1
|
Lauwerys L, Beroske L, Solania A, Vangestel C, Miranda A, Van Giel N, Adhikari K, Lambeir AM, Wyffels L, Wolan D, Van der Veken P, Elvas F. Development of caspase-3-selective activity-based probes for PET imaging of apoptosis. EJNMMI Radiopharm Chem 2024; 9:58. [PMID: 39117920 PMCID: PMC11310375 DOI: 10.1186/s41181-024-00291-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/02/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND The cysteine-aspartic acid protease caspase-3 is recognized as the main executioner of apoptosis in cells responding to specific extrinsic and intrinsic stimuli. Caspase-3 represents an interesting biomarker to evaluate treatment response, as many cancer therapies exert their effect by inducing tumour cell death. Previously developed caspase-3 PET tracers were unable to reach routine clinical use due to low tumour uptake or lack of target selectivity, which are two important requirements for effective treatment response evaluation in cancer patients. Therefore, the goal of this study was to develop and preclinically evaluate novel caspase-3-selective activity-based probes (ABPs) for apoptosis imaging. RESULTS A library of caspase-3-selective ABPs was developed for tumour apoptosis detection. In a first attempt, the inhibitor Ac-DW3-KE (Ac-3Pal-Asp-βhLeu-Phe-Asp-KE) was 18F-labelled on the N-terminus to generate a radiotracer that was incapable of adequately detecting an increase in apoptosis in vivo. The inability to effectively detect active caspase-3 in vivo was likely attributable to slow binding, as demonstrated with in vitro inhibition kinetics. Hence, a second generation of caspase-3 selective ABPs was developed based on the Ac-ATS010-KE (Ac-3Pal-Asp-Phe(F5)-Phe-Asp-KE) with greatly improved binding kinetics over Ac-DW3-KE. Our probes based on Ac-ATS010-KE were made by modifying the N-terminus with 6 different linkers. All the linker modifications had limited effect on the binding kinetics, target selectivity, and pharmacokinetic profile in healthy mice. In an in vitro apoptosis model, the least hydrophilic tracer [18F]MICA-316 showed an increased uptake in apoptotic cells in comparison to the control group. Finally, [18F]MICA-316 was tested in an in vivo colorectal cancer model, where it showed a limited tumour uptake and was unable to discriminate treated tumours from the untreated group, despite demonstrating that the radiotracer was able to bind caspase-3 in complex mixtures in vitro. In contrast, the phosphatidylethanolamine (PE)-binding radiotracer [99mTc]Tc-duramycin was able to recognize the increased cell death in the disease model, making it the best performing treatment response assessment tracer developed thus far. CONCLUSIONS In conclusion, a novel library of caspase-3-binding PET tracers retaining similar binding kinetics as the original inhibitor was developed. The most promising tracer, [18F]MICA-316, showed an increase uptake in an in vitro apoptosis model and was able to selectively bind caspase-3 in apoptotic tumour cells. In order to distinguish therapy-responsive from non-responsive tumours, the next generation of caspase-3-selective ABPs will be developed with higher tumour accumulation and in vivo stability.
Collapse
Affiliation(s)
- Louis Lauwerys
- Molecular Imaging and Radiology, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Antwerp, Belgium
- Laboratory of Medicinal Chemistry, University of Antwerp, Antwerp, Belgium
| | - Lucas Beroske
- Molecular Imaging and Radiology, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Antwerp, Belgium
- Laboratory of Medicinal Chemistry, University of Antwerp, Antwerp, Belgium
| | - Angelo Solania
- Departments of Molecular Medicine and Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Christel Vangestel
- Molecular Imaging and Radiology, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Antwerp, Belgium
| | - Alan Miranda
- Molecular Imaging and Radiology, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Antwerp, Belgium
| | - Nele Van Giel
- Molecular Imaging and Radiology, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Antwerp, Belgium
| | - Karuna Adhikari
- Molecular Imaging and Radiology, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Antwerp, Belgium
| | - Anne-Marie Lambeir
- Laboratory of Medical Biochemistry, University of Antwerp, Antwerp, Belgium
| | - Leonie Wyffels
- Molecular Imaging and Radiology, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Antwerp, Belgium
| | - Dennis Wolan
- Departments of Molecular Medicine and Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | | | - Filipe Elvas
- Molecular Imaging and Radiology, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Antwerp, Belgium.
| |
Collapse
|
2
|
Beroske L, Van den Wyngaert T, Stroobants S, Van der Veken P, Elvas F. Molecular Imaging of Apoptosis: The Case of Caspase-3 Radiotracers. Int J Mol Sci 2021; 22:ijms22083948. [PMID: 33920463 PMCID: PMC8069194 DOI: 10.3390/ijms22083948] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/06/2021] [Accepted: 04/08/2021] [Indexed: 12/19/2022] Open
Abstract
The molecular imaging of apoptosis remains an important method for the diagnosis and monitoring of the progression of certain diseases and the evaluation of the efficacy of anticancer apoptosis-inducing therapies. Among the multiple biomarkers involved in apoptosis, activated caspase-3 is an attractive target, as it is the most abundant of the executioner caspases. Nuclear imaging is a good candidate, as it combines a high depth of tissue penetration and high sensitivity, features necessary to detect small changes in levels of apoptosis. However, designing a caspase-3 radiotracer comes with challenges, such as selectivity, cell permeability and transient caspase-3 activation. In this review, we discuss the different caspase-3 radiotracers for the imaging of apoptosis together with the challenges of the translation of various apoptosis-imaging strategies in clinical trials.
Collapse
Affiliation(s)
- Lucas Beroske
- Molecular Imaging Center Antwerp, University of Antwerp, 2610 Wilrijk, Belgium; (L.B.); (T.V.d.W.); (S.S.)
- Department of Nuclear Medicine, Antwerp University Hospital, 2650 Edegem, Belgium
- Laboratory of Medicinal Chemistry, University of Antwerp, 2610 Wilrijk, Belgium;
| | - Tim Van den Wyngaert
- Molecular Imaging Center Antwerp, University of Antwerp, 2610 Wilrijk, Belgium; (L.B.); (T.V.d.W.); (S.S.)
- Department of Nuclear Medicine, Antwerp University Hospital, 2650 Edegem, Belgium
| | - Sigrid Stroobants
- Molecular Imaging Center Antwerp, University of Antwerp, 2610 Wilrijk, Belgium; (L.B.); (T.V.d.W.); (S.S.)
- Department of Nuclear Medicine, Antwerp University Hospital, 2650 Edegem, Belgium
| | - Pieter Van der Veken
- Laboratory of Medicinal Chemistry, University of Antwerp, 2610 Wilrijk, Belgium;
| | - Filipe Elvas
- Molecular Imaging Center Antwerp, University of Antwerp, 2610 Wilrijk, Belgium; (L.B.); (T.V.d.W.); (S.S.)
- Department of Nuclear Medicine, Antwerp University Hospital, 2650 Edegem, Belgium
- Correspondence:
| |
Collapse
|
3
|
García-Argüello SF, Lopez-Lorenzo B, Cornelissen B, Smith G. Development of [ 18F]ICMT-11 for Imaging Caspase-3/7 Activity during Therapy-Induced Apoptosis. Cancers (Basel) 2020; 12:E2191. [PMID: 32781531 PMCID: PMC7465189 DOI: 10.3390/cancers12082191] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/14/2020] [Accepted: 08/01/2020] [Indexed: 12/27/2022] Open
Abstract
Insufficient apoptosis is a recognised hallmark of cancer. A strategy to quantitatively measure apoptosis in vivo would be of immense value in both drug discovery and routine patient management. The first irreversible step in the apoptosis cascade is activation of the "executioner" caspase-3 enzyme to commence cleavage of key structural proteins. One strategy to measure caspase-3 activity is Positron Emission Tomography using isatin-5-sulfonamide radiotracers. One such radiotracer is [18F]ICMT-11, which has progressed to clinical application. This review summarises the design and development process for [18F]ICMT-11, suggesting potential avenues for further innovation.
