1
|
Lavrentaki V, Kousaxidis A, Theodosis-Nobelos P, Papagiouvannis G, Koutsopoulos K, Nicolaou I. Design, synthesis, and pharmacological evaluation of indazole carboxamides of N-substituted pyrrole derivatives as soybean lipoxygenase inhibitors. Mol Divers 2023:10.1007/s11030-023-10775-8. [PMID: 38145424 DOI: 10.1007/s11030-023-10775-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/17/2023] [Indexed: 12/26/2023]
Abstract
In this paper, we attempted to develop a novel class of compounds against lipoxygenase, a key enzyme in the biosynthesis of leukotrienes implicated in a series of inflammatory diseases. Given the absence of appropriate human 5-lipoxygenase crystallographic data, solved soybean lipoxygenase-1 and -3 structures were used as a template to generate an accurate pharmacophore model which was further used for virtual screening purposes. Eight compounds (1-8) have been derived from the in-house library consisting of N-substituted pyrroles conjugated with 5- or 6-indazole moieties through a carboxamide linker. This study led to the discovery of hit molecule 8 bearing a naphthyl group with the IC50 value of 22 μM according to soybean lipoxygenase in vitro assay. Isosteric replacement of naphthyl ring with quinoline moieties and reduction of carbonyl carboxamide group resulted in compounds 9-12 and 13, respectively. Compound 12 demonstrated the most promising enzyme inhibition. In addition, compounds 8 and 12 were found to reduce the carrageenan-induced paw edema in vivo by 52.6 and 49.8%, respectively. In view of the encouraging outcomes concerning their notable in vitro and in vivo anti-inflammatory activities, compounds 8 and 12 could be further optimized for the discovery of novel 5-lipoxygenase inhibitors in future. A structure-based 3D pharmacophore model was used in the virtual screening of in-house library to discover novel potential 5-lipoxygenase inhibitors.
Collapse
Affiliation(s)
- Vasiliki Lavrentaki
- Department of Pharmaceutical Chemistry, School of Pharmacy, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Antonios Kousaxidis
- Department of Pharmaceutical Chemistry, School of Pharmacy, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | | | - Georgios Papagiouvannis
- Department of Pharmacy, School of Health Sciences, Frederick University, 1036, Nicosia, Cyprus
| | | | - Ioannis Nicolaou
- Department of Pharmaceutical Chemistry, School of Pharmacy, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece.
| |
Collapse
|
2
|
Vasilenko DA, Temnyakova NS, Dronov SE, Radchenko EV, Grishin YK, Gabrel’yan AV, Zamoyski VL, Grigoriev VV, Averina EB, Palyulin VA. 5-Nitroisoxazoles in SNAr Reactions: A Novel Chemo- and Regioselective Approach to Isoxazole-Based Bivalent Ligands of AMPA Receptors. Int J Mol Sci 2023; 24:16135. [PMID: 38003327 PMCID: PMC10671298 DOI: 10.3390/ijms242216135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 10/29/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
An efficient regioselective approach to novel functionalized bis(isoxazoles) with a variety of aromatic and aliphatic linkers was elaborated, based on the heterocyclization reaction of electrophilic alkenes under the treatment with tetranitromethane-triethylamine complex affording 3-EWG-5-nitroisoxazoles. The subsequent SNAr reactions of 5-nitroisoxazoles with various O,O-, N,N- and S,S-bis(nucleophiles) provide a wide range of bis(isoxazole) derivatives in good isolated yields. Employing an elaborated method, a series of novel bis(3-EWG-isoxazoles) as the promising allosteric modulators of AMPA receptors were designed and synthesized. The effect of the compounds on the kainate-induced currents was studied in the patch clamp experiments, revealing modulator properties for several of them. The best positive modulator potency was found for dimethyl 5,5'-(ethane-1,2-diylbis(sulfanediyl))bis(isoxazole-3-carboxylate), which potentiated the kainate-induced currents in a wide concentration range (10-12-10-6 M) with maximum potentiation of 77% at 10-10 M. The results were rationalized using molecular docking and molecular dynamics simulations of modulator complexes with the dimeric ligand-binding domain of the GluA2 AMPA receptor. The predicted physicochemical, ADMET, and PAINS properties confirmed that the AMPA receptor modulators based on the bis(isoxazole) scaffold may serve as potential lead compounds for the development of neuroprotective drugs.
Collapse
Affiliation(s)
- Dmitry A. Vasilenko
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia; (D.A.V.); (N.S.T.); (S.E.D.); (E.V.R.); (Y.K.G.); (V.V.G.)
| | - Nadezhda S. Temnyakova
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia; (D.A.V.); (N.S.T.); (S.E.D.); (E.V.R.); (Y.K.G.); (V.V.G.)
| | - Sevastian E. Dronov
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia; (D.A.V.); (N.S.T.); (S.E.D.); (E.V.R.); (Y.K.G.); (V.V.G.)
| | - Eugene V. Radchenko
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia; (D.A.V.); (N.S.T.); (S.E.D.); (E.V.R.); (Y.K.G.); (V.V.G.)
| | - Yuri K. Grishin
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia; (D.A.V.); (N.S.T.); (S.E.D.); (E.V.R.); (Y.K.G.); (V.V.G.)
| | - Alexey V. Gabrel’yan
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Severny proezd 1, 142432 Chernogolovka, Moscow Region, Russia; (A.V.G.); (V.L.Z.)
| | - Vladimir L. Zamoyski
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Severny proezd 1, 142432 Chernogolovka, Moscow Region, Russia; (A.V.G.); (V.L.Z.)
| | - Vladimir V. Grigoriev
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia; (D.A.V.); (N.S.T.); (S.E.D.); (E.V.R.); (Y.K.G.); (V.V.G.)
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Severny proezd 1, 142432 Chernogolovka, Moscow Region, Russia; (A.V.G.); (V.L.Z.)
| | - Elena B. Averina
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia; (D.A.V.); (N.S.T.); (S.E.D.); (E.V.R.); (Y.K.G.); (V.V.G.)
| | - Vladimir A. Palyulin
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia; (D.A.V.); (N.S.T.); (S.E.D.); (E.V.R.); (Y.K.G.); (V.V.G.)
| |
Collapse
|
3
|
Toledano-Magaña Y, Néquiz M, Valenzuela-Salas LM, Sánchez-García JJ, Galindo-Murillo R, García-Ramos JC, Klimova EI. The Amoebicidal Activity of Diferrocenyl Derivatives: A Significant Dependence on the Electronic Environment. Molecules 2023; 28:6008. [PMID: 37630260 PMCID: PMC10458203 DOI: 10.3390/molecules28166008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Amoebiasis is the second leading cause of death worldwide associated with parasitic disease and is becoming a critical health problem in low-income countries, urging new treatment alternatives. One of the most promising strategies is enhancing the redox imbalance within these susceptible parasites related to their limited antioxidant defense system. Metal-based drugs represent a perfect option due to their extraordinary capacity to stabilize different oxidation states and adopt diverse geometries, allowing their interaction with several molecular targets. This work describes the amoebicidal activity of five 2-(Z-2,3-diferrocenylvinyl)-4X-4,5-dihydrooxazole derivatives (X = H (3a), Me (3b), iPr (3c), Ph (3d), and benzyl (3e)) on Entamoeba histolytica trophozoites and the physicochemical, experimental, and theoretical properties that can be used to describe the antiproliferative activity. The growth inhibition capacity of these organometallic compounds is strongly related to a fine balance between the compounds' redox potential and hydrophilic character. The antiproliferative activity of diferrocenyl derivatives studied herein could be described either with the redox potential, the energy of electronic transitions, logP, or the calculated HOMO-LUMO values. Compound 3d presents the highest antiproliferative activity of the series with an IC50 of 23 µM. However, the results of this work provide a pipeline to improve the amoebicidal activity of these compounds through the directed modification of their electronic environment.
