1
|
Ellenbroek BD, Kahler JP, Evers SR, Pomplun SJ. Synthetic Peptides: Promising Modalities for the Targeting of Disease-Related Nucleic Acids. Angew Chem Int Ed Engl 2024; 63:e202401704. [PMID: 38456368 DOI: 10.1002/anie.202401704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 03/09/2024]
Abstract
DNA and RNA play pivotal roles in life processes by storing and transferring genetic information, modulating gene expression, and contributing to essential cellular machinery such as ribosomes. Dysregulation and mutations in nucleic acid-related processes are implicated in numerous diseases. Despite the critical impact on health of nucleic acid mutations or dysregulation, therapeutic compounds addressing these biomolecules remain limited. Peptides have emerged as a promising class of molecules for biomedical research, offering potential solutions for challenging drug targets. This review focuses on the use of synthetic peptides to target disease-related nucleic acids. We discuss examples of peptides targeting double-stranded DNA, including the clinical candidate Omomyc, and compounds designed for regulatory G-quadruplexes. Further, we provide insights into both library-based screenings and the rational design of peptides to target regulatory human RNA scaffolds and viral RNAs, emphasizing the potential of peptides in addressing nucleic acid-related diseases.
Collapse
Affiliation(s)
| | | | - Sophie R Evers
- Leiden University, 2333 CC, Leiden, The Netherlands
- Present address, Department of Chemistry, University of Zurich, Wintherthurerstrasse 190, 8057, Zurich, Switzerland
| | | |
Collapse
|
2
|
Grams RJ, Santos WL, Scorei IR, Abad-García A, Rosenblum CA, Bita A, Cerecetto H, Viñas C, Soriano-Ursúa MA. The Rise of Boron-Containing Compounds: Advancements in Synthesis, Medicinal Chemistry, and Emerging Pharmacology. Chem Rev 2024; 124:2441-2511. [PMID: 38382032 DOI: 10.1021/acs.chemrev.3c00663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Boron-containing compounds (BCC) have emerged as important pharmacophores. To date, five BCC drugs (including boronic acids and boroles) have been approved by the FDA for the treatment of cancer, infections, and atopic dermatitis, while some natural BCC are included in dietary supplements. Boron's Lewis acidity facilitates a mechanism of action via formation of reversible covalent bonds within the active site of target proteins. Boron has also been employed in the development of fluorophores, such as BODIPY for imaging, and in carboranes that are potential neutron capture therapy agents as well as novel agents in diagnostics and therapy. The utility of natural and synthetic BCC has become multifaceted, and the breadth of their applications continues to expand. This review covers the many uses and targets of boron in medicinal chemistry.
Collapse
Affiliation(s)
- R Justin Grams
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, 900 West Campus Drive, Blacksburg, Virginia 24061, United States
| | - Webster L Santos
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, 900 West Campus Drive, Blacksburg, Virginia 24061, United States
| | | | - Antonio Abad-García
- Academia de Fisiología y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, 11340 Mexico City, Mexico
| | - Carol Ann Rosenblum
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, 900 West Campus Drive, Blacksburg, Virginia 24061, United States
| | - Andrei Bita
- Department of Pharmacognosy & Phytotherapy, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Romania
| | - Hugo Cerecetto
- Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Mataojo 2055, 11400 Montevideo, Uruguay
| | - Clara Viñas
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Spain
| | - Marvin A Soriano-Ursúa
- Academia de Fisiología y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, 11340 Mexico City, Mexico
| |
Collapse
|
3
|
Shi Y, Han J, Zhu B, Liu Z, Liang Q, Lan C, Li Z, Li H, Liu Y, Jia L, Li T, Wang X, Li J, Zhang B, Jiang J, Li L. Limited nucleotide changes of HIV-1 subtype B Rev response element in China affect overall Rev-RRE activity and viral replication. Front Microbiol 2022; 13:1044676. [PMID: 36578566 PMCID: PMC9791959 DOI: 10.3389/fmicb.2022.1044676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/11/2022] [Indexed: 12/14/2022] Open
Abstract
The HIV-1 Rev response element (RRE) is a cis-acting RNA element that facilitates the nuclear export of mRNA-containing introns by binding specifically to the Rev protein, enabling a critical step in the viral replication cycle. This study aims to determine the subtype-specific loci of HIV-1 subtype B RRE circulating in China and to analyze their effects on Rev-RRE function and HIV-1 replication. We amplified 71 HIV-1 subtype B RRE full-length sequences from the HIV patients' blood samples collected in China, analyzed the subtype-specific loci on them by comparing them with subtype B in the United States, and predicted their RNA secondary structures. Rev-RRE activity assay was used to test the binding activity of Rev and different RREs. Infectious clones were mutated to test the effect of the subtype-specific loci on replication capacity. In this study, two sites were determined to be the subtype-specific loci of HIV-1 subtype B RRE circulating in China. Both site 186 and site 56-57insAAC can significantly increase the viral mRNA transcription and Rev-RRE activity, but only the site 186 can significantly improve viral replication ability. Collectively, the subtype-specific loci of subtype B RRE circulating in China have a significant effect on the Rev-RRE activity and viral replication. This study investigates the subtype-specific loci of RRE, which are unique to retroviruses and essential for viral replication, and will help to explore the reasons why subtype B circulating in China is more widespread and persistent than American subtype B in China at the genetic level, and will provide theoretical support for the development of more inclusive detection and treatment methods for subtype B circulating in China. At the same time, it will also provide insight into the impact of different subtype HIV-1 genetic characteristics on viral replication.
