1
|
Mehjabin JJ, Phan CS, Okino T. Noducyclamides A1-A4, B1, and B2 from the Cyanobacterium Nodularia sp. NIES-3585. JOURNAL OF NATURAL PRODUCTS 2024; 87:984-993. [PMID: 38587271 DOI: 10.1021/acs.jnatprod.3c01272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
A chemical investigation of the hydrophilic fraction of a cultured Nodularia sp. (NIES-3585) afforded six new cyclic lipopeptides, noducyclamides A1-A4 (1-4) containing 10 amino acid residues and dodecapeptides noducyclamides B1 and B2 (5 and 6). The planar structures of these lipopeptides were elucidated based on the combination of HRMS and 1D and 2D NMR spectroscopic data analyses. These peptides are structurally analogous to laxaphycins and contain the nonproteinogenic amino acids 3-hydroxyvaline and 3-hydroxyleucine and a β-amino decanoic acid residue. The absolute configurations of the noducyclamides (1-6) were determined by acid hydrolysis, followed by advanced Marfey's analysis. Noducyclamide B1 (5) showed cytotoxic activities against MCF7 breast cancer cell lines with an IC50 value of 3.0 μg/mL (2.2 μM).
Collapse
|
2
|
do Amaral SC, Xavier LP, Vasconcelos V, Santos AV. Cyanobacteria: A Promising Source of Antifungal Metabolites. Mar Drugs 2023; 21:359. [PMID: 37367684 PMCID: PMC10300848 DOI: 10.3390/md21060359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/23/2023] [Accepted: 05/27/2023] [Indexed: 06/28/2023] Open
Abstract
Cyanobacteria are a rich source of secondary metabolites, and they have received a great deal of attention due to their applicability in different industrial sectors. Some of these substances are known for their notorious ability to inhibit fungal growth. Such metabolites are very chemically and biologically diverse. They can belong to different chemical classes, including peptides, fatty acids, alkaloids, polyketides, and macrolides. Moreover, they can also target different cell components. Filamentous cyanobacteria have been the main source of these compounds. This review aims to identify the key features of these antifungal agents, as well as the sources from which they are obtained, their major targets, and the environmental factors involved when they are being produced. For the preparation of this work, a total of 642 documents dating from 1980 to 2022 were consulted, including patents, original research, review articles, and theses.
Collapse
Affiliation(s)
- Samuel Cavalcante do Amaral
- Laboratory of Biotechnology of Enzymes and Biotransformation, Biological Sciences Institute, Federal University of Pará, Belém 66075-110, Brazil;
| | - Luciana Pereira Xavier
- Laboratory of Biotechnology of Enzymes and Biotransformation, Biological Sciences Institute, Federal University of Pará, Belém 66075-110, Brazil;
| | - Vítor Vasconcelos
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, University of Porto, 4450-208 Matosinhos, Portugal;
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, Edifício FC4, 4169-007 Porto, Portugal
| | - Agenor Valadares Santos
- Laboratory of Biotechnology of Enzymes and Biotransformation, Biological Sciences Institute, Federal University of Pará, Belém 66075-110, Brazil;
| |
Collapse
|
3
|
Fewer DP, Jokela J, Heinilä L, Aesoy R, Sivonen K, Galica T, Hrouzek P, Herfindal L. Chemical diversity and cellular effects of antifungal cyclic lipopeptides from cyanobacteria. PHYSIOLOGIA PLANTARUM 2021; 173:639-650. [PMID: 34145585 DOI: 10.1111/ppl.13484] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 06/07/2021] [Accepted: 06/16/2021] [Indexed: 05/11/2023]
Abstract
Cyanobacteria produce a variety of chemically diverse cyclic lipopeptides with potent antifungal activities. These cyclic lipopeptides have an amphipathic structure comprised of a polar peptide cycle and hydrophobic fatty acid side chain. Many have antibiotic activity against a range of human and plant fungal pathogens. This review article aims to summarize the present knowledge on the chemical diversity and cellular effects of cyanobacterial cyclic lipopeptides that display antifungal activity. Cyclic antifungal lipopeptides from cyanobacteria commonly fall into four structural classes; hassallidins, puwainaphycins, laxaphycins, and anabaenolysins. Many of these antifungal cyclic lipopeptides act through cholesterol and ergosterol-dependent disruption of membranes. In many cases, the cyclic lipopeptides also exert cytotoxicity in human cells, and a more extensive examination of their biological activity and structure-activity relationship is warranted. The hassallidin, puwainaphycin, laxaphycin, and anabaenolysin structural classes are unified through shared complex biosynthetic pathways that encode a variety of unusual lipoinitiation mechanisms and branched biosynthesis that promote their chemical diversity. However, the biosynthetic origins of some cyanobacterial cyclic lipopeptides and the mechanisms, which drive their structural diversification in general, remain poorly understood. The strong functional convergence of differently organized chemical structures suggests that the production of lipopeptide confers benefits for their producer. Whether these benefits originate from their antifungal activity or some other physiological function remains to be answered in the future. However, it is clear that cyanobacteria encode a wealth of new cyclic lipopeptides with novel biotechnological and therapeutic applications.