Collapse
Affiliation(s)
- Segundo Francisco García-Argüello
- Centro de Investigaciones Médico-Sanitarias, Fundación General Universidad de Málaga, 29010 Málaga, Spain;
- Grupo de Arteriosclerosis, Prevención Cardiovascular y Metabolismo, Instituto de Investigación Biomédica de Málaga (IBIMA), 29010 Málaga, Spain
| | - Beatriz Lopez-Lorenzo
- Biomedicina, Investigación Traslacional y Nuevas Tecnologías en Salud, Universidad de Málaga, 29016 Málaga, Spain;
- BIONAND-Centro Andaluz de Nanomedicina y Biotecnología (Junta de Andalucía—Universidad de Málaga), 29590 Málaga, Spain
| | - Bart Cornelissen
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Old Road Campus Research Building, Off Roosevelt Drive, Oxford OX3 7LJ, UK;
| | - Graham Smith
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Old Road Campus Research Building, Off Roosevelt Drive, Oxford OX3 7LJ, UK;
| |
Collapse
|
4
|
Glaser M, Rajkumar V, Diocou S, Gendron T, Yan R, Sin PKB, Sander K, Carroll L, Pedley RB, Aboagye EO, Witney TH, Årstad E. One-Pot Radiosynthesis and Biological Evaluation of a Caspase-3 Selective 5-[ 123,125I]iodo-1,2,3-triazole derived Isatin SPECT Tracer. Sci Rep 2019; 9:19299. [PMID: 31848442 PMCID: PMC6917698 DOI: 10.1038/s41598-019-55992-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 11/26/2019] [Indexed: 11/08/2022] Open
Abstract
Induction of apoptosis is often necessary for successful cancer therapy, and the non-invasive monitoring of apoptosis post-therapy could assist in clinical decision making. Isatins are a class of compounds that target activated caspase-3 during apoptosis. Here we report the synthesis of the 5-iodo-1,2,3-triazole (FITI) analog of the PET tracer [18F]ICMT11 as a candidate tracer for imaging of apoptosis with SPECT, as well as PET. Labelling with radioiodine (123,125I) was achieved in 55 ± 12% radiochemical yield through a chelator-accelerated one-pot cycloaddition reaction mediated by copper(I) catalysis. The caspase-3 binding affinity and selectivity of FITI compares favourably to that of [18F]ICMT11 (Ki = 6.1 ± 0.9 nM and 12.4 ± 4.7 nM, respectively). In biodistribution studies, etoposide-induced cell death in a SW1222 xenograft model resulted in a 2-fold increase in tumour uptake of the tracer. However, the tumour uptake was too low to allow in vivo imaging of apoptosis with SPECT.
Collapse
Affiliation(s)
- Matthias Glaser
- Centre for Radiopharmaceutical Chemistry, University College London, 5 Gower Place, London, WC1E 6BS, United Kingdom
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, United Kingdom
| | | | - Seckou Diocou
- UCL, Cancer Institute, 72 Huntley Street, London, WC1E 6DD, UK
| | - Thibault Gendron
- Centre for Radiopharmaceutical Chemistry, University College London, 5 Gower Place, London, WC1E 6BS, United Kingdom
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, United Kingdom
| | - Ran Yan
- King's College London, School of Biomedical Engineering and Imaging Sciences, St. Thomas' Hospital, SE1 7EH, London, United Kingdom
| | - Pak Kwan Brian Sin
- Centre for Radiopharmaceutical Chemistry, University College London, 5 Gower Place, London, WC1E 6BS, United Kingdom
| | - Kerstin Sander
- Centre for Radiopharmaceutical Chemistry, University College London, 5 Gower Place, London, WC1E 6BS, United Kingdom
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, United Kingdom
| | - Laurence Carroll
- Imperial College London, Science, Technology & Medicine, Department of Medicine, Hammersmith Hospital, DuCane Road, London, W12 0NN, United Kingdom
| | | | - Eric O Aboagye
- Imperial College London, Science, Technology & Medicine, Department of Medicine, Hammersmith Hospital, DuCane Road, London, W12 0NN, United Kingdom
| | - Timothy H Witney
- King's College London, School of Biomedical Engineering and Imaging Sciences, St. Thomas' Hospital, SE1 7EH, London, United Kingdom
- Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, London, United Kingdom
| | - Erik Årstad
- Centre for Radiopharmaceutical Chemistry, University College London, 5 Gower Place, London, WC1E 6BS, United Kingdom.
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, United Kingdom.
| |
Collapse
|
5
|
Abstract
Hydrolytic enzymes are a large class of biological catalysts that play a vital role in a plethora of critical biochemical processes required to maintain human health. However, the expression and/or activity of these important enzymes can change in many different diseases and therefore represent exciting targets for the development of positron emission tomography (PET) and single-photon emission computed tomography (SPECT) radiotracers. This review focuses on recently reported radiolabeled substrates, reversible inhibitors, and irreversible inhibitors investigated as PET and SPECT tracers for imaging hydrolytic enzymes. By learning from the most successful examples of tracer development for hydrolytic enzymes, it appears that an early focus on careful enzyme kinetics and cell-based studies are key factors for identifying potentially useful new molecular imaging agents.
Collapse
Affiliation(s)
- Brian P Rempel
- 1 Department of Science, Augustana Faculty, University of Alberta, Edmonton, Alberta, Canada
| | - Eric W Price
- 2 Department of Chemistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Christopher P Phenix
- 2 Department of Chemistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.,3 Biomarker Discovery, Thunder Bay Regional Health Research Institute, Thunder Bay, Ontario, Canada
| |
Collapse
|
6
|
van der Born D, Pees A, Poot AJ, Orru RVA, Windhorst AD, Vugts DJ. Fluorine-18 labelled building blocks for PET tracer synthesis. Chem Soc Rev 2017; 46:4709-4773. [DOI: 10.1039/c6cs00492j] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review presents a comprehensive overview of the synthesis and application of fluorine-18 labelled building blocks since 2010.
Collapse
Affiliation(s)
- Dion van der Born
- Department of Radiology & Nuclear Medicine
- VU University Medical Center
- 1081 HV Amsterdam
- The Netherlands
| | - Anna Pees
- Department of Radiology & Nuclear Medicine
- VU University Medical Center
- 1081 HV Amsterdam
- The Netherlands
| | - Alex J. Poot
- Department of Radiology & Nuclear Medicine
- VU University Medical Center
- 1081 HV Amsterdam
- The Netherlands
| | - Romano V. A. Orru
- Department of Chemistry and Pharmaceutical Sciences and Amsterdam Institute for Molecules
- Medicines & Systems (AIMMS)
- VU University Amsterdam
- Amsterdam
- The Netherlands
| | - Albert D. Windhorst
- Department of Radiology & Nuclear Medicine
- VU University Medical Center
- 1081 HV Amsterdam
- The Netherlands
| | - Danielle J. Vugts
- Department of Radiology & Nuclear Medicine
- VU University Medical Center
- 1081 HV Amsterdam
- The Netherlands
| |
Collapse
|
7
|
Knauber T, Tucker J. Palladium Catalyzed Monoselective α-Arylation of Sulfones and Sulfonamides with 2,2,6,6-Tetramethylpiperidine·ZnCl·LiCl Base and Aryl Bromides. J Org Chem 2016; 81:5636-48. [PMID: 27303950 DOI: 10.1021/acs.joc.6b01062] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A palladium catalyzed Negishi-type α-arylation of sulfones and sulfonamides with a broad range of aryl bromides has been developed. The substrates are selectively metalated in situ with tmp·ZnCl·LiCl base (tmp: 2,2,6,6-tetramethylpiperidine) and cross-coupled in the presence of a catalyst system that is generated from Pd(dba)2 and XPhos. Electron-deficient, electron-rich, and heterocyclic aryl bromides have been successfully cross-coupled, and sensitive functional groups are well tolerated. Simple aryl bromides are converted overnight at 60 °C in THF while heteroaryl bromides are efficiently coupled within 2 h at 130 °C in a microwave reactor. The desired monoarylated α-branched benzyl sulfones and sulfonamides were obtained in good yields, and overarylation was not detected. The procedure is ideal for late stage functionalization in parallel medicinal chemistry.
Collapse
Affiliation(s)
- Thomas Knauber
- Worldwide Medicinal Chemistry, Pfizer Worldwide Research and Development , Groton, Connecticut 06340, United States
| | - Joseph Tucker
- Worldwide Medicinal Chemistry, Pfizer Worldwide Research and Development , Groton, Connecticut 06340, United States
| |
Collapse
|
8
|
Vaidyanathan G, McDougald D, Choi J, Koumarianou E, Weitzel D, Osada T, Lyerly HK, Zalutsky MR. Preclinical Evaluation of 18F-Labeled Anti-HER2 Nanobody Conjugates for Imaging HER2 Receptor Expression by Immuno-PET. J Nucl Med 2016; 57:967-73. [PMID: 26912425 DOI: 10.2967/jnumed.115.171306] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 02/03/2016] [Indexed: 01/10/2023] Open
Abstract
UNLABELLED The human growth factor receptor type 2 (HER2) is overexpressed in breast as well as other types of cancer. Immuno-PET, a noninvasive imaging procedure that could assess HER2 status in both primary and metastatic lesions simultaneously, could be a valuable tool for optimizing application of HER2-targeted therapies in individual patients. Herein, we have evaluated the tumor-targeting potential of the 5F7 anti-HER2 Nanobody (single-domain antibody fragment; ∼13 kDa) after (18)F labeling by 2 methods. METHODS The 5F7 Nanobody was labeled with (18)F using the novel residualizing label N-succinimidyl 3-((4-(4-(18)F-fluorobutyl)-1H-1,2,3-triazol-1-yl)methyl)-5-(guanidinomethyl)benzoate ((18)F-SFBTMGMB; (18)F-RL-I) and also via the most commonly used (18)F protein-labeling prosthetic agent N-succinimidyl 3-(18)F-fluorobenzoate ((18)F-SFB). For comparison, 5F7 Nanobody was also labeled using the residualizing radioiodination agent N-succinimidyl 4-guanidinomethyl-3-(125)I-iodobenzoate ((125)I-SGMIB). Paired-label ((18)F/(125)I) internalization assays and biodistribution studies were performed on HER2-expressing BT474M1 breast carcinoma cells and in mice with BT474M1 subcutaneous xenografts, respectively. Small-animal PET/CT imaging of 5F7 Nanobody labeled using (18)F-RL-I also was performed. RESULTS Internalization assays indicated that intracellularly retained radioactivity for (18)F-RL-I-5F7 was similar to that for coincubated (125)I-SGMIB-5F7, whereas that for (18)F-SFB-5F7 was lower than coincubated (125)I-SGMIB-5F7 and decreased with time. BT474M1 tumor uptake of (18)F-RL-I-5F7 was 28.97 ± 3.88 percentage injected dose per gram of tissue (%ID/g) at 1 h and 36.28 ± 14.10 %ID/g at 2 h, reduced by more than 90% on blocking with trastuzumab, indicating HER2 specificity of uptake, and was also 26%-28% higher (P < 0.05) than that of (18)F-SFB-5F7. At 2 h, the tumor-to-blood ratio for (18)F-RL-I-5F7 (47.4 ± 13.1) was significantly higher (P < 0.05) than for (18)F-SFB-5F7 (25.4 ± 10.3); however, kidney uptake was 28-36-fold higher for (18)F-RL-I-5F7. CONCLUSION (18)F-RL-I-5F7 is a promising tracer for evaluating HER2 status by immuno-PET; however, in settings in which renal background is problematic, strategies for reducing its kidney uptake may be needed.
Collapse
Affiliation(s)
| | - Darryl McDougald
- Department of Radiology, Duke University Medical Center, Durham, North Carolina
| | - Jaeyeon Choi
- Department of Radiology, Duke University Medical Center, Durham, North Carolina
| | | | - Douglas Weitzel
- Department of Radiation Oncology and Cancer Biology, Duke University Medical Center, Durham, North Carolina; and
| | - Takuya Osada
- Department of Surgery, Duke University Medical Center, Durham, North Carolina
| | - H Kim Lyerly
- Department of Surgery, Duke University Medical Center, Durham, North Carolina
| | - Michael R Zalutsky
- Department of Radiology, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
9
|
Vaidyanathan G, McDougald D, Choi J, Pruszynski M, Koumarianou E, Zhou Z, Zalutsky MR. N-Succinimidyl 3-((4-(4-[(18)F]fluorobutyl)-1H-1,2,3-triazol-1-yl)methyl)-5-(guanidinomethyl)benzoate ([(18)F]SFBTMGMB): a residualizing label for (18)F-labeling of internalizing biomolecules. Org Biomol Chem 2016; 14:1261-71. [PMID: 26645790 PMCID: PMC4720566 DOI: 10.1039/c5ob02258d] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Residualizing labeling methods for internalizing peptides and proteins are designed to trap the radionuclide inside the cell after intracellular degradation of the biomolecule. The goal of this work was to develop a residualizing label for the (18)F-labeling of internalizing biomolecules based on a template used successfully for radioiodination. N-Succinimidyl 3-((4-(4-[(18)F]fluorobutyl)-1H-1,2,3-triazol-1-yl)methyl)-5-(bis-Boc-guanidinomethyl)benzoate ([(18)F]SFBTMGMB-Boc2) was synthesized by a click reaction of an azide precursor and [(18)F]fluorohexyne in 8.5 ± 2.8% average decay-corrected radiochemical yield (n = 15). An anti-HER2 nanobody 5F7 was labeled with (18)F using [(18)F]SFBTMGMB ([(18)F]RL-I), obtained by the deprotection of [(18)F]SFBTMGMB-Boc2, in 31.2 ± 6.7% (n = 5) conjugation efficiency. The labeled nanobody had a radiochemical purity of >95%, bound to HER2-expressing BT474M1 breast cancer cells with an affinity of 4.7 ± 0.9 nM, and had an immunoreactive fraction of 62-80%. In summary, a novel residualizing prosthetic agent for labeling biomolecules with (18)F has been developed. An anti-HER2 nanobody was labeled using this prosthetic group with retention of affinity and immunoreactivity to HER2.
Collapse
Affiliation(s)
- Ganesan Vaidyanathan
- Department of Radiology and Duke University Medical Center, Durham, North Carolina, USA.
| | | | | | | | | | | | | |
Collapse
|