1
|
Xie H, Qiang P, Wang Y, Xia F, Liu P, Li M. Discovery and mechanism studies of a novel ATG4B inhibitor Ebselen by drug repurposing and its anti-colorectal cancer effects in mice. Cell Biosci 2022; 12:206. [PMID: 36539845 PMCID: PMC9767854 DOI: 10.1186/s13578-022-00944-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Cysteine protease ATG4B, a key autophagy protein, is an attractive target for colorectal cancer therapy. However, ATG4B inhibitors with higher efficiency, safety, and clear mechanism are still limited. In this study, we discovered ATG4B inhibitors based on the FDA-approved drug library through FRET-based high-throughput screening and gel-based analysis. Among the nine hits, compound Ebselen showed the most potent ATG4B inhibitory activity (IC50 = 189 nM) and exhibited controllable selectivity and structural optimizable possibility against ATG4A and caspases. We then performed mass spectrometry assay and cysteine mutations to confirm that Ebselen could covalently bind to ATG4B at Cys74. Moreover, Cys292 and Cys361 instead of Cys74 are responsible for the redox-oligomerization and efficient activity inhibition of ATG4B. Ultimately through cell culture and mouse xenograft tumor models, we established the impact of Ebselen on autophagy and tumor suppression via ATG4B inhibition other than apoptosis. These results suggest that old drug Ebselen as an ATG4B inhibitor through oxidative modification may be repurposed as a promising anti-colorectal cancer drug.
Collapse
Affiliation(s)
- Huazhong Xie
- grid.12981.330000 0001 2360 039XSchool of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-Sen University, Guangzhou, 510006 Guangdong China
| | - Pengfei Qiang
- grid.12981.330000 0001 2360 039XSchool of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-Sen University, Guangzhou, 510006 Guangdong China
| | - Yao Wang
- grid.12981.330000 0001 2360 039XSchool of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-Sen University, Guangzhou, 510006 Guangdong China
| | - Fan Xia
- grid.12981.330000 0001 2360 039XSchool of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-Sen University, Guangzhou, 510006 Guangdong China
| | - Peiqing Liu
- grid.12981.330000 0001 2360 039XSchool of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-Sen University, Guangzhou, 510006 Guangdong China
| | - Min Li
- grid.12981.330000 0001 2360 039XSchool of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-Sen University, Guangzhou, 510006 Guangdong China
| |
Collapse
|
2
|
Abd-Allah WH, Salman A, Sabry Saad S. Anticancer activity of newly synthesized 1,1-disubstituted cyclohexane-1-carboxamides: in vitro caspases mediated apoptosis activators in human cancer cell lines and their molecular modeling. Drug Dev Res 2019; 80:933-947. [PMID: 31343754 DOI: 10.1002/ddr.21573] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/26/2019] [Accepted: 07/04/2019] [Indexed: 01/02/2023]
Abstract
Novel 1,1-disubstituted cyclohexane-1-carboxamides 6a-h, 7a-e, and 8a-b were designed and synthesized as apoptotic inducers. Cytotoxicity test revealed that some compounds have strong to moderate effect, while others displayed weak action against different cancer cell lines including, MCF-7, HepG2, A549, and HTC-116. A549 carcinoma cell line exhibited higher sensitivity toward all synthesized candidates especially compounds 6a and 8a which offered the lowest IC50 values 3.03 and 5.21 μM, respectively, relative to the positive control doxorubicin with IC50 value of 3.01 μM. Compared to doxorubicin treatment, compounds 6a and 8a induced caspases-3, -8, and -9 activities and G2/M growth arrest in A549 carcinoma cell line. The expression levels of p53 (tumor suppressor protein that in humans is encoded by the TP53 gene), Bax (apoptosis regulator protein in humans that is encoded by bax gene), and the Bax/Bcl-2 ratio were all higher than those in doxorubicin-treated cells (Bcl-2, B-cell lymphoma 2, encoded in humans by the Bcl-2 gene). Additionally, compounds 6a and 8a appeared to exhibit higher selectivity against MCF-10 human breast normal cell line. The synthesized congeners could be considered as potent apoptotic inducers interfering with extrinsic and intrinsic apoptotic pathways. Moreover, compound 6a was able to form complex with zinc ions as indicated by UV spectrophotometry which revealed its ability for being caspase activator. Molecular docking studies expected the interactions and binding modes of the synthesized inhibitors in the caspase-3 active site.