Collapse
Affiliation(s)
- David P Fewer
- Department of Microbiology, University of Helsinki, Helsinki, Finland
| | - Jouni Jokela
- Department of Microbiology, University of Helsinki, Helsinki, Finland
| | - Lassi Heinilä
- Department of Microbiology, University of Helsinki, Helsinki, Finland
| | - Reidun Aesoy
- Centre for Pharmacy, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Kaarina Sivonen
- Department of Microbiology, University of Helsinki, Helsinki, Finland
| | - Tomáš Galica
- Academy of Science of the Czech Republic, Institute of Microbiology, Centre Algatech, Třeboň, Czech Republic
| | - Pavel Hrouzek
- Academy of Science of the Czech Republic, Institute of Microbiology, Centre Algatech, Třeboň, Czech Republic
| | - Lars Herfindal
- Centre for Pharmacy, Department of Clinical Science, University of Bergen, Bergen, Norway
| |
Collapse
|
4
|
Sullivan P, Krunic A, Davis LJ, Kim HS, Burdette JE, Orjala J. Phormidepistatin from the Cyanobacterium UIC 10484: Assessing the Phylogenetic Distribution of the Statine Pharmacophore. JOURNAL OF NATURAL PRODUCTS 2021; 84:2256-2264. [PMID: 34314586 PMCID: PMC8403167 DOI: 10.1021/acs.jnatprod.1c00334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
A new linear lipopeptide, phormidepistatin (1), containing an epi-statine amino acid was isolated from cf. Phormidium sp. strain UIC 10484. The planar structure was elucidated by 1D and 2D NMR experimentation. The relative configuration was determined by J-based configurational analysis and the absolute configuration by advanced Marfey's analysis. Given that the statine moiety is an established pharmacophore known to inhibit aspartic proteases, phormidepistatin was evaluated against cathepsin D and displayed limited activity. With 1 containing a statine-like moiety, we sought to assess the distribution of this γ-amino acid within the phylum Cyanobacteria. In-depth MS/MS analysis identified the presence of phormidepistatin in cf. Phormidium sp. UIC 10045 and cf. Trichormus sp. UIC 10039. A structure database search identified 33 known cyanobacterial metabolites containing a statine or statine-like amino acid and, along with phormidepistatin, were grouped into 10 distinct compound classes. A phylogenetic tree was built comprising all cyanobacteria with established 16S rRNA sequences known to produce statine or statine-like-containing compound classes. This analysis suggests the incorporation of the γ-amino acid into secondary metabolites is taxonomically widespread within the phylum. Overall, it is our assessment that cyanobacteria are a potential source for statine or statine-like-containing compounds.
Collapse
|
5
|
Darcel L, Das S, Bonnard I, Banaigs B, Inguimbert N. Thirtieth Anniversary of the Discovery of Laxaphycins. Intriguing Peptides Keeping a Part of Their Mystery. Mar Drugs 2021; 19:md19090473. [PMID: 34564135 PMCID: PMC8471579 DOI: 10.3390/md19090473] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/16/2021] [Accepted: 08/20/2021] [Indexed: 12/27/2022] Open
Abstract
Lipopeptides are a class of compounds generally produced by microorganisms through hybrid biosynthetic pathways involving non-ribosomal peptide synthase and a polyketyl synthase. Cyanobacterial-produced laxaphycins are examples of this family of compounds that have expanded over the past three decades. These compounds benefit from technological advances helping in their synthesis and characterization, as well as in deciphering their biosynthesis. The present article attempts to summarize most of the articles that have been published on laxaphycins. The current knowledge on the ecological role of these complex sets of compounds will also be examined.
Collapse
|
6
|
Heinilä LMP, Fewer DP, Jokela JK, Wahlsten M, Ouyang X, Permi P, Jortikka A, Sivonen K. The structure and biosynthesis of heinamides A1-A3 and B1-B5, antifungal members of the laxaphycin lipopeptide family. Org Biomol Chem 2021; 19:5577-5588. [PMID: 34085692 DOI: 10.1039/d1ob00772f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Laxaphycins are a family of cyclic lipopeptides with synergistic antifungal and antiproliferative activities. They are produced by multiple cyanobacterial genera and comprise two sets of structurally unrelated 11- and 12-residue macrocyclic lipopeptides. Here, we report the discovery of new antifungal laxaphycins from Nostoc sp. UHCC 0702, which we name heinamides, through antimicrobial bioactivity screening. We characterized the chemical structures of eight heinamide structural variants A1-A3 and B1-B5. These variants contain the rare non-proteinogenic amino acids 3-hydroxy-4-methylproline, 4-hydroxyproline, 3-hydroxy-d-leucine, dehydrobutyrine, 5-hydroxyl β-amino octanoic acid, and O-carbamoyl-homoserine. We obtained an 8.6-Mb complete genome sequence from Nostoc sp. UHCC 0702 and identified the 93 kb heinamide biosynthetic gene cluster. The structurally distinct heinamides A1-A3 and B1-B5 variants are synthesized using an unusual branching biosynthetic pathway. The heinamide biosynthetic pathway also encodes several enzymes that supply non-proteinogenic amino acids to the heinamide synthetase. Through heterologous expression, we showed that (2S,4R)-4-hydroxy-l-proline is supplied through the action of a novel enzyme LxaN, which hydroxylates l-proline. 11- and 12-residue heinamides have the characteristic synergistic activity of laxaphycins against Aspergillus flavus FBCC 2467. Structural and genetic information of heinamides may prove useful in future discovery of natural products and drug development.
Collapse
Affiliation(s)
| | - David Peter Fewer
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland.
| | - Jouni Kalevi Jokela
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland.
| | - Matti Wahlsten
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland.
| | - Xiaodan Ouyang
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland.
| | - Perttu Permi
- Department of Chemistry, University of Jyväskylä, Jyväskylä, Finland and Department of Biological and Environmental Science, Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Anna Jortikka
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland.
| | - Kaarina Sivonen
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
7
|
Hájek J, Bieringer S, Voráčová K, Macho M, Saurav K, Delawská K, Divoká P, Fišer R, Mikušová G, Cheel J, Fewer DP, Vu DL, Paichlová J, Riepl H, Hrouzek P. Semi-synthetic puwainaphycin/minutissamide cyclic lipopeptides with improved antifungal activity and limited cytotoxicity. RSC Adv 2021; 11:30873-30886. [PMID: 35498921 PMCID: PMC9041360 DOI: 10.1039/d1ra04882a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/02/2021] [Indexed: 11/21/2022] Open
Abstract
Microbial cyclic lipopeptides are an important class of antifungal compounds with applications in pharmacology and biotechnology. However, the cytotoxicity of many cyclic lipopeptides limits their potential as antifungal drugs. Here we present a structure–activity relationship study on the puwainaphycin/minutissamide (PUW/MIN) family of cyclic lipopeptides isolated from cyanobacteria. PUWs/MINs with variable fatty acid chain lengths differed in the dynamic of their cytotoxic effect despite their similar IC50 after 48 hours (2.8 μM for MIN A and 3.2 μM for PUW F). Furthermore, they exhibited different antifungal potency with the lowest MIC values obtained for MIN A and PUW F against the facultative human pathogen Aspergillus fumigatus (37 μM) and the plant pathogen Alternaria alternata (0.6 μM), respectively. We used a Grignard-reaction with alkylmagnesium halides to lengthen the lipopeptide FA moiety as well as the Steglich esterification on the free hydroxyl substituents to prepare semi-synthetic lipopeptide variants possessing multiple fatty acid tails. Cyclic lipopeptides with extended and branched FA tails showed improved strain-specific antifungal activity against A. fumigatus (MIC = 0.5–3.8 μM) and A. alternata (MIC = 0.1–0.5 μM), but with partial retention of the cytotoxic effect (∼10–20 μM). However, lipopeptides with esterified free hydroxyl groups possessed substantially higher antifungal potencies, especially against A. alternata (MIC = 0.2–0.6 μM), and greatly reduced or abolished cytotoxic activity (>20 μM). Our findings pave the way for a generation of semi-synthetic variants of lipopeptides with improved and selective antifungal activities. Both the substitution of free hydroxyl substituents and extending/branching of the fatty acid moiety improved the antifungal potency and limits the cytotoxicity of cyanobacterial cyclic lipopeptides puwainaphycin/minutissamides.![]()
Collapse
Affiliation(s)
- Jan Hájek
- Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Opatovický mlýn, Novohradská 237, 379 81 Třeboň, Czech Republic
- Faculty of Science, University of South Bohemia in České Budějovice, Branišovská 1760, 37005, České Budějovice, Czech Republic
| | - Sebastian Bieringer
- TUM Campus Straubing for Biotechnology and Sustainability, Technical University Munich, 94315 Straubing, Germany
- Weihenstephan-Triesdorf University of Applied Sciences, Organic-analytical Chemistry, 94315 Straubing, Germany
| | - Kateřina Voráčová
- Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Opatovický mlýn, Novohradská 237, 379 81 Třeboň, Czech Republic
| | - Markéta Macho
- Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Opatovický mlýn, Novohradská 237, 379 81 Třeboň, Czech Republic
- Faculty of Science, University of South Bohemia in České Budějovice, Branišovská 1760, 37005, České Budějovice, Czech Republic
| | - Kumar Saurav
- Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Opatovický mlýn, Novohradská 237, 379 81 Třeboň, Czech Republic
| | - Kateřina Delawská
- Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Opatovický mlýn, Novohradská 237, 379 81 Třeboň, Czech Republic
- Faculty of Science, University of South Bohemia in České Budějovice, Branišovská 1760, 37005, České Budějovice, Czech Republic
| | - Petra Divoká
- Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Opatovický mlýn, Novohradská 237, 379 81 Třeboň, Czech Republic
| | - Radovan Fišer
- Faculty of Science, Charles University, Viničná 5, 128 44 Prague 2, Czech Republic
| | - Gabriela Mikušová
- Faculty of Science, Charles University, Viničná 5, 128 44 Prague 2, Czech Republic
| | - José Cheel
- Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Opatovický mlýn, Novohradská 237, 379 81 Třeboň, Czech Republic
| | - David P. Fewer
- Department of Microbiology, University of Helsinki, Biocenter 1, Viikinkaari 9, FIN-00014 Helsinki, Finland
| | - Dai Long Vu
- Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Opatovický mlýn, Novohradská 237, 379 81 Třeboň, Czech Republic
| | - Jindřiška Paichlová
- Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Opatovický mlýn, Novohradská 237, 379 81 Třeboň, Czech Republic
| | - Herbert Riepl
- TUM Campus Straubing for Biotechnology and Sustainability, Technical University Munich, 94315 Straubing, Germany
- Weihenstephan-Triesdorf University of Applied Sciences, Organic-analytical Chemistry, 94315 Straubing, Germany
| | - Pavel Hrouzek
- Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Opatovický mlýn, Novohradská 237, 379 81 Třeboň, Czech Republic
| |
Collapse
|
8
|
Heinilä LMP, Fewer DP, Jokela JK, Wahlsten M, Jortikka A, Sivonen K. Shared PKS Module in Biosynthesis of Synergistic Laxaphycins. Front Microbiol 2020; 11:578878. [PMID: 33042096 PMCID: PMC7524897 DOI: 10.3389/fmicb.2020.578878] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 08/17/2020] [Indexed: 12/13/2022] Open
Abstract
Cyanobacteria produce a wide range of lipopeptides that exhibit potent membrane-disrupting activities. Laxaphycins consist of two families of structurally distinct macrocyclic lipopeptides that act in a synergistic manner to produce antifungal and antiproliferative activities. Laxaphycins are produced by range of cyanobacteria but their biosynthetic origins remain unclear. Here, we identified the biosynthetic pathways responsible for the biosynthesis of the laxaphycins produced by Scytonema hofmannii PCC 7110. We show that these laxaphycins, called scytocyclamides, are produced by this cyanobacterium and are encoded in a single biosynthetic gene cluster with shared polyketide synthase enzymes initiating two distinct non-ribosomal peptide synthetase pathways. The unusual mechanism of shared enzymes synthesizing two distinct types of products may aid future research in identifying and expressing natural product biosynthetic pathways and in expanding the known biosynthetic logic of this important family of natural products.
Collapse
Affiliation(s)
| | - David P Fewer
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| | - Jouni Kalevi Jokela
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| | - Matti Wahlsten
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| | - Anna Jortikka
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| | - Kaarina Sivonen
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| |
Collapse
|
9
|
Grab HA, Kirsch VC, Sieber SA, Bach T. Total Synthesis of the Cyclic Depsipeptide Vioprolide D via its (Z)-Diastereoisomer. Angew Chem Int Ed Engl 2020; 59:12357-12361. [PMID: 32126146 PMCID: PMC7383572 DOI: 10.1002/anie.202002328] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Indexed: 12/15/2022]
Abstract
The first total synthesis of vioprolide D was accomplished in an overall yield of 2.0 % starting from methyl (2S)-3-benzyloxy-2-hydroxypropanoate (16 steps in the longest linear sequence). The cyclic depsipeptide was assembled from two building blocks of similar size and complexity in a modular, highly convergent approach. Peptide bond formation at the C-terminal dehydrobutyrine amino acid of the northern fragment was possible via its (Z)-diastereoisomer. After macrolactamization and formation of the thiazoline ring, the (Z)-double bond of the dehydrobutyrine unit was isomerized to the (E)-double bond of the natural product. The cytotoxicity of vioprolide D is significantly higher than that of its (Z)-diastereoisomer.
Collapse
Affiliation(s)
- Hanusch A. Grab
- Department ChemieTechnische Universität MünchenLichtenbergstrasse 485747GarchingGermany
| | - Volker C. Kirsch
- Department ChemieTechnische Universität MünchenLichtenbergstrasse 485747GarchingGermany
| | - Stephan A. Sieber
- Department ChemieTechnische Universität MünchenLichtenbergstrasse 485747GarchingGermany
| | - Thorsten Bach
- Department ChemieTechnische Universität MünchenLichtenbergstrasse 485747GarchingGermany
| |
Collapse
|
10
|
Assessment of the Chemical Diversity and Potential Toxicity of Benthic Cyanobacterial Blooms in the Lagoon of Moorea Island (French Polynesia). JOURNAL OF MARINE SCIENCE AND ENGINEERING 2020. [DOI: 10.3390/jmse8060406] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In the last decades, an apparent increase in the frequency of benthic cyanobacterial blooms has occurred in coral reefs and tropical lagoons, possibly in part because of global change and anthropogenic activities. In the frame of the survey of marine benthic cyanobacteria proliferating in the lagoon of Moorea Island (French Polynesia), 15 blooms were collected, mainly involving three species—Anabaena sp.1, Lyngbya majuscula and Hydrocoleum majus-B. Their chemical fingerprints, obtained through high performance liquid chromatography combined with UV detection and mass spectrometry (HPLC-UV-MS) analyses, revealed a high extent of species-specificity. The chemical profile of Anabaena sp.1 was characterized by three major cyclic lipopeptides of the laxaphycin family, whereas the one of L. majuscula was characterized by a complex mixture including tiahuramides, trungapeptins and serinol-derived malyngamides. Toxicity screening analyses conducted on these cyanobacterial samples using Artemia salina and mouse neuroblastoma cell-based (CBA-N2a) cytotoxic assays failed to show any toxicity to a degree that would merit risk assessment with regard to public health. However, the apparently increasing presence of blooms of Lyngbya, Hydrocoleum, Anabaena or other benthic cyanobacteria on coral reefs in French Polynesia encourages the implementation of ad hoc monitoring programs for the surveillance of their proliferation and potential assessment of associated hazards.
Collapse
|
11
|
Grab HA, Kirsch VC, Sieber SA, Bach T. Totalsynthese des cyclischen Depsipeptids Vioprolid D über sein (
Z
)‐Diastereomer. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202002328] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Hanusch A. Grab
- Department Chemie Technische Universität München Lichtenbergstrasse 4 85747 Garching Deutschland
| | - Volker C. Kirsch
- Department Chemie Technische Universität München Lichtenbergstrasse 4 85747 Garching Deutschland
| | - Stephan A. Sieber
- Department Chemie Technische Universität München Lichtenbergstrasse 4 85747 Garching Deutschland
| | - Thorsten Bach
- Department Chemie Technische Universität München Lichtenbergstrasse 4 85747 Garching Deutschland
| |
Collapse
|
12
|
Laxaphycins B5 and B6 from the cultured cyanobacterium UIC 10484. J Antibiot (Tokyo) 2020; 73:526-533. [PMID: 32235860 DOI: 10.1038/s41429-020-0301-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/12/2020] [Accepted: 02/22/2020] [Indexed: 12/26/2022]
Abstract
Two laxaphycin type-B cyclic dodecapeptides, laxaphycins B5 and B6, were obtained from UIC 10484, a freshwater cf. Phormidium sp. Analysis using the 16S rRNA sequence found UIC 10484 to clade with UIC 10045, a known laxaphycin type-A and -B producer, and MS/MS analysis revealed the presence of two novel laxaphycin type-B compounds. The structures of the metabolites were elucidated using 2D NMR and MS/MS. The absolute configurations of the amino acids were determined by advanced Marfey's analysis. Both metabolites were evaluated against the same three cancer cell lines. The IC50 of both laxaphycins B5 and B6 was near 1 μM against breast cancer MDA-MB-231, melanoma MDA-MB-435, and ovarian cancer OVCAR3 cell lines.
Collapse
|
13
|
Darcel L, Djibo M, Gaillard M, Raviglione D, Bonnard I, Banaigs B, Inguimbert N. Trichormamide C Structural Confirmation through Total Synthesis and Extension to Analogs. Org Lett 2019; 22:145-149. [DOI: 10.1021/acs.orglett.9b04064] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Laurine Darcel
- PSL Université Paris: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan Via Domitia, 58 avenue Paul Alduy, 66860 Perpignan, France
| | - Mahamadou Djibo
- PSL Université Paris: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan Via Domitia, 58 avenue Paul Alduy, 66860 Perpignan, France
| | - Michel Gaillard
- PSL Université Paris: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan Via Domitia, 58 avenue Paul Alduy, 66860 Perpignan, France
| | - Delphine Raviglione
- PSL Université Paris: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan Via Domitia, 58 avenue Paul Alduy, 66860 Perpignan, France
| | - Isabelle Bonnard
- PSL Université Paris: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan Via Domitia, 58 avenue Paul Alduy, 66860 Perpignan, France
| | - Bernard Banaigs
- PSL Université Paris: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan Via Domitia, 58 avenue Paul Alduy, 66860 Perpignan, France
| | - Nicolas Inguimbert
- PSL Université Paris: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan Via Domitia, 58 avenue Paul Alduy, 66860 Perpignan, France
| |
Collapse
|
14
|
Structure and biological evaluation of new cyclic and acyclic laxaphycin-A type peptides. Bioorg Med Chem 2019; 27:1966-1980. [DOI: 10.1016/j.bmc.2019.03.046] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 01/28/2019] [Accepted: 03/22/2019] [Indexed: 12/25/2022]
|
15
|
Gaillard M, Das S, Djibo M, Raviglione D, Roumestand C, Legrand B, Inguimbert N. Towards the total synthesis of trichormamide A, a cyclic undecapeptide. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.09.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
16
|
Xue Y, Zhao P, Quan C, Zhao Z, Gao W, Li J, Zu X, Fu D, Feng S, Bai X, Zuo Y, Li P. Cyanobacteria-derived peptide antibiotics discovered since 2000. Peptides 2018; 107:17-24. [PMID: 30077717 DOI: 10.1016/j.peptides.2018.08.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 07/22/2018] [Accepted: 08/01/2018] [Indexed: 12/27/2022]
Abstract
Members of cyanobacteria, including Moorea spp., Okeania spp., Lyngbya spp., Schizothrix spp., Leptolyngbya spp., Microcystis spp., Symploca spp., Hassallia sp., Anabaena spp., Planktothrix sp., Tychonema spp., Oscillatoria spp., Tolypothrix sp., Nostoc sp., and Hapalosiphon sp. produce an enormously diverse range of peptide antibiotics with huge potential as pharmaceutical drugs and biocontrol agents following screening of structural analogues and analysis of structure-activity relationships (SAR). The need for novel antibiotic lead compounds is urgent, and this review summarizes 78 cyanobacteria-derived compounds reported since 2000, including 32 depsipeptides, 18 cyclic lipopeptides, 13 linear lipopeptides, 14 cyclamides, and one typical cyclic peptide. The current and potential therapeutic applications of these peptides are discussed, including for SAR, antituberculotic, antifungal, antibacterial, antiviral, and antiparasitic (anti-plasmodial, antitrypanosomal and antileishmanial) activities.
Collapse
Affiliation(s)
- Yun Xue
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Pengchao Zhao
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, 471023, China.
| | - Chunshan Quan
- Department of Life Science, Dalian Nationalities University, Dalian, 116600, China
| | - Zhanqin Zhao
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471023, China
| | - Weina Gao
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Jinghua Li
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Xiangyang Zu
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Dongliao Fu
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Shuxiao Feng
- College of Chemical Engineering and Pharmacy, Henan University of Science and Technology, Luoyang, 471023, China
| | - Xuefei Bai
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Yanjun Zuo
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Ping Li
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, 471023, China
| |
Collapse
|
17
|
Cai W, Matthew S, Chen QY, Paul VJ, Luesch H. Discovery of new A- and B-type laxaphycins with synergistic anticancer activity. Bioorg Med Chem 2018; 26:2310-2319. [PMID: 29606488 PMCID: PMC6084785 DOI: 10.1016/j.bmc.2018.03.022] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 03/03/2018] [Accepted: 03/12/2018] [Indexed: 02/01/2023]
Abstract
Two new cyclic lipopeptides termed laxaphycins B4 (1) and A2 (2) were discovered from a collection of the marine cyanobacterium Hormothamnion enteromorphoides, along with the known compound laxaphycin A. The planar structures were solved based on a combined interpretation of 1D and 2D NMR data and mass spectral data. The absolute configurations of the subunits were determined by chiral LC-MS analysis of the hydrolysates, advanced Marfey's analysis and 1D and 2D ROESY experiments. Consistent with similar findings on other laxaphycin A- and B-type peptides, laxaphycin B4 (1) showed antiproliferative effects against human colon cancer HCT116 cells with IC50 of 1.7 µM, while laxaphycins A and A2 (2) exhibited weak activities. The two major compounds isolated from the sample, laxaphycins A and B4, were shown to act synergistically to inhibit the growth of HCT116 colorectal cancer cells.
Collapse
Affiliation(s)
- Weijing Cai
- Department of Medicinal Chemistry, University of Florida, 1345 Center Drive, Gainesville, FL 32610, United States; Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, 1345 Center Drive, Gainesville, FL 32610, United States
| | - Susan Matthew
- Department of Medicinal Chemistry, University of Florida, 1345 Center Drive, Gainesville, FL 32610, United States
| | - Qi-Yin Chen
- Department of Medicinal Chemistry, University of Florida, 1345 Center Drive, Gainesville, FL 32610, United States; Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, 1345 Center Drive, Gainesville, FL 32610, United States
| | - Valerie J Paul
- Smithsonian Marine Station, Fort Pierce, FL 34949, United States
| | - Hendrik Luesch
- Department of Medicinal Chemistry, University of Florida, 1345 Center Drive, Gainesville, FL 32610, United States; Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, 1345 Center Drive, Gainesville, FL 32610, United States.
| |
Collapse
|
18
|
Crnkovic CM, May DS, Orjala J. The impact of culture conditions on growth and metabolomic profiles of freshwater cyanobacteria. JOURNAL OF APPLIED PHYCOLOGY 2018; 30:375-384. [PMID: 30294068 PMCID: PMC6171529 DOI: 10.1007/s10811-017-1275-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 09/04/2017] [Accepted: 09/04/2017] [Indexed: 05/20/2023]
Abstract
Cultured cyanobacteria produce secondary metabolites with a wide range of biological activities and are an important source of natural products. In the context of secondary metabolite discovery, microbial culture conditions are expected to support optimum growth, induce maximum chemical diversity, and be suitable for the majority of cyanobacterial strains. We investigated the effect of nitrate and phosphate on biomass production and metabolomic profiles of three filamentous freshwater cyanobacterial strains: cf. Oscillatoria sp. UIC 10045, Scytonema sp. UIC 10036, and Nostoc sp. UIC 10110. A standardized inoculation procedure allowed for the assessment of cell mass production. Dried cyanobacterial cell mass was extracted and analyzed by liquid chromatography coupled with high resolution mass spectrometry (UPLC-HRMS), followed by comparative metabolomics analysis using XCMS Online. Results showed that low nitrate media significantly reduced cell mass production for all three strains. Low nitrate also induced production of primary metabolites (heterocyst glycolipids) in strains UIC 10036 and UIC 10110. Changes in phosphate levels affected each strain differently. Strain UIC 10110 showed a significant increase in production of merocyclophane C when cultivated in low phosphate, while strain UIC 10036 displayed higher production of tolytoxin under high phosphate. Additionally, these experiments led to the identification of a potentially new peptide produced by strain UIC 10036.
Collapse
Affiliation(s)
- Camila M. Crnkovic
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA
- CAPES Foundation, Ministry of Education of Brazil, Brasília - DF 70040-020, Brazil
| | - Daniel S. May
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Jimmy Orjala
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
19
|
Therapeutic effects of the euglenoid ichthyotoxin, euglenophycin, in colon cancer. Oncotarget 2017; 8:104347-104358. [PMID: 29262645 PMCID: PMC5732811 DOI: 10.18632/oncotarget.22238] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 10/13/2017] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) remains one of the most commonly diagnosed cancers and the 3rd leading cause of cancer-related mortality. The emergence of drug resistance poses a major challenge in CRC care or treatment. This can be addressed by determining cancer mechanisms, discovery of druggable targets, and development of new drugs. In search for novel agents, aquatic microorganisms offer a vastly untapped pharmacological source that can be developed for cancer therapeutics. In this study, we characterized the anti-colorectal cancer potential of euglenophycin, a microalgal toxin from Euglena sanguinea. The toxin (49.1-114.6 μM) demonstrated cytotoxic, anti-proliferative, anti-clonogenic, and anti-migration effects against HCT116, HT29, and SW620 CRC cells. We identified G1 cell cycle arrest and cell type - dependent modulation of autophagy as mechanisms of growth inhibition. We validated euglenophycin’s anti-tumorigenic activity in vivo using CRL:Nu(NCr)Foxn1nu athymic nude mouse CRC xenograft models. Intraperitoneal toxin administration (100 mg/kg; 5 days) decreased HCT116 and HT29 xenograft tumor volumes (n=10 each). Tumor inhibition was associated with reduced expression of autophagy negative regulator mechanistic target of rapamycin (mTOR) and decreased trend of serum pro-inflammatory cytokines. Together, these results provide compelling evidence that euglenophycin can be a promising anti-colorectal cancer agent targeting multiple cancer-promoting processes. Furthermore, this study supports expanding natural products drug discovery to freshwater niches as prospective sources of anti-cancer compounds.
Collapse
|
20
|
Koh JJ, Lin S, Beuerman RW, Liu S. Recent advances in synthetic lipopeptides as anti-microbial agents: designs and synthetic approaches. Amino Acids 2017; 49:1653-1677. [PMID: 28823054 DOI: 10.1007/s00726-017-2476-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 07/31/2017] [Indexed: 12/31/2022]
Abstract
Infectious diseases impose serious public health burdens and continue to be a global public health crisis. The treatment of infections caused by multidrug-resistant pathogens is challenging because only a few viable therapeutic options are clinically available. The emergence and risk of drug-resistant superbugs and the dearth of new classes of antibiotics have drawn increasing awareness that we may return to the pre-antibiotic era. To date, lipopeptides have been received considerable attention because of the following properties: They exhibit potent antimicrobial activities against a broad spectrum of pathogens, rapid bactericidal activity and have a different antimicrobial action compared with most of the conventional antibiotics used today and very slow development of drug resistance tendency. In general, lipopeptides can be structurally classified into two parts: a hydrophilic peptide moiety and a hydrophobic fatty acyl chain. To date, a significant amount of design and synthesis of lipopeptides have been done to improve the therapeutic potential of lipopeptides. This review will present the current knowledge and the recent research in design and synthesis of new lipopeptides and their derivatives in the last 5 years.
Collapse
Affiliation(s)
- Jun-Jie Koh
- Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower Level 6, Singapore, 169856, Singapore
| | - Shuimu Lin
- Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower Level 6, Singapore, 169856, Singapore
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Roger W Beuerman
- Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower Level 6, Singapore, 169856, Singapore.
- SRP Neuroscience and Behavioral Disorders, Duke-NUS Medical School, Singapore, 169857, Singapore.
| | - Shouping Liu
- Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower Level 6, Singapore, 169856, Singapore.
- SRP Neuroscience and Behavioral Disorders, Duke-NUS Medical School, Singapore, 169857, Singapore.
| |
Collapse
|
21
|
Isolation and Synthesis of Laxaphycin B-Type Peptides: A Case Study and Clues to Their Biosynthesis. Mar Drugs 2015; 13:7285-300. [PMID: 26690181 PMCID: PMC4699238 DOI: 10.3390/md13127065] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 11/30/2015] [Indexed: 01/08/2023] Open
Abstract
The laxaphyci’s B family constitutes a group of five related cyclic lipopeptides isolated from diverse cyanobacteria from all around the world. This group shares a typical structure of 12 amino acids from the l and d series, some of them hydroxylated at the beta position, and all containing a rare beta-amino decanoic acid. Nevertheless, they can be differentiated due to slight variations in the composition of their amino acids, but the configuration of their alpha carbon remains conserved. Here, we provide the synthesis and characterization of new laxaphycin B-type peptides. In doing so we discuss how the synthesis of laxaphycin B and analogues was developed. We also isolate minor acyclic laxaphycins B, which are considered clues to their biosynthesis.
Collapse
|