phase space of stability (phase diagram) of 22GT and shows how it changes in the presence of a specific bisquinolinium ligand (360A). Various 1:1 and 2:1 ligand–quadruplex complexes were observed. With increasing temperature, the 1:1 complexes transformed into 2:1 complexes, which is attributed to the preferential binding of the ligand to the folding intermediates. Overall, the dissection of the thermodynamic parameters in combination with molecular modelling clarified the driving forces of the topological quadruplex transformations in a wide range of ligand concentrations and temperatures.
Collapse
|
42
|
Rodgers MT, Seidu YS, Israel E. Influence of 5-Halogenation on the Base-Pairing Energies of Protonated Cytidine Nucleoside Analogue Base Pairs: Implications for the Stabilities of Synthetic i-Motif Structures for DNA Nanotechnology Applications. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:1697-1715. [PMID: 35921530 DOI: 10.1021/jasms.2c00137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
DNA nanotechnology has been employed to develop devices based on i-motif structures. The protonated cytosine-cytosine base pairs that stabilize i-motif conformations are favored under slightly acidic conditions. This unique property has enabled development of the first DNA molecular motor driven by pH changes. The ability to alter the stability and pH transition range of such DNA molecular motors is desirable. Understanding how i-motif structures are influenced by modifications, and which modifications enhance stability and/or affect the pH characteristics, are therefore of great interest. Here, the influence of 5-halogenation of the cytosine nucleobases on the base pairing of protonated cytidine nucleoside analogue base pairs is examined using complementary threshold collision-induced dissociation techniques and computational methods. The nucleoside analogues examined here include the 5-halogenated forms of the canonical DNA and RNA cytidine nucleosides. Comparisons among these systems and to the analogous canonical base pairs previously examined enable the influence of 5-halogenation and the 2'-hydroxy substituent on the base pairing to be elucidated. 5-Halogenation of the cytosine nucleobases is found to enhance the strength of base pairing of DNA base pairs and generally weakens the base pairing for RNA base pairs. Trends in the strength of base pairing indicate that both inductive and polarizability effects influence the strength of base pairing. Overall, the present results suggest that 5-halogenation, and in particular, 5-fluorination and 5-iodination, provide effective means of stabilizing DNA i-motif conformations for applications in nanotechnology, whereas only 5-iodination is effective for stabilizing RNA i-motif conformations but the enhancement in stability is less significant.
Collapse
Affiliation(s)
- M T Rodgers
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Yakubu S Seidu
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - E Israel
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| |
Collapse
|
43
|
Ivens E, Cominetti MM, Searcey M. Junctions in DNA: underexplored targets for therapeutic intervention. Bioorg Med Chem 2022; 69:116897. [DOI: 10.1016/j.bmc.2022.116897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/15/2022] [Accepted: 06/20/2022] [Indexed: 11/02/2022]
|
44
|
Liu L, Zhu L, Tong H, Su C, Wells JW, Chalikian TV. Distribution of Conformational States Adopted by DNA from the Promoter Regions of the VEGF and Bcl-2 Oncogenes. J Phys Chem B 2022; 126:6654-6670. [PMID: 36001297 DOI: 10.1021/acs.jpcb.2c04304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We employed a previously described procedure, based on circular dichroism (CD) spectroscopy, to quantify the distribution of conformational states adopted by equimolar mixtures of complementary G-rich and C-rich DNA strands from the promoter regions of the VEGF and Bcl-2 oncogenes. Spectra were recorded at different pHs, concentrations of KCl, and temperatures. The temperature dependences of the fractional populations of the duplex, G-quadruplex, i-motif, and coiled conformations of each promoter were then analyzed within the framework of a thermodynamic model to obtain the enthalpy and melting temperature of each folded-to-unfolded transition involved in the equilibrium. A comparison of the conformational data on the VEGF and Bcl-2 DNA with similar results on the c-MYC DNA, which we reported previously, reveals that the distribution of conformational states depends on the specific DNA sequence and is modulated by environmental factors. Under the physiological conditions of room temperature, neutral pH, and elevated concentrations of potassium ions, the duplex conformation coexists with the G-quadruplex conformation in proportions that depend on the sequence. This observed conformational diversity has biological implications, and it further supports our previously proposed thermodynamic hypothesis of gene regulation. In that hypothesis, a specific distribution of duplex and tetraplex conformations in a promoter region is fine-tuned to maintain the healthy level of gene expression. Any deviation from a healthy distribution of conformational states may result in pathology stemming from up- or downregulation of the gene.
Collapse
Affiliation(s)
- Lutan Liu
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Legeng Zhu
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Haoyuan Tong
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Chongyu Su
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - James W Wells
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Tigran V Chalikian
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| |
Collapse
|
45
|
Greco F, Marzano M, Falanga AP, Terracciano M, Piccialli G, Roviello GN, D'Errico S, Borbone N, Oliviero G. Cytosine-rich oligonucleotides incorporating a non-nucleotide loop: A further step towards the obtainment of physiologically stable i-motif DNA. Int J Biol Macromol 2022; 219:626-636. [PMID: 35952813 DOI: 10.1016/j.ijbiomac.2022.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/12/2022] [Accepted: 08/02/2022] [Indexed: 11/05/2022]
Abstract
i-Motifs, also known as i-tetraplexes, are secondary structures of DNA occurring in cytosine-rich oligonucleotides (CROs) that recall increasing interest in the scientific community for their relevance in various biological processes and DNA nanotechnology. This study reports the design of new structurally modified CROs, named Double-Ended-Linker-CROs (DEL-CROs), capable of forming stable i-motif structures. Here, two C-rich strands having sequences d(AC4A) and d(C6) have been attached, in a parallel fashion, to the two linker's edges by their 3' or 5' ends. The resulting DEL-CROs have been investigated for their capability to form i-motif structures by circular dichroism, poly-acrylamide gel electrophoresis, HPLC-size-exclusion chromatography, and NMR studies. This investigation established that DEL-CROs could form more stable i-motif structures than the corresponding unmodified CROs. In particular, the i-motif formed by DEL-5'-d(C6)2 resulted stable enough to be detected even at near physiological conditions (37 °C, pH 7.0). The results open the way to developing pH-switchable nanocarriers and aptamers based on suitably functionalized DEL-CROs.
Collapse
Affiliation(s)
- Francesca Greco
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy
| | - Maria Marzano
- Istituto di Scienze Applicate e Sistemi Intelligenti - Unità di Napoli, Consiglio Nazionale delle Ricerche, Via Pietro Castellino 111, 80131 Napoli, Italy
| | - Andrea Patrizia Falanga
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy
| | - Monica Terracciano
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy; Istituto di Scienze Applicate e Sistemi Intelligenti - Unità di Napoli, Consiglio Nazionale delle Ricerche, Via Pietro Castellino 111, 80131 Napoli, Italy
| | - Gennaro Piccialli
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy; ISBE Italy, Università degli Studi di Napoli Federico II, 80138 Napoli, Italy
| | - Giovanni Nicola Roviello
- Istituto di Biostrutture e Bioimmagini, Consiglio Nazionale delle Ricerche, Via Mezzocannone 16, 80134 Napoli, Italy
| | - Stefano D'Errico
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy
| | - Nicola Borbone
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy; Istituto di Scienze Applicate e Sistemi Intelligenti - Unità di Napoli, Consiglio Nazionale delle Ricerche, Via Pietro Castellino 111, 80131 Napoli, Italy; ISBE Italy, Università degli Studi di Napoli Federico II, 80138 Napoli, Italy.
| | - Giorgia Oliviero
- ISBE Italy, Università degli Studi di Napoli Federico II, 80138 Napoli, Italy; Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Via Sergio Pansini 5, 80131 Napoli, Italy
| |
Collapse
|
46
|
Panczyk T, Nieszporek K, Wolski P. Stability and Existence of Noncanonical I-motif DNA Structures in Computer Simulations Based on Atomistic and Coarse-Grained Force Fields. Molecules 2022; 27:molecules27154915. [PMID: 35956863 PMCID: PMC9370271 DOI: 10.3390/molecules27154915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/13/2022] [Accepted: 07/26/2022] [Indexed: 11/24/2022] Open
Abstract
Cytosine-rich DNA sequences are able to fold into noncanonical structures, in which semi-protonated cytosine pairs develop extra hydrogen bonds, and these bonds are responsible for the overall stability of a structure called the i-motif. The i-motif can be formed in many regions of the genome, but the most representative is the telomeric region in which the CCCTAA sequences are repeated thousands of times. The ability to reverse folding/unfolding in response to pH change makes the above sequence and i-motif very promising components of nanomachines, extended DNA structures, and drug carriers. Molecular dynamics analysis of such structures is highly beneficial due to direct insights into the microscopic structure of the considered systems. We show that Amber force fields for DNA predict the stability of the i-motif over a long timescale; however, these force fields are not able to predict folding of the cytosine-rich sequences into the i-motif. The reason is the kinetic partitioning of the folding process, which makes the transitions between various intermediates too time-consuming in atomistic force field representation. Application of coarse-grained force fields usually highly accelerates complex structural transitions. We, however, found that three of the most popular coarse-grained force fields for DNA (oxDNA, 3SPN, and Martini) were not able to predict the stability of the i-motif structure. Obviously, they were not able to accelerate the folding of unfolded states into an i-motif. This observation must be strongly highlighted, and the need to develop suitable extensions of coarse-grained force fields for DNA is pointed out. However, it will take a great deal of effort to successfully solve these problems.
Collapse
Affiliation(s)
- Tomasz Panczyk
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, ul. Niezapominajek 8, 30239 Cracow, Poland;
- Correspondence:
| | - Krzysztof Nieszporek
- Department of Theoretical Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University in Lublin pl. Maria Curie-Sklodowska 3, 20031 Lublin, Poland;
| | - Pawel Wolski
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, ul. Niezapominajek 8, 30239 Cracow, Poland;
| |
Collapse
|
47
|
Shin J, Jo W, Hwang JH, Han J, Lee W, Park S, Kim YS, Kim HT, Kim DG. Regional Control of Multistimuli-Responsive Structural Color-Switching Surfaces by a Micropatterned DNA-Hydrogel Assembly. NANO LETTERS 2022; 22:5069-5076. [PMID: 35648998 DOI: 10.1021/acs.nanolett.2c00197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Structural colors have advantages compared with chemical pigments or dyes, such as iridescence, tunability, and unfading. Many studies have focused on developing the ability to switch ON/OFF the structural color; however, they often suffer from a simple and single stimulus, remaining structural colors, and target selectivity. Herein, we present regionally controlled multistimuli-responsive structural color switching surfaces. The key part is the utilization of a micropatterned DNA-hydrogel assembly on a single substrate. Each hydrogel network contains a unique type of stimuli-responsive DNA motifs as an additional cross-linker to exhibit swelling/deswelling via stimuli-responsive DNA interactions. The approach enables overcoming the existing limitations and selectively programming the DNA-hydrogel to a decrypted state (ON) and an encrypted state (OFF) in response to multiple stimuli. Furthermore, the transitions are reversible, providing cyclability. We envision the potential of our method for diverse applications, such as sensors or anticounterfeiting, requiring multistimuli-responsive structural color switching surfaces.
Collapse
Affiliation(s)
- Jeehae Shin
- Advanced Materials Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea
| | - Wonhee Jo
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Jae Hyuk Hwang
- Advanced Materials Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea
- School of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University, 599 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Jiseok Han
- Advanced Materials Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea
- Department of Polymer Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Woohwa Lee
- Advanced Materials Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea
| | - Sungmin Park
- Advanced Materials Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea
| | - Yong Seok Kim
- Advanced Materials Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea
- Advanced Materials and Chemical Engineering, KRICT School, University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea
| | - Hee-Tak Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Dong-Gyun Kim
- Advanced Materials Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea
- Advanced Materials and Chemical Engineering, KRICT School, University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea
| |
Collapse
|
48
|
Khatik SY, Srivatsan SG. Environment-Sensitive Nucleoside Probe Unravels the Complex Structural Dynamics of i-Motif DNAs. Bioconjug Chem 2022; 33:1515-1526. [PMID: 35819865 DOI: 10.1021/acs.bioconjchem.2c00237] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Although evidence for the existence and biological role of i-motif (iM) DNA structures in cells is emerging, probing their structural polymorphism and identifying physiologically active conformations using currently available tools remain a major challenge. Here, we describe the development of an innovative device to investigate the conformation equilibrium of different iMs formed by C-rich telomeric repeat and oncogenic B-raf promoter sequences using a new conformation-sensitive dual-purpose nucleoside probe. The nucleoside is composed of a trifluoromethyl-benzofuran-2-yl moiety at the C5 position of 2'-deoxyuridine, which functions as a responsive fluorescent and 19F NMR probe. While the fluorescent component is useful in monitoring and estimating the folding process, the 19F label provides spectral signatures for various iMs, thereby enabling a systematic analysis of their complex population equilibrium under different conditions (e.g., pH, temperature, metal ions, and cell lysate). Distinct 19F signals exhibited by the iMs formed by the human telomeric repeat helped in calculating their relative population. A battery of fluorescence and 19F NMR studies using native and mutated B-raf oligonucleotides gave valuable insights into the iM structure landscape and its dependence on environmental conditions and also helped in predicting the structure of the major iM conformation. Overall, our findings indicate that the probe is highly suitable for studying complex nucleic acid systems.
Collapse
Affiliation(s)
- Saddam Y Khatik
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Dr. Homi Bhabha Road, Pune 411008, India
| | - Seergazhi G Srivatsan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Dr. Homi Bhabha Road, Pune 411008, India
| |
Collapse
|
49
|
Chikhale RV, Guneri D, Yuan R, Morris CJ, Waller ZAE. Identification of sugar-containing natural products that interact with i-motif DNA. Bioorg Med Chem Lett 2022; 73:128886. [PMID: 35835380 DOI: 10.1016/j.bmcl.2022.128886] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 11/30/2022]
Abstract
There are thousands of compounds shown to interact with G-quadruplex DNA, yet very few which target i-motif (iM) DNA. Previous work showed that tobramycin can interact with iM- DNA, indicating the potential for sugar-molecules to target these structures. Computational approaches indicated that the sugar-containing natural products baicalin and geniposidic acid had potential to target iM-DNA. We assessed the DNA interacting properties of these compounds using FRET-based DNA melting and a fluorescence-based displacement assay using iM-DNA structures from the human telomere and the insulin linked polymorphic region (ILPR), as well as complementary G-quadruplex and double stranded DNA. Both baicalin and geniposidic acid show promise as iM-interacting compounds with potential for use in experiments into the structure and function of i-motif forming DNA sequences and present starting points for further synthetic development of these as probes for iM-DNA.
Collapse
Affiliation(s)
| | - Dilek Guneri
- UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Robert Yuan
- UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK
| | | | - Zoë A E Waller
- UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK.
| |
Collapse
|
50
|
Gómez-González J, Martínez-Castro L, Tolosa-Barrilero J, Alcalde-Ordóñez A, Learte-Aymamí S, Mascareñas JL, García-Martínez JC, Martínez-Costas J, Maréchal JD, Vázquez López M, Vázquez ME. Selective recognition of A/T-rich DNA 3-way junctions with a three-fold symmetric tripeptide. Chem Commun (Camb) 2022; 58:7769-7772. [PMID: 35730795 DOI: 10.1039/d2cc02874c] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Non-canonical DNA structures, particularly 3-Way Junctions (3WJs) that are transiently formed during DNA replication, have recently emerged as promising chemotherapeutic targets. Here, we describe a new approach to target 3WJs that relies on the cooperative and sequence-selective recognition of A/T-rich duplex DNA branches by three AT-Hook peptides attached to a three-fold symmetric and fluorogenic 1,3,5-tristyrylbenzene core.
Collapse
Affiliation(s)
- Jacobo Gómez-González
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Spain.
| | - Laura Martínez-Castro
- Insilichem, Departament de Química, Universitat Autònoma de Barcelona, 08193 Cerdanyola, Spain
| | - Juan Tolosa-Barrilero
- Department of Inorganic, Organic Chemistry and Biochemistry, Faculty of Pharmacy, University of Castilla-La Mancha, 02071 Albacete, Spain.,Regional Center for Biomedical Research (CRIB), 02071 Albacete, Spain
| | - Ana Alcalde-Ordóñez
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Spain.
| | - Soraya Learte-Aymamí
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Spain.
| | - José L Mascareñas
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Spain.
| | - Joaquín C García-Martínez
- Department of Inorganic, Organic Chemistry and Biochemistry, Faculty of Pharmacy, University of Castilla-La Mancha, 02071 Albacete, Spain.,Regional Center for Biomedical Research (CRIB), 02071 Albacete, Spain
| | - José Martínez-Costas
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Bioquímica y Biología Molecular, Universidade de Santiago de Compostela, Spain
| | - Jean-Didier Maréchal
- Insilichem, Departament de Química, Universitat Autònoma de Barcelona, 08193 Cerdanyola, Spain
| | - Miguel Vázquez López
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Inorgánica, Universidade de Santiago de Compostela, Spain
| | - M Eugenio Vázquez
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Spain.
| |
Collapse
|