Collapse
Affiliation(s)
- Yanis Toledano-Magaña
- Escuela de Ciencias de la Salud, Universidad Autónoma de Baja California, Ensenada 22860, Mexico
| | - Mario Néquiz
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 06726, Mexico;
| | | | - Jessica J. Sánchez-García
- Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City 04510, Mexico; (J.J.S.-G.); (E.I.K.)
| | - Rodrigo Galindo-Murillo
- Department of Medicinal Chemistry, College of Pharmacy, University of Utah, Salt Lake City, UT 84112, USA;
| | - Juan Carlos García-Ramos
- Escuela de Ciencias de la Salud, Universidad Autónoma de Baja California, Ensenada 22860, Mexico
| | - Elena I. Klimova
- Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City 04510, Mexico; (J.J.S.-G.); (E.I.K.)
| |
Collapse
|
4
|
Spiridonov VV, Sadovnikov KS, Vasilenko DA, Sedenkova KN, Lukmanova AR, Markova AA, Shibaeva AV, Bolshakova AV, Karlov SS, Averina EB, Yaroslavov AA. Synthesis and evaluation of the anticancer activity of the water-dispersible complexes of 4-acylaminoisoxazole derivative with biocompatible nanocontainers based on Ca2+ (Mg2+) cross-linked alginate. MENDELEEV COMMUNICATIONS 2022. [DOI: 10.1016/j.mencom.2022.09.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
5
|
Vasilenko DA, Sadovnikov KS, Sedenkova KN, Karlov DS, Radchenko EV, Grishin YK, Rybakov VB, Kuznetsova TS, Zamoyski VL, Grigoriev VV, Palyulin VA, Averina EB. A Facile Approach to Bis(isoxazoles), Promising Ligands of the AMPA Receptor. Molecules 2021; 26:molecules26216411. [PMID: 34770819 PMCID: PMC8588558 DOI: 10.3390/molecules26216411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/14/2021] [Accepted: 10/21/2021] [Indexed: 12/30/2022] Open
Abstract
A convenient synthetic approach to novel functionalized bis(isoxazoles), the promising bivalent ligands of the AMPA receptor, was elaborated. It was based on the heterocyclization reactions of readily available electrophilic alkenes with the tetranitromethane-triethylamine complex. The structural diversity of the synthesized compounds was demonstrated. In the electrophysiological experiments using the patch clamp technique on Purkinje neurons, the compound 1,4-phenylenedi(methylene)bis(5-aminoisoxazole-3-carboxylate) was shown to be highly potent positive modulator of the AMPA receptor, potentiating kainate-induced currents up to 70% at 10−11 M.
Collapse
Affiliation(s)
- Dmitry A. Vasilenko
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (D.A.V.); (K.S.S.); (K.N.S.); (D.S.K.); (E.V.R.); (Y.K.G.); (V.B.R.); (T.S.K.); (V.V.G.)
| | - Kirill S. Sadovnikov
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (D.A.V.); (K.S.S.); (K.N.S.); (D.S.K.); (E.V.R.); (Y.K.G.); (V.B.R.); (T.S.K.); (V.V.G.)
| | - Kseniya N. Sedenkova
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (D.A.V.); (K.S.S.); (K.N.S.); (D.S.K.); (E.V.R.); (Y.K.G.); (V.B.R.); (T.S.K.); (V.V.G.)
| | - Dmitry S. Karlov
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (D.A.V.); (K.S.S.); (K.N.S.); (D.S.K.); (E.V.R.); (Y.K.G.); (V.B.R.); (T.S.K.); (V.V.G.)
| | - Eugene V. Radchenko
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (D.A.V.); (K.S.S.); (K.N.S.); (D.S.K.); (E.V.R.); (Y.K.G.); (V.B.R.); (T.S.K.); (V.V.G.)
| | - Yuri K. Grishin
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (D.A.V.); (K.S.S.); (K.N.S.); (D.S.K.); (E.V.R.); (Y.K.G.); (V.B.R.); (T.S.K.); (V.V.G.)
