1
|
Ahmed A, Zaib S, Bhat MA, Saeed A, Altaf MZ, Zahra FT, Shabir G, Rana N, Khan I. Acyl pyrazole sulfonamides as new antidiabetic agents: synthesis, glucosidase inhibition studies, and molecular docking analysis. Front Chem 2024; 12:1380523. [PMID: 38694406 PMCID: PMC11061460 DOI: 10.3389/fchem.2024.1380523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/11/2024] [Indexed: 05/04/2024] Open
Abstract
Diabetes mellitus is a multi-systematic chronic metabolic disorder and life-threatening disease resulting from impaired glucose homeostasis. The inhibition of glucosidase, particularly α-glucosidase, could serve as an effective methodology in treating diabetes. Attributed to the catalytic function of glucosidase, the present research focuses on the synthesis of sulfonamide-based acyl pyrazoles (5a-k) followed by their in vitro and in silico screening against α-glucosidase. The envisaged structures of prepared compounds were confirmed through NMR and FTIR spectroscopy and mass spectrometry. All compounds were found to be more potent against α-glucosidase than the standard drug, acarbose (IC50 = 35.1 ± 0.14 µM), with IC50 values ranging from 1.13 to 28.27 µM. However, compound 5a displayed the highest anti-diabetic activity (IC50 = 1.13 ± 0.06 µM). Furthermore, in silico studies revealed the intermolecular interactions of most potent compounds (5a and 5b), with active site residues reflecting the importance of pyrazole and sulfonamide moieties. This interaction pattern clearly manifests various structure-activity relationships, while the docking results correspond to the IC50 values of tested compounds. Hence, recent investigation reveals the medicinal significance of sulfonamide-clubbed pyrazole derivatives as prospective therapeutic candidates for treating type 2 diabetes mellitus (T2DM).
Collapse
Affiliation(s)
- Atteeque Ahmed
- Department of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan
| | - Sumera Zaib
- Department of Basic and Applied Chemistry, Faculty of Science and Technology, University of Central Punjab, Lahore, Pakistan
| | - Mashooq Ahmad Bhat
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Aamer Saeed
- Department of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muhammad Zain Altaf
- Department of Basic and Applied Chemistry, Faculty of Science and Technology, University of Central Punjab, Lahore, Pakistan
| | - Fatima Tuz Zahra
- Department of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan
| | - Ghulam Shabir
- Department of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan
| | - Nehal Rana
- Department of Basic and Applied Chemistry, Faculty of Science and Technology, University of Central Punjab, Lahore, Pakistan
| | - Imtiaz Khan
- Department of Chemistry and Manchester Institute of Biotechnology, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
2
|
Kausar N, Murtaza S, Arshad MN, Munir R, Saleem RSZ, Rafique H, Tawab A. Design, synthesis, structure activity relationship and molecular docking studies of thiophene-2-carboxamide Schiff base derivatives of benzohydrazide as novel acetylcholinesterase and butyrylcholinesterase inhibitors. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130983] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
3
|
Chen SJ, Golden DL, Krska SW, Stahl SS. Copper-Catalyzed Cross-Coupling of Benzylic C-H Bonds and Azoles with Controlled N-Site Selectivity. J Am Chem Soc 2021; 143:14438-14444. [PMID: 34464528 PMCID: PMC8487258 DOI: 10.1021/jacs.1c07117] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Azoles are important motifs in medicinal chemistry, and elaboration of their structures via direct N-H/C-H coupling could have broad utility in drug discovery. The ambident reactivity of many azoles, however, presents significant selectivity challenges. Here, we report a copper-catalyzed method that achieves site-selective cross-coupling of pyrazoles and other N-H heterocycles with substrates bearing (hetero)benzylic C-H bonds. Excellent N-site selectivity is achieved, with the preferred site controlled by the identity of co-catalytic additives. This cross-coupling strategy features broad scope for both the N-H heterocycle and benzylic C-H coupling partners, enabling application of this method to complex molecule synthesis and medicinal chemistry.
Collapse
Affiliation(s)
- Si-Jie Chen
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Dung L. Golden
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Shane W. Krska
- High-Throughput Experimentation and Lead Discovery Capabilities, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Shannon S. Stahl
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
4
|
Azimi F, Azizian H, Najafi M, Hassanzadeh F, Sadeghi-Aliabadi H, Ghasemi JB, Ali Faramarzi M, Mojtabavi S, Larijani B, Saghaei L, Mahdavi M. Design and synthesis of novel quinazolinone-pyrazole derivatives as potential α-glucosidase inhibitors: Structure-activity relationship, molecular modeling and kinetic study. Bioorg Chem 2021; 114:105127. [PMID: 34246971 DOI: 10.1016/j.bioorg.2021.105127] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 01/11/2023]
Abstract
In this study, a new series of quinazolinone-pyrazole hybrids were designed, synthesized and screened for their α-glucosidase inhibitory activity. The results of the in vitro screening indicated that all the molecular hybrids exhibited more inhibitory activity (IC50 values ranging from 60.5 ± 0.3 µM-186.6 ± 20 μM) in comparison to standard acarbose (IC50 = 750.0 ± 10.0 µM). Limited structure-activity relationship suggested that the variation in the inhibitory activities of the compounds affected by different substitutions on phenyl rings of diphenyl pyrazole moiety. The enzyme kinetic studies of the most potent compound 9i revealed that it inhibited α-glucosidase in a competitive mode with a Ki of 56 μM. Molecular docking study was performed to predict the putative binding interaction. As expected, all pharmacophoric moieties used in the initial structure design playing a pivotal role in the interaction with the binding site of the enzyme. In addition, by performing molecular dynamic investigation and MM-GBSA calculation, we investigated the difference in structural perturbation and dynamic behavior that is observed over α-glycosidase in complex with the most active compound and acarbose relative to unbound α-glycosidase enzyme.
Collapse
Affiliation(s)
- Fateme Azimi
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Science, Isfahan University of Medical Science, Hezar Jerib, 817416-73461 Isfahan, Iran
| | - Homa Azizian
- Department of Medicinal Chemistry, School of Pharmacy-International Campus, Iran University of Medical Science, Tehran, Iran
| | - Mohammad Najafi
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Farshid Hassanzadeh
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Science, Isfahan University of Medical Science, Hezar Jerib, 817416-73461 Isfahan, Iran
| | - Hojjat Sadeghi-Aliabadi
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Science, Isfahan University of Medical Science, Hezar Jerib, 817416-73461 Isfahan, Iran
| | - Jahan B Ghasemi
- School of Chemistry, University College of Science, University of Tehran, P.O. Box 14155-6455, Tehran, Iran
| | - Mohammad Ali Faramarzi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, P.O. Box 14155-6451, Tehran 1417614411, Iran
| | - Somayeh Mojtabavi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, P.O. Box 14155-6451, Tehran 1417614411, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Lotfollah Saghaei
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Science, Isfahan University of Medical Science, Hezar Jerib, 817416-73461 Isfahan, Iran.
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Dengale SG, Akolkar HN, Karale BK, Darekar NR, Mhaske SD, Shaikh MH, Raut DN, Deshmukh KK. Synthesis of 3‐(trifluoromethyl)‐1‐(perfluorophenyl)‐1
H
‐pyrazol‐5(4
H
)‐one derivatives via Knoevenagel condensation and their biological evaluation. J CHIN CHEM SOC-TAIP 2020. [DOI: 10.1002/jccs.202000357] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Sujata G. Dengale
- P.G. and Research, Department of Chemistry Sangamner Nagarpalika Arts, D. J. Malpani Commerce and B. N. Sarada Science College Sangamner India
| | - Hemantkumar N. Akolkar
- P.G. and Research, Department of Chemistry Radhabai Kale Mahila Mahavidyalaya Ahmednagar India
| | - Bhausaheb K. Karale
- P.G. and Research, Department of Chemistry Radhabai Kale Mahila Mahavidyalaya Ahmednagar India
| | - Nirmala R. Darekar
- P.G. and Research, Department of Chemistry Radhabai Kale Mahila Mahavidyalaya Ahmednagar India
| | | | - Mubarak H. Shaikh
- P.G. and Research, Department of Chemistry Radhabai Kale Mahila Mahavidyalaya Ahmednagar India
| | | | - Keshav K. Deshmukh
- P.G. and Research, Department of Chemistry Sangamner Nagarpalika Arts, D. J. Malpani Commerce and B. N. Sarada Science College Sangamner India
| |
Collapse
|
6
|
Sever B, Soybir H, Görgülü Ş, Cantürk Z, Altıntop MD. Pyrazole Incorporated New Thiosemicarbazones: Design, Synthesis and Investigation of DPP-4 Inhibitory Effects. Molecules 2020; 25:molecules25215003. [PMID: 33126761 PMCID: PMC7662656 DOI: 10.3390/molecules25215003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 10/27/2020] [Accepted: 10/28/2020] [Indexed: 12/29/2022] Open
Abstract
Dipeptidyl peptidase-4 (DPP-4) inhibition has been recognized as a promising approach to develop safe and potent antidiabetic agents for the management of type 2 diabetes. In this context, new thiosemicarbazones (2a-o) were prepared efficiently by the reaction of aromatic aldehydes with 4-[4-(1H-pyrazol-1-yl)phenyl]thiosemicarbazide (1), which was obtained via the reaction of 4-(1H-pyrazol-1-yl)phenyl isothiocyanate with hydrazine hydrate. Compounds 2a-o were evaluated for their DPP-4 inhibitory effects based on a convenient fluorescence-based assay. 4-[4-(1H-pyrazol-1-yl)phenyl]-1-(4-bromobenzylidene)thiosemicarbazide (2f) was identified as the most effective DPP-4 inhibitor in this series with an IC50 value of 1.266 ± 0.264 nM when compared with sitagliptin (IC50 = 4.380 ± 0.319 nM). MTT test was carried out to assess the cytotoxic effects of compounds 2a-o on NIH/3T3 mouse embryonic fibroblast (normal) cell line. According to cytotoxicity assay, compound 2f showed cytotoxicity towards NIH/3T3 cell line with an IC50 value higher than 500 µM pointing out its favourable safety profile. Molecular docking studies indicated that compound 2f presented π-π interactions with Arg358 and Tyr666 via pyrazole scaffold and 4-bromophenyl substituent, respectively. Overall, in vitro and in silico studies put emphasis on that compound 2f attracts a great notice as a drug-like DPP-4 inhibitor for further antidiabetic research.
Collapse
Affiliation(s)
- Belgin Sever
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey; (B.S.); (H.S.)
| | - Hasan Soybir
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey; (B.S.); (H.S.)
| | - Şennur Görgülü
- Medicinal Plant, Drug and Scientific Research and Application Center, Anadolu University, 26470 Eskişehir, Turkey;
| | - Zerrin Cantürk
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey;
| | - Mehlika Dilek Altıntop
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey; (B.S.); (H.S.)
- Correspondence: ; Tel.: +90-222-335-0580
| |
Collapse
|
7
|
Pogaku V, Krishnan R, Basavoju S. Synthesis and biological evaluation of new benzo[d][1,2,3]triazol-1-yl-pyrazole-based dihydro-[1,2,4]triazolo[4,3-a]pyrimidines as potent antidiabetic, anticancer and antioxidant agents. RESEARCH ON CHEMICAL INTERMEDIATES 2020. [DOI: 10.1007/s11164-020-04285-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
Pogaku V, Gangarapu K, Basavoju S, Tatapudi KK, Katragadda SB. Design, synthesis, molecular modelling, ADME prediction and anti-hyperglycemic evaluation of new pyrazole-triazolopyrimidine hybrids as potent α-glucosidase inhibitors. Bioorg Chem 2019; 93:103307. [DOI: 10.1016/j.bioorg.2019.103307] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 09/13/2019] [Accepted: 09/19/2019] [Indexed: 12/14/2022]
|
9
|
Xu G, Gaul MD, Song F, Du F, Liang Y, DesJarlais RL, DiLoreto K, Shook B, Rentzeperis D, Santulli R, Eckardt A, Demarest K. Discovery of potent and orally bioavailable indazole-based glucagon receptor antagonists for the treatment of type 2 diabetes. Bioorg Med Chem Lett 2019; 29:126668. [DOI: 10.1016/j.bmcl.2019.126668] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 08/30/2019] [Accepted: 09/03/2019] [Indexed: 12/27/2022]
|
10
|
Song F, Xu G, Gaul MD, