1
|
Ardevines S, Marqués-López E, Herrera RP. Heterocycles in Breast Cancer Treatment: The Use of Pyrazole Derivatives. Curr Med Chem 2023; 30:1145-1174. [PMID: 36043746 PMCID: PMC11475274 DOI: 10.2174/0929867329666220829091830] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 04/21/2022] [Accepted: 05/05/2022] [Indexed: 11/22/2022]
Abstract
Among the aromatic heterocycle rings, pyrazole -a five-membered ring with two adjacent nitrogen atoms in its structure has been postulated as a potent candidate in the pharmacological context. This moiety is an interesting therapeutic target covering a broad spectrum of biological activities due to its presence in many natural substances. Hence, the potential of the pyrazole derivatives as antitumor agents has been explored in many investigations, showing promising results in some cases. In this sense, breast cancer, which is already the leading cause of cancer mortality in women in some countries, has been the topic selected for this review, which covers a range of different research from the earliest studies published in 2003 to the most recent ones in 2021.
Collapse
Affiliation(s)
- Sandra Ardevines
- Laboratorio de Organocatálisis Asimétrica, Departamento de Química Orgánica. Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza. C/Pedro Cerbuna 12, E-50009 Zaragoza, Spain
| | - Eugenia Marqués-López
- Laboratorio de Organocatálisis Asimétrica, Departamento de Química Orgánica. Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza. C/Pedro Cerbuna 12, E-50009 Zaragoza, Spain
| | - Raquel P. Herrera
- Laboratorio de Organocatálisis Asimétrica, Departamento de Química Orgánica. Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza. C/Pedro Cerbuna 12, E-50009 Zaragoza, Spain
| |
Collapse
|
2
|
Wang Y, Huang Q, Zhang L, Zheng C, Xu H. Biphenyls in Clusiaceae: Isolation, structure diversity, synthesis and bioactivity. Front Chem 2022; 10:987009. [PMID: 36531325 PMCID: PMC9751493 DOI: 10.3389/fchem.2022.987009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 11/14/2022] [Indexed: 12/05/2022] Open
Abstract
Clusiaceae plants contain a wide range of biologically active metabolites that have gotten a lot of interest in recent decades. The chemical compositions of these plants have been demonstrated to have positive effects on a variety of ailments. The species has been studied for over 70 years, and many bioactive compounds with antioxidant, anti-proliferative, and anti-inflammatory properties have been identified, including xanthones, polycyclic polyprenylated acylphloroglucinols (PPAPs), benzophenones, and biphenyls. Prenylated side chains have been discovered in many of these bioactive substances. To date, there have been numerous studies on PPAPs and xanthones, while no comprehensive review article on biphenyls from Clusiaceae has been published. The unique chemical architectures and growing biological importance of biphenyl compounds have triggered a flurry of research and interest in their isolation, biological evaluation, and mechanistic studies. In particular, the FDA-approved drugs such as sonidegib, tazemetostat, daclatasvir, sacubitril and trifarotene are closely related to their biphenyl-containing moiety. In this review, we summarize the progress and development in the chemistry and biological activity of biphenyls in Clusiaceae, providing an in-depth discussion of their structural diversity and medicinal potential. We also present a preliminary discussion of the biological effects with or without prenyl groups on the biphenyls.
Collapse
Affiliation(s)
- Youyi Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qing Huang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Li Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Changwu Zheng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China,*Correspondence: Changwu Zheng, ; Hongxi Xu,
| | - Hongxi Xu
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China,*Correspondence: Changwu Zheng, ; Hongxi Xu,
| |
Collapse
|
3
|
Husain A, Bhutani M, Parveen S, Khan SA, Ahmad A, Iqbal MA. Design, Synthesis, In Vitro Cytotoxicity, ADME Prediction, and Molecular Docking Study of Benzimidazole-Linked Pyrrolone and N-Benzylpyrrolone Derivatives. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1070428022100098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
4
|
Design, synthesis and evaluation of calix[4]arene-based carbonyl amide derivatives with antitumor activities. Eur J Med Chem 2020; 210:112984. [PMID: 33183867 DOI: 10.1016/j.ejmech.2020.112984] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 10/18/2020] [Accepted: 10/30/2020] [Indexed: 11/23/2022]
Abstract
Calixarenes, with potential functionalization on the upper and lower rim, have been explored in recent years for the design and construction of anticancer agents in the field of drugs and pharmaceuticals. Herein, optimization of bis [N-(2-hydroxyethyl) aminocarbonylmethoxyl substituted calix [4] arene (CLX-4) using structure-based drug design and traditional medicinal chemistry led to the discovery of series of calix [4]arene carbonyl amide derivatives 5a-5t. Evaluation of the cytotoxicity of 5a-5t employing MTT assay in MCF-7, MDA-MB-231 (human breast cancer cells), HT29 (human colon carcinoma cells), HepG2 (human hepatocellular carcinoma cells), A549 (human lung adenocarcinoma cells) and HUVEC (Human Umbilical Vein Endothelial) cells demonstrated that the most promising compound 5h displayed the most superior inhibitory effect against A549 and MDA-MB-231 cells, which were 3.2 times and 6.8 times of CLX-4, respectively. In addition, the cell inhibition rate (at 10 μM) against normal HUVEC cells in vitro was only 9.6%, indicating the safty of compound 5h. Moreover, compound 5h could inhibit the migration of MDA-MB-231 cell in wound healing assay. Further mechanism studies significantly indicated that compound 5h could block MDA-MB-231 cell cycle arrest in G0/G1 phase by down regulating cyclin D1 and CDK4, and induce apoptosis by up-regulation of Bax, down-regulation of Caspase-3, PARP and Bcl-2 proteins, resulting in the reduction of DNA synthesis and cell division arrest. This work provides worthy of further exploration for the promising calixarene-based anticancer drugs.
Collapse
|
5
|
Rudolph M, Schneider S, Fischer C, Terfort A. Simple electrochemical method for the quantification of chlorite in aqueous and non-aqueous media. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
6
|
Vascular Endothelial Growth Factor Receptor (VEGFR-2)/KDR Inhibitors: Medicinal Chemistry Perspective. MEDICINE IN DRUG DISCOVERY 2019. [DOI: 10.1016/j.medidd.2019.100009] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
7
|
Shi ZH, Liu FT, Tian HZ, Zhang YM, Li NG, Lu T. Design, synthesis and structure-activity relationship of diaryl-ureas with novel isoxazol[3,4-b]pyridine-3-amino-structure as multi-target inhibitors against receptor tyrosine kinase. Bioorg Med Chem 2018; 26:4735-4744. [DOI: 10.1016/j.bmc.2018.08.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 08/09/2018] [Accepted: 08/10/2018] [Indexed: 12/19/2022]
|
8
|
Shan Y, Wang B, Zhang J. New strategies in achieving antiangiogenic effect: Multiplex inhibitors suppressing compensatory activations of RTKs. Med Res Rev 2018; 38:1674-1705. [DOI: 10.1002/med.21517] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 04/19/2018] [Accepted: 05/19/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Yuanyuan Shan
- Department of Pharmacy; The First Affiliated Hospital of Xi'an Jiaotong University; Xi'an China
| | - Binghe Wang
- Department of Chemistry; Center for Diagnostics and Therapeutics; Georgia State University; Atlanta GA USA
| | - Jie Zhang
- School of Pharmacy, Health Science Center; Xi'an Jiaotong University; Xi'an China
| |
Collapse
|
9
|
Discovery of novel anti-angiogenesis agents. Part 7: Multitarget inhibitors of VEGFR-2, TIE-2 and EphB4. Eur J Med Chem 2017; 141:506-518. [PMID: 29102175 DOI: 10.1016/j.ejmech.2017.10.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 08/03/2017] [Accepted: 10/10/2017] [Indexed: 11/20/2022]
Abstract
Herein, we embarked on a structural optimization campaign aiming at the discovery of second generation anti-angiogenesis agents with our previously reported BPS-7 as lead compound. A library of 27 compounds has been afforded based on the highly conserved ATP-binding pocket of VEGFR-2, Tie-2, and EphB4. Several title compounds exhibited simultaneous inhibitory effects against three angiogenic RTKs. These compounds with a 'triplet' inhibition profile have been identified as novel anti-angiogenic and anticancer agents. The representative VDAU11 displayed prominent anti-angiogenic and anticancer potency and could be considered as a candidate for further optimization. These results indicate that N-(pyridin-2-yl)acrylamide could serve as a novel hinge-binding group of triple inhibitors.
Collapse
|
10
|
Sun Y, Shan Y, Li C, Si R, Pan X, Wang B, Zhang J. Discovery of novel anti-angiogenesis agents. Part 8: Diaryl thiourea bearing 1H-indazole-3-amine as multi-target RTKs inhibitors. Eur J Med Chem 2017; 141:373-385. [PMID: 29032031 DOI: 10.1016/j.ejmech.2017.10.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 09/30/2017] [Accepted: 10/03/2017] [Indexed: 01/27/2023]
Abstract
VEGFR-2, TIE-2, and EphB4 are essential for both angiogenesis and tumorigenesis. Herein, we designed and prepared three classes of multi-target inhibitors based on the extensive sequence homology along the kinase domain of angiogenic RTKs. Biological evaluation indicated that these multi-target inhibitors exhibited considerable potential as novel anti-angiogeneic and anticancer agents. Among them, a diaryl thiourea bearing 1H-indazole-3-amine (16a) displayed the most potent RTK inhibition and excellent selectivity. It also showed inhibition on viability of human umbilical vein endothelial cells and anti-proliferation against a broad spectrum of cancer cells. Therefore, 1H-indazole-3-amine could serve as a promising hinge binding group for multi-target inhibitors of VEGFR-2, Tie-2, and EphB4.
Collapse
Affiliation(s)
- Ying Sun
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, No. 76, Yanta West Road, Xi'an, 710061, China
| | - Yuanyuan Shan
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Chuansheng Li
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, No. 76, Yanta West Road, Xi'an, 710061, China
| | - Ru Si
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, No. 76, Yanta West Road, Xi'an, 710061, China
| | - Xiaoyan Pan
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, No. 76, Yanta West Road, Xi'an, 710061, China
| | - Binghe Wang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, 30303, United States
| | - Jie Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, No. 76, Yanta West Road, Xi'an, 710061, China.
| |
Collapse
|
11
|
Design, synthesis and antitumor activity of Novel Sorafenib derivatives bearing pyrazole scaffold. Bioorg Med Chem 2017; 25:5754-5763. [DOI: 10.1016/j.bmc.2017.09.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 08/29/2017] [Accepted: 09/04/2017] [Indexed: 11/24/2022]
|
12
|
Zhang L, Shan Y, Ji X, Zhu M, Li C, Sun Y, Si R, Pan X, Wang J, Ma W, Dai B, Wang B, Zhang J. Discovery and evaluation of triple inhibitors of VEGFR-2, TIE-2 and EphB4 as anti-angiogenic and anti-cancer agents. Oncotarget 2017; 8:104745-104760. [PMID: 29285210 PMCID: PMC5739597 DOI: 10.18632/oncotarget.20065] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 07/30/2017] [Indexed: 11/25/2022] Open
Abstract
Receptor tyrosine kinases (RTKs), especially VEGFR-2, TIE-2, and EphB4, play a crucial role in both angiogenesis and tumorigenesis. Moreover, complexity and heterogeneity of angiogenesis make it difficult to treat such pathological traits with single-target agents. Herein, we developed two classes of multi-target RTK inhibitors (RTKIs) based on the highly conserved ATP-binding pocket of VEGFR-2/TIE-2/EphB4, using previously reported BPS-7 as a lead compound. These multi-target RTKIs exhibited considerable potential as novel anti-angiogenic and anticancer agents. Among them, QDAU5 displayed the most promising potency and selectivity. It significantly suppressed viability of EA.hy926 and proliferation of several cancer cells. Further investigations indicated that QDAU5 showed high affinity to VEGFR-2 and reduced the phosphorylation of VEGFR-2. We identified QDAU5 as a potent multiple RTKs inhibitor exhibiting prominent anti-angiogenic and anticancer potency both in vitro and in vivo. Moreover, quinazolin-4(3H)-one has been identified as an excellent hinge binding moiety for multi-target inhibitors of angiogenic VEGFR-2, Tie-2, and EphB4.
Collapse
Affiliation(s)
- Lin Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Yuanyuan Shan
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xingyue Ji
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, United States
| | - Mengyuan Zhu
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, United States
| | - Chuansheng Li
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Ying Sun
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Ru Si
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Xiaoyan Pan
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Jinfeng Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Weina Ma
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Bingling Dai
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Binghe Wang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, United States
| | - Jie Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
13
|
Song Z, Huang S, Yu H, Jiang Y, Wang C, Meng Q, Shu X, Sun H, Liu K, Li Y, Ma X. Synthesis and biological evaluation of morpholine-substituted diphenylpyrimidine derivatives (Mor-DPPYs) as potent EGFR T790M inhibitors with improved activity toward the gefitinib-resistant non-small cell lung cancers (NSCLC). Eur J Med Chem 2017; 133:329-339. [DOI: 10.1016/j.ejmech.2017.03.083] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 03/29/2017] [Accepted: 03/31/2017] [Indexed: 02/06/2023]
|
14
|
Zhang L, Shan Y, Li C, Sun Y, Su P, Wang J, Li L, Pan X, Zhang J. Discovery of novel anti-angiogenesis agents. Part 6: Multi-targeted RTK inhibitors. Eur J Med Chem 2017; 127:275-285. [DOI: 10.1016/j.ejmech.2016.12.059] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 12/29/2016] [Accepted: 12/30/2016] [Indexed: 01/20/2023]
|
15
|
Discovery of novel dual VEGFR2 and Src inhibitors using a multistep virtual screening approach. Future Med Chem 2016; 9:7-24. [PMID: 27995811 DOI: 10.4155/fmc-2016-0162] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
AIM Simultaneous inhibition of VEGFR2 and Src may enhance the efficacy of VEGFR2-targeted cancer therapeutics. Hence, development of dual inhibitors on VEGFR2 and Src can be a useful strategy for such treatments. MATERIALS & METHODS A multistep virtual screening protocol, comprising ligand-based support vector machines method, drug-likeness rules filter and structure-based molecular docking, was developed and employed to identify dual inhibitors of VEGFR2 and Src from a large commercial chemical library. Kinase inhibitory assays and cell viability assays were then used for experimental validation. RESULTS A set of compounds belonging to six different molecular scaffolds was identified and sent for biological evaluation. Compound 3c belonging to the 2-amino-3-cyanopyridine scaffold exhibited good antiproliferative effect and dual-target activities against VEGFR2 and Src. CONCLUSION This study demonstrated the ability of the multistep virtual screening approach to identify novel multitarget agents.
Collapse
|
16
|
Singh H, Kumar R, Singh S, Chaudhary K, Gautam A, Raghava GPS. Prediction of anticancer molecules using hybrid model developed on molecules screened against NCI-60 cancer cell lines. BMC Cancer 2016; 16:77. [PMID: 26860193 PMCID: PMC4748564 DOI: 10.1186/s12885-016-2082-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 01/21/2016] [Indexed: 11/16/2022] Open
Abstract
Background In past, numerous quantitative structure-activity relationship (QSAR) based models have been developed for predicting anticancer activity for a specific class of molecules against different cancer drug targets. In contrast, limited attempt have been made to predict the anticancer activity of a diverse class of chemicals against a wide variety of cancer cell lines. In this study, we described a hybrid method developed on thousands of anticancer and non-anticancer molecules tested against National Cancer Institute (NCI) 60 cancer cell lines. Results Our analysis of anticancer molecules revealed that majority of anticancer molecules contains 18–24 carbon atoms and are dominated by functional groups like R2NH, R3N, ROH, RCOR, and ROR. It was also observed that certain substructures (e.g., 1-methoxy-4-methylbenzene, 1-methoxy benzene, Nitrobenzene, Indole, Propenyl benzene) are more abundant in anticancer molecules. Next, we developed anticancer molecule prediction models using various machine-learning techniques and achieved maximum matthews correlation coefficient (MCC) of 0.81 with 90.40 % accuracy using support vector machine (SVM) based models. In another approach, a novel similarity or potency score based method has been developed using selected fragments/fingerprints and achieved maximum MCC of 0.82 with 90.65 % accuracy. Finally, we combined the strength of above methods and developed a hybrid method with maximum MCC of 0.85 with 92.47 % accuracy. Conclusions We developed a hybrid method utilizing the best of machine learning and potency score based method. The highly accurate hybrid method can be used for classification of anticancer and non-anticancer molecules. In order to facilitate scientific community working in the field of anticancer drug discovery, we integrate hybrid and potency method in a web server CancerIN. This server provides various facilities that includes; virtual screening of anticancer molecules, analog based drug design, and similarity with known anticancer molecules (http://crdd.osdd.net/oscadd/cancerin). Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-2082-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Harinder Singh
- Bioinformatics Centre, Institute of Microbial Technology, Sector 39-A, Chandigarh, India.
| | - Rahul Kumar
- Bioinformatics Centre, Institute of Microbial Technology, Sector 39-A, Chandigarh, India.
| | - Sandeep Singh
- Bioinformatics Centre, Institute of Microbial Technology, Sector 39-A, Chandigarh, India.
| | - Kumardeep Chaudhary
- Bioinformatics Centre, Institute of Microbial Technology, Sector 39-A, Chandigarh, India.
| | - Ankur Gautam
- Bioinformatics Centre, Institute of Microbial Technology, Sector 39-A, Chandigarh, India.
| | - Gajendra P S Raghava
- Bioinformatics Centre, Institute of Microbial Technology, Sector 39-A, Chandigarh, India.
| |
Collapse
|
17
|
Shan Y, Wang C, Zhang L, Wang J, Wang M, Dong Y. Expanding the structural diversity of diarylureas as multi-target tyrosine kinase inhibitors. Bioorg Med Chem 2016; 24:750-8. [DOI: 10.1016/j.bmc.2015.12.038] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 12/19/2015] [Accepted: 12/23/2015] [Indexed: 11/27/2022]
|
18
|
Shan Y, Gao H, Shao X, Wang J, Pan X, Zhang J. Discovery of novel VEGFR-2 inhibitors. Part 5: Exploration of diverse hinge-binding fragments via core-refining approach. Eur J Med Chem 2015; 103:80-90. [PMID: 26342134 DOI: 10.1016/j.ejmech.2015.08.045] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 08/19/2015] [Accepted: 08/23/2015] [Indexed: 10/23/2022]
Abstract
Pathological angiogenesis plays a critical role in numerous diseases including malignancy. VEGFR-2 is the central regulators in angiogenesis and has become a promising target for anticancer drug design. We have identified a novel biphenyl-aryl urea incorporated with salicyladoxime (BPS-7) as potent VEGFR-2 inhibitor. As a continuation to our previous research, various aromatic-heterocyclic were introduced as hinge-binding fragment via a core-refining approach. Interestingly, many compounds exhibited comparable VEGFR-2 inhibition to Sorafenib. In particular, 12e and 12o displayed excellent VEGFR-2 inhibitory activity with IC₅₀ values of 0.50 nM and 0.79 nM, respectively. Several title compounds showed considerable antiproliferative activity against A549 and SMMC-7721 cells. In addition, molecular docking was performed to rationalize the efficiency of the better compounds. These results will be instructive for further inhibitor design and optimization.
Collapse
Affiliation(s)
- Yuanyuan Shan
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, PR China
| | - Hongping Gao
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, No. 76, Yanta West Road, Xi'an, Shaanxi Province, 710061, PR China
| | - Xiaowei Shao
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, No. 76, Yanta West Road, Xi'an, Shaanxi Province, 710061, PR China
| | - Jinfeng Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, No. 76, Yanta West Road, Xi'an, Shaanxi Province, 710061, PR China
| | - Xiaoyan Pan
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, No. 76, Yanta West Road, Xi'an, Shaanxi Province, 710061, PR China
| | - Jie Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, No. 76, Yanta West Road, Xi'an, Shaanxi Province, 710061, PR China.
| |
Collapse
|