| | - Victor B. Rybakov
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (D.A.V.); (K.S.S.); (K.N.S.); (D.S.K.); (E.V.R.); (Y.K.G.); (V.B.R.); (T.S.K.); (V.V.G.)
| | - Tamara S. Kuznetsova
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (D.A.V.); (K.S.S.); (K.N.S.); (D.S.K.); (E.V.R.); (Y.K.G.); (V.B.R.); (T.S.K.); (V.V.G.)
| | - Vladimir L. Zamoyski
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, Chernogolovka, 142432 Moscow, Russia;
| | - Vladimir V. Grigoriev
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (D.A.V.); (K.S.S.); (K.N.S.); (D.S.K.); (E.V.R.); (Y.K.G.); (V.B.R.); (T.S.K.); (V.V.G.)
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, Chernogolovka, 142432 Moscow, Russia;
| | - Vladimir A. Palyulin
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (D.A.V.); (K.S.S.); (K.N.S.); (D.S.K.); (E.V.R.); (Y.K.G.); (V.B.R.); (T.S.K.); (V.V.G.)
- Correspondence: (V.A.P.); (E.B.A.)
| | - Elena B. Averina
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (D.A.V.); (K.S.S.); (K.N.S.); (D.S.K.); (E.V.R.); (Y.K.G.); (V.B.R.); (T.S.K.); (V.V.G.)
- Correspondence: (V.A.P.); (E.B.A.)
| |
Collapse
|
6
|
Mahboubi-Rabbani M, Zarghi A. Lipoxygenase Inhibitors as Cancer Chemopreventives: Discovery, Recent Developments and Future Perspectives. Curr Med Chem 2021; 28:1143-1175. [PMID: 31820690 DOI: 10.2174/0929867326666191210104820] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/31/2019] [Accepted: 11/10/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Leukotrienes (LTs) constitute a bioactive group of Polyunsaturated Fatty Acid (PUFA) metabolites molded by the enzymatic activity of lipoxygenase (LO) and have a pivotal role in inflammation and allergy. Evidence is accumulating both by in vitro cell culture experiments and animal tumor model studies in support of the direct involvement of aberrant metabolism of arachidonic acid (ACD) in the development of several types of human cancers such as lung, prostate, pancreatic and colorectal malignancies. Several independent experimental data suggest a correlation between tumoral cells viability and LO gene expression, especially, 5-lipoxygenase (5-LO). Overexpressed 5-LO cells live longer, proliferate faster, invade more effectively through extracellular matrix destruction and activate the anti-apoptotic signaling mechanisms more intensively compared to the normal counterparts. Thus, some groups of lipoxygenase inhibitors may be effective as promising chemopreventive agents. METHODS A structured search of bibliographic databases for peer-reviewed research literature regarding the role of LO in the pathogenesis of cancer was performed. The characteristics of screened papers were summarized and the latest advances focused on the discovery of new LO inhibitors as anticancer agents were discussed. RESULTS More than 180 papers were included and summarized in this review; the majority was about the newly designed and synthesized 5-LO inhibitors as anti-inflammatory and anticancer agents. The enzyme's structure, 5-LO pathway, 5-LO inhibitors structure-activity relationships as well as the correlation between these drugs and a number of most prevalent human cancers were described. In most cases, it has been emphasized that dual cyclooxygenase-2/5-lipoxygenase (COX-2/5-LO) or dual 5-lipoxygenase/microsomal prostaglandin E synthase-1 (5-LO/mPGES-1) inhibitors possess considerable inhibitory activities against their target enzymes as well as potent antiproliferative effects. Several papers disclosing 5-lipoxygenase activating protein (FLAP) antagonists as a new group of 5-LO activity regulators are also subject to this review. Also, the potential of 12-lipoxygenase (12- LO) and 15-lipoxygenase (15-LO) inhibitors as chemopreventive agents was outlined to expand the scope of new anticancer agents discovery. Some peptides and peptidomimetics with anti-LT activities were described as well. In addition, the cytotoxic effects of lipoxygenase inhibitors and their adverse effects were discussed and some novel series of natural-product-derived inhibitors of LO was also discussed in this review. CONCLUSION This review gives insights into the novel lipoxygenase inhibitors with anticancer activity as well as the different molecular pharmacological strategies to inhibit the enzyme effectively. The findings confirm that certain groups of LO inhibitors could act as promising chemopreventive agents.
Collapse
Affiliation(s)
- Mohammad Mahboubi-Rabbani
- Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Afshin Zarghi
- Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Vasilenko DA, Dueva EV, Kozlovskaya LI, Zefirov NA, Grishin YK, Butov GM, Palyulin VA, Kuznetsova TS, Karganova GG, Zefirova ON, Osolodkin DI, Averina EB. Tick-borne flavivirus reproduction inhibitors based on isoxazole core linked with adamantane. Bioorg Chem 2019; 87:629-637. [DOI: 10.1016/j.bioorg.2019.03.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/22/2019] [Accepted: 03/13/2019] [Indexed: 12/23/2022]
|
8
|
Butov GM, Mokhov VM. Chemical Transformations of Tetracyclo[3.3.1.13,7.01,3]decane (1,3-Dehydroadamantane): VII. Reaction of 1,3-Dehydroadamantane with Alkanediols and Amino Alcohols. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2019. [DOI: 10.1134/s1070428018120035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Synthesis and application of N-hydroxy(tetrahydrofuran-2-yl)amines. Russ Chem Bull 2018. [DOI: 10.1007/s11172-017-1972-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
10
|
Recent advance in oxazole-based medicinal chemistry. Eur J Med Chem 2018; 144:444-492. [DOI: 10.1016/j.ejmech.2017.12.044] [Citation(s) in RCA: 166] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 12/04/2017] [Accepted: 12/13/2017] [Indexed: 01/09/2023]
|
11
|
Klimochkin YN, Yudashkin AV, Zhilkina EO, Ivleva EA, Moiseev IK, Oshis YF. One-pot synthesis of cage alcohols. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2017. [DOI: 10.1134/s1070428017070028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
12
|
Vasilenko DA, Averina EB, Zefirov NA, Wobith B, Grishin YK, Rybakov VB, Zefirova ON, Kuznetsova TS, Kuznetsov SA, Zefirov NS. Synthesis and antimitotic activity of novel 5-aminoisoxazoles bearing alkoxyaryl moieties. MENDELEEV COMMUNICATIONS 2017. [DOI: 10.1016/j.mencom.2017.05.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
13
|
Novel conjugates of aminoadamantanes with carbazole derivatives as potential multitarget agents for AD treatment. Sci Rep 2017; 7:45627. [PMID: 28358144 PMCID: PMC5372361 DOI: 10.1038/srep45627] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 03/01/2017] [Indexed: 12/17/2022] Open
Abstract
A new group of compounds, promising for the design of original multitarget therapeutic agents for treating neurodegenerative diseases, based on conjugates of aminoadamantane and carbazole derivatives was synthesized and investigated. Compounds of these series were found to interact with a group of targets that play an important role in the development of this type of diseases. First of all, these compounds selectively inhibit butyrylcholinesterase, block NMDA receptors containing NR2B subunits while maintaining the properties of MK-801 binding site blockers, exert microtubules stabilizing properties, and possess the ability to protect nerve cells from death at the calcium overload conditions. The leading compound C-2h has been shown the most promising effects on all analyzed parameters. Thus, these compounds can be regarded as promising candidates for the design of multi-target disease-modifying drugs for treatment of AD and/or similar neuropathologies.
Collapse
|
14
|
Bondarenko OB, Baimuratov MR, Klimochkin YN, Zyk NV. Nitrosation of adamantyl dichlorocyclopropanes as a new approach to adamantyl isoxazoles. Russ Chem Bull 2017. [DOI: 10.1007/s11172-017-1744-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|