Collapse
Affiliation(s)
- Walaa Hamada Abd-Allah
- Pharmaceutical Chemistry Department, College of Pharmaceutical Science and Drug Manufacturing, Misr University for Science & Technology, Giza, Egypt
| | - Asmaa Salman
- Department of Medicinal and Pharmaceutical Chemistry (Pharmacology Group), National Research Centre, Giza, Egypt
| | - Samah Sabry Saad
- Pharmaceutical Analytical Chemistry Department, College of Pharmaceutical Science and Drug Manufacturing, Misr University for Science & Technology, Giza, Egypt
| |
Collapse
|
3
|
Insight into the mechanism of action and selectivity of caspase-3 reversible inhibitors through in silico studies. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2017.06.118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
4
|
Xia J, Feng B, Shao Q, Yuan Y, Wang XS, Chen N, Wu S. Virtual Screening against Phosphoglycerate Kinase 1 in Quest of Novel Apoptosis Inhibitors. Molecules 2017. [PMID: 28635653 PMCID: PMC5720137 DOI: 10.3390/molecules22061029] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Inhibition of apoptosis is a potential therapy to treat human diseases such as neurodegenerative disorders (e.g., Parkinson’s disease), stroke, and sepsis. Due to the lack of druggable targets, it remains a major challenge to discover apoptosis inhibitors. The recent repositioning of a marketed drug (i.e., terazosin) as an anti-apoptotic agent uncovered a novel target (i.e., human phosphoglycerate kinase 1 (hPgk1)). In this study, we developed a virtual screening (VS) pipeline based on the X-ray structure of Pgk1/terazosin complex and applied it to a screening campaign for potential anti-apoptotic agents. The hierarchical filters in the pipeline (i.e., similarity search, a pharmacophore model, a shape-based model, and molecular docking) rendered 13 potential hits from Specs chemical library. By using PC12 cells (exposed to rotenone) as a cell model for bioassay, we first identified that AK-918/42829299, AN-465/41520984, and AT-051/43421517 were able to protect PC12 cells from rotenone-induced cell death. Molecular docking suggested these hit compounds were likely to bind to hPgk1 in a similar mode to terazosin. In summary, we not only present a versatile VS pipeline for potential apoptosis inhibitors discovery, but also provide three novel-scaffold hit compounds that are worthy of further development and biological study.
Collapse
Affiliation(s)
- Jie Xia
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of New Drug Research and Development, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Bo Feng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of New Drug Research and Development, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Qianhang Shao
- Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Yuhe Yuan
- Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Xiang Simon Wang
- Molecular Modeling and Drug Discovery Core Laboratory for District of Columbia Center for AIDS Research (DC CFAR), Department of Pharmaceutical Sciences, College of Pharmacy, Howard University, Washington, DC 20059, USA.
| | - Naihong Chen
- Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Song Wu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of New Drug Research and Development, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
5
|
Viani F, Rossi B, Panzeri W, Merlini L, Martorana AM, Polissi A, Galante YM. Synthesis and anti-bacterial activity of a library of 1,2-benzisothiazol-3(2H)-one (BIT) derivatives amenable of crosslinking to polysaccharides. Tetrahedron 2017. [DOI: 10.1016/j.tet.2017.02.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
6
|
Zheng Y, Tsuji G, Opoku-Temeng C, Sintim HO. Inhibition of P. aeruginosa c-di-GMP phosphodiesterase RocR and swarming motility by a benzoisothiazolinone derivative. Chem Sci 2016; 7:6238-6244. [PMID: 30034764 PMCID: PMC6024209 DOI: 10.1039/c6sc02103d] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 06/15/2016] [Indexed: 01/18/2023] Open
Abstract
Various important cellular processes in bacteria are controlled by c-di-GMP, such as motility, biofilm formation and virulence factors production. C-di-GMP is synthesized from two molecules of GTP by diguanylate cyclases (DGCs) and its actions are terminated by EAL or HD-GYP domain phosphodiesterases (PDEs), which hydrolyze c-di-GMP to linear pGpG or GMP. Thus far the majority of efforts have been dedicated to the development of inhibitors of DGCs but not PDEs. This is probably because the old view was that inhibiting any c-di-GMP PDE would lead to biofilm formation, an undesirable phenotype. Recent data however suggest that some PDEs only change the localized (not global) concentration of c-di-GMP to increase bacterial virulence and do not affect biofilm formation. A challenge therefore is to be able to develop selective PDE inhibitors that inhibit virulence-associated PDEs but not inhibit PDEs that regulate bacterial biofilm formation. Using high throughput docking experiments to screen a library of 250 000 commercially available compounds against E. coli YahA (also called PdeL), a benzoisothiazolinone derivative was found to bind to the c-di-GMP binding site of YahA with favorable energetics. Paradoxically the in silico identified inhibitor (a benzoisothiazolinone derivative) did not inhibit the hydrolysis of c-di-GMP by YahA, the model PDE that was used in the docking, but instead inhibited RocR, which is a PDE from the opportunistic pathogen P. aeruginosa (PA). RocR promotes bacterial virulence but not biofilm dispersal, making it an ideal PDE to target for anti-virulence purposes. This newly identified RocR ligand displayed some selectivity and did not inhibit other P. aeruginosa PDEs, such as DipA, PvrR and PA4108. DipA, PvrR and PA4108 are key enzymes that reduce global c-di-GMP concentration and promote biofilm dispersal; therefore the identification of an inhibitor of a PA PDE, such as RocR, that does not inhibit major PDEs that modulate global c-di-GMP is an important step towards the development of selective c-di-GMP PDEs that could have interesting biomedical applications. The identified RocR ligand could also inhibit P. aeruginosa (PAO1) swarming but not swimming or biofilm formation. Rhamnolipid production was decreased, explaining the inhibition of swarming.
Collapse
Affiliation(s)
- Yue Zheng
- Department of Chemistry , Purdue University , 560 Oval Drive , West Lafayette , IN 47907 , USA .
- Center for Drug Discovery , Purdue University , 720 Clinic Drive , West Lafayette , IN 47907 , USA
- Graduate Program in Biochemistry , University of Maryland , College Park , MD 20742 , USA
| | - Genichiro Tsuji
- Department of Chemistry , Purdue University , 560 Oval Drive , West Lafayette , IN 47907 , USA .
- Center for Drug Discovery , Purdue University , 720 Clinic Drive , West Lafayette , IN 47907 , USA
| | - Clement Opoku-Temeng
- Department of Chemistry , Purdue University , 560 Oval Drive , West Lafayette , IN 47907 , USA .
- Center for Drug Discovery , Purdue University , 720 Clinic Drive , West Lafayette , IN 47907 , USA
- Graduate Program in Biochemistry , University of Maryland , College Park , MD 20742 , USA
| | - Herman O Sintim
- Department of Chemistry , Purdue University , 560 Oval Drive , West Lafayette , IN 47907 , USA .
- Center for Drug Discovery , Purdue University , 720 Clinic Drive , West Lafayette , IN 47907 , USA
| |
Collapse
|
7
|
Poreba M, Szalek A, Kasperkiewicz P, Rut W, Salvesen GS, Drag M. Small Molecule Active Site Directed Tools for Studying Human Caspases. Chem Rev 2015; 115:12546-629. [PMID: 26551511 DOI: 10.1021/acs.chemrev.5b00434] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Caspases are proteases of clan CD and were described for the first time more than two decades ago. They play critical roles in the control of regulated cell death pathways including apoptosis and inflammation. Due to their involvement in the development of various diseases like cancer, neurodegenerative diseases, or autoimmune disorders, caspases have been intensively investigated as potential drug targets, both in academic and industrial laboratories. This review presents a thorough, deep, and systematic assessment of all technologies developed over the years for the investigation of caspase activity and specificity using substrates and inhibitors, as well as activity based probes, which in recent years have attracted considerable interest due to their usefulness in the investigation of biological functions of this family of enzymes.
Collapse
Affiliation(s)
- Marcin Poreba
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Technology , Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Aleksandra Szalek
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Technology , Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Paulina Kasperkiewicz
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Technology , Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Wioletta Rut
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Technology , Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Guy S Salvesen
- Program in Cell Death and Survival Networks, Sanford Burnham Prebys Medical Discovery Institute , La Jolla, California 92037, United States
| | - Marcin Drag
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Technology , Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland
| |
Collapse
|