Collapse
Affiliation(s)
- Yuting Shi
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, China,Department of AIDS Research, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Jingwan Han
- Department of AIDS Research, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Bo Zhu
- Department of AIDS Research, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Zhi Liu
- Department of AIDS Research, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Qingmiao Liang
- School of Graduate Studies, Guangxi Medical University, Nanning, China
| | - Chunlin Lan
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, China,Department of AIDS Research, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Zhengyang Li
- Department of AIDS Research, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Hanping Li
- Department of AIDS Research, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yongjian Liu
- Department of AIDS Research, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Lei Jia
- Department of AIDS Research, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Tianyi Li
- Department of AIDS Research, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Xiaolin Wang
- Department of AIDS Research, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Jingyun Li
- Department of AIDS Research, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Bohan Zhang
- Department of AIDS Research, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Junjun Jiang
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, China,Junjun Jiang,
| | - Lin Li
- Department of AIDS Research, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China,*Correspondence: Lin Li,
| |
Collapse
|
4
|
Wang S, Ren Y, Wang Z, Jiang X, Xu S, Zhang X, Zhao S, Zalloum WA, Liu X, Zhan P. The current progress in the use of boron as a platform for novel antiviral drug design. Expert Opin Drug Discov 2022; 17:1329-1340. [PMID: 36448326 DOI: 10.1080/17460441.2023.2153829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
INTRODUCTION Boron has attracted extensive interest due to several FDA-approved boron-containing drugs and other pharmacological agents in clinical trials. As a semimetal, it has peculiar biochemical characteristics which could be utilized in designing novel drugs against drug-resistant viruses. Emerging and reemerging viral pandemics are major threats to human health. Accordingly, we aim to comprehensively review the current status of antiviral boron-containing compounds. AREAS COVERED This review focuses on the utilization of boron to design molecules against viruses from two perspectives: (i) single boron atom-containing compounds acting on miscellaneous viral targets and (ii) boron clusters. The peculiar properties of antiviral boron-containing compounds and their diverse binding modes with viral targets are described in detail in this review. EXPERT OPINION Compounds bearing boronic acid can interact with viral targets by forming covalent or robust hydrogen bonds. This feature is valuable for combating resistant viruses. Furthermore, boron clusters can form dihydrogen bonds and bear features such as three-dimensional aromaticity, hydrophobicity, and biological stability. All these features demonstrated boron as a probable essential element with immense potential for drug design.
Collapse
Affiliation(s)
- Shuo Wang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, PR China
| | - Yujie Ren
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, PR China
| | - Zhao Wang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, PR China
| | - Xiangyi Jiang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, PR China
| | - Shujing Xu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, PR China
| | - Xujie Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, PR China
| | - Shujie Zhao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, PR China
| | - Waleed A Zalloum
- Department of Pharmacy, Faculty of Health Science, American University of Madaba, P.O Box 2882 11821, Amman, Jordan
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, PR China
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, PR China
| |
Collapse
|
5
|
Messner K, Vuong B, Tranmer GK. The Boron Advantage: The Evolution and Diversification of Boron’s Applications in Medicinal Chemistry. Pharmaceuticals (Basel) 2022; 15:ph15030264. [PMID: 35337063 PMCID: PMC8948683 DOI: 10.3390/ph15030264] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/10/2022] [Accepted: 02/13/2022] [Indexed: 12/13/2022] Open
Abstract
In this review, the history of boron’s early use in drugs, and the history of the use of boron functional groups in medicinal chemistry applications are discussed. This includes diazaborines, boronic acids, benzoxaboroles, boron clusters, and carboranes. Furthermore, critical developments from these functional groups are highlighted along with recent developments, which exemplify potential prospects. Lastly, the application of boron in the form of a prodrug, softdrug, and as a nanocarrier are discussed to showcase boron’s emergence into new and exciting fields. Overall, we emphasize the evolution of organoboron therapeutic agents as privileged structures in medicinal chemistry and outline the impact that boron has had on drug discovery and development.
Collapse
Affiliation(s)
- Katia Messner
- Rady Faculty of Health Science, College of Pharmacy, University of Manitoba, Winnipeg, MB R3E 0T5, Canada; (K.M.); (B.V.)
| | - Billy Vuong
- Rady Faculty of Health Science, College of Pharmacy, University of Manitoba, Winnipeg, MB R3E 0T5, Canada; (K.M.); (B.V.)
| | - Geoffrey K. Tranmer
- Rady Faculty of Health Science, College of Pharmacy, University of Manitoba, Winnipeg, MB R3E 0T5, Canada; (K.M.); (B.V.)
- Department of Chemistry, Faculty of Science, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
- Correspondence:
| |
Collapse
|
6
|
Tan Y, Wu J, Song L, Zhang M, Hipolito CJ, Wu C, Wang S, Zhang Y, Yin Y. Merging the Versatile Functionalities of Boronic Acid with Peptides. Int J Mol Sci 2021; 22:ijms222312958. [PMID: 34884766 PMCID: PMC8657650 DOI: 10.3390/ijms222312958] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 11/16/2022] Open
Abstract
Peptides inherently feature the favorable properties of being easily synthesized, water-soluble, biocompatible, and typically non-toxic. Thus, boronic acid has been widely integrated with peptides with the goal of discovering peptide ligands with novel biological activities, and this effort has led to broad applications. Taking the integration between boronic acid and peptide as a starting point, we provide an overview of the latest research advances and highlight the versatile and robust functionalities of boronic acid. In this review, we summarize the diverse applications of peptide boronic acids in medicinal chemistry and chemical biology, including the identification of covalent reversible enzyme inhibitors, recognition, and detection of glycans on proteins or cancer cell surface, delivery of siRNAs, development of pH responsive devices, and recognition of RNA or bacterial surfaces. Additionally, we discuss boronic acid-mediated peptide cyclization and peptide modifications, as well as the facile chemical synthesis of peptide boronic acids, which paved the way for developing a growing number of peptide boronic acids.
Collapse
Affiliation(s)
- Yahong Tan
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China; (Y.T.); (J.W.); (L.S.); (M.Z.); (C.W.); (Y.Z.)
| | - Junjie Wu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China; (Y.T.); (J.W.); (L.S.); (M.Z.); (C.W.); (Y.Z.)
| | - Lulu Song
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China; (Y.T.); (J.W.); (L.S.); (M.Z.); (C.W.); (Y.Z.)
| | - Mengmeng Zhang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China; (Y.T.); (J.W.); (L.S.); (M.Z.); (C.W.); (Y.Z.)
| | - Christopher John Hipolito
- Screening & Compound Profiling, Quantitative Biosciences, Merck & Co., Inc., Kenilworth, NJ 07033, USA;
| | - Changsheng Wu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China; (Y.T.); (J.W.); (L.S.); (M.Z.); (C.W.); (Y.Z.)
| | - Siyuan Wang
- Department of Medicinal Chemistry, College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China
- Correspondence: (S.W.); (Y.Y.)
| | - Youming Zhang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China; (Y.T.); (J.W.); (L.S.); (M.Z.); (C.W.); (Y.Z.)
| | - Yizhen Yin
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China; (Y.T.); (J.W.); (L.S.); (M.Z.); (C.W.); (Y.Z.)
- Correspondence: (S.W.); (Y.Y.)
| |
Collapse
|
7
|
Jos S, Santos WL. Copper‐Catalyzed Synthesis of α‐Trifluoromethylacrylates from Trifluoroborylacrylates
via
Stereoretentive Radical Trifluoromethylation. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202000937] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Swetha Jos
- Department of Chemistry Virginia Tech Blacksburg Virginia 24061 USA
| | | |
Collapse
|
8
|
Silva MP, Saraiva L, Pinto M, Sousa ME. Boronic Acids and Their Derivatives in Medicinal Chemistry: Synthesis and Biological Applications. Molecules 2020; 25:E4323. [PMID: 32967170 PMCID: PMC7571202 DOI: 10.3390/molecules25184323] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/18/2020] [Accepted: 09/19/2020] [Indexed: 12/20/2022] Open
Abstract
Boron containing compounds have not been widely studied in Medicinal Chemistry, mainly due to the idea that this group could confer some toxicity. Nowadays, this concept has been demystified and, especially after the discovery of the drug bortezomib, the interest for these compounds, mainly boronic acids, has been growing. In this review, several activities of boronic acids, such as anticancer, antibacterial, antiviral activity, and even their application as sensors and delivery systems are addressed. The synthetic processes used to obtain these active compounds are also referred. Noteworthy, the molecular modification by the introduction of boronic acid group to bioactive molecules has shown to modify selectivity, physicochemical, and pharmacokinetic characteristics, with the improvement of the already existing activities. Besides, the preparation of compounds with this chemical group is relatively simple and well known. Taking into consideration these findings, this review reinforces the relevance of extending the studies with boronic acids in Medicinal Chemistry, in order to obtain new promising drugs shortly.
Collapse
Affiliation(s)
- Mariana Pereira Silva
- CIIMAR, Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira n° 228, 4050-313 Porto, Portugal; (M.P.S.); (M.P.)
- LAQV/REQUIMTE, Laboratório de Microbiologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira n° 228, 4050-313 Porto, Portugal
| | - Lucília Saraiva
- LAQV/REQUIMTE, Laboratório de Microbiologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira n° 228, 4050-313 Porto, Portugal
| | - Madalena Pinto
- CIIMAR, Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira n° 228, 4050-313 Porto, Portugal; (M.P.S.); (M.P.)
| | - Maria Emília Sousa
- CIIMAR, Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira n° 228, 4050-313 Porto, Portugal; (M.P.S.); (M.P.)
| |
Collapse
|
9
|
Dai Y, Wynn JE, Peralta AN, Sherpa C, Jayaraman B, Li H, Verma A, Frankel AD, Le Grice SF, Santos WL. Discovery of a Branched Peptide That Recognizes the Rev Response Element (RRE) RNA and Blocks HIV-1 Replication. J Med Chem 2018; 61:9611-9620. [PMID: 30289719 PMCID: PMC6557124 DOI: 10.1021/acs.jmedchem.8b01076] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We synthesized and screened a unique 46 656-member library composed of unnatural amino acids that revealed several hits against RRE IIB RNA. Among the hit peptides identified, peptide 4A5 was found to be selective against competitor RNAs and inhibited HIV-1 Rev-RRE RNA interaction in cell culture in a p24 ELISA assay. Biophysical characterization in a ribonuclease protection assay suggested that 4A5 bound to the stem-loop region in RRE IIB while SHAPE MaP probing with 234 nt RRE RNA indicated additional interaction with secondary Rev binding sites. Taken together, our investigation suggests that HIV replication is inhibited by 4A5 blocking binding of Rev and subsequent multimerization.
Collapse
Affiliation(s)
- Yumin Dai
- Department of Chemistry and Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia, 24060, United States
| | - Jessica E. Wynn
- Department of Chemistry and Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia, 24060, United States
| | - Ashley N. Peralta
- Department of Chemistry and Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia, 24060, United States
| | - Chringma Sherpa
- Basic Research Laboratory, National Cancer Institute, Frederick, Maryland, 21702, United States
| | - Bhargavi Jayaraman
- Department of Biochemistry and Biophysics, University of California, San Francisco, California, 94158, United States
| | - Hao Li
- Department of Chemistry and Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia, 24060, United States
| | - Astha Verma
- Department of Chemistry and Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia, 24060, United States
| | - Alan D. Frankel
- Department of Biochemistry and Biophysics, University of California, San Francisco, California, 94158, United States
| | - Stuart F. Le Grice
- Basic Research Laboratory, National Cancer Institute, Frederick, Maryland, 21702, United States
| | - Webster L. Santos
- Department of Chemistry and Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia, 24060, United States
| |
Collapse
|
10
|
Kowalczyk W, Sanchez J, Kraaz P, Hutt OE, Haylock DN, Duggan PJ. The binding of boronated peptides to low affinity mammalian saccharides. Pept Sci (Hoboken) 2018. [DOI: 10.1002/pep2.23101] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Julie Sanchez
- CSIRO Manufacturing, Bag 10; Clayton South Victoria 3169 Australia
- Institut de Recherche de Chimie Paris, CNRS - Chimie ParisTech, 11 rue Pierre et Marie Curie; Paris 75005 France
| | - Phillipe Kraaz
- CSIRO Manufacturing, Bag 10; Clayton South Victoria 3169 Australia
| | - Oliver E. Hutt
- CSIRO Manufacturing, Bag 10; Clayton South Victoria 3169 Australia
| | - David N. Haylock
- CSIRO Manufacturing, Bag 10; Clayton South Victoria 3169 Australia
| | - Peter J. Duggan
- CSIRO Manufacturing, Bag 10; Clayton South Victoria 3169 Australia
- School of Chemical and Physical Sciences; Flinders University; Adelaide South Australia 5042 Australia
| |
Collapse
|
11
|
Kowalczyk W, Sanchez J, Kraaz P, Hutt OE, Haylock DN, Duggan PJ. The binding of boronated peptides to low affinity mammalian saccharides. Biopolymers 2018:e23101. [PMID: 29381187 DOI: 10.1002/bip.23101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 12/18/2017] [Accepted: 12/20/2017] [Indexed: 11/09/2022]
Abstract
A 54-member library of boronated octapeptides, with all but the boronated residue being proteinogenic, was tested for affinity to a set of saccharides commonly found on the terminus of mammalian glycans. After experimentation with a high-throughput dye-displacement assay, attention was focused on isothermal titration calorimetry as a tool to provide reliable affinity data, including enthalpy and entropy of binding. A small number of boronated peptides showed higher affinity and significant selectivity for N-acetylneuraminic acid over methyl-α-d-galactopyranoside, methyl-α/β-l-fucopyranoside and N-acetyl-d-glucosamine. Thermodynamic data showed that for most of the boronated peptides studied, saccharide binding was associated with a significant increase in entropy, presumably resulting from the displacement of semiordered water molecules from around the sugar and/or peptide.
Collapse
Affiliation(s)
- Wioleta Kowalczyk
- CSIRO Manufacturing, Bag 10, Clayton South, Victoria, 3169, Australia
| | - Julie Sanchez
- CSIRO Manufacturing, Bag 10, Clayton South, Victoria, 3169, Australia
- Institut de Recherche de Chimie Paris, CNRS - Chimie ParisTech, 11 rue Pierre et Marie Curie, Paris, 75005, France
| | - Phillipe Kraaz
- CSIRO Manufacturing, Bag 10, Clayton South, Victoria, 3169, Australia
| | - Oliver E Hutt
- CSIRO Manufacturing, Bag 10, Clayton South, Victoria, 3169, Australia
| | - David N Haylock
- CSIRO Manufacturing, Bag 10, Clayton South, Victoria, 3169, Australia
| | - Peter J Duggan
- CSIRO Manufacturing, Bag 10, Clayton South, Victoria, 3169, Australia
- School of Chemical and Physical Sciences, Flinders University, Adelaide, South Australia, 5042, Australia
| |
Collapse
|
12
|
Wynn JE, Zhang W, Falkinham JO, Santos WL. Branched Peptides: Acridine and Boronic Acid Derivatives as Antimicrobial Agents. ACS Med Chem Lett 2017; 8:820-823. [PMID: 28835795 DOI: 10.1021/acsmedchemlett.7b00119] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Accepted: 07/12/2017] [Indexed: 01/08/2023] Open
Abstract
The emergence of microbial resistance presents a challenge in the development of next generation therapeutics. Herein, we report the discovery of branched peptides decorated with acridine and boronic acid moieties with potent antimicrobial activity. The results revealed minimal inhibitory concentrations (MICs) as low as 1 μg/mL against Staphylococcus aureus, Candida albicans, and Escherichia coli. These peptides were nonhemolytic, and significantly inhibited growth of C. albicans in suspension and biofilm formation. Structure-activity relationship studies suggest the acridine functional group as a driving force for the potent inhibition observed against bacteria.
Collapse
Affiliation(s)
- Jessica E. Wynn
- Department
of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Wenyu Zhang
- Department
of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Joseph O. Falkinham
- Department
of Biological Sciences, Virginia Tech, Blacksburg, Virginia 24061, United States
- VT
Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Webster L. Santos
- Department
of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
- VT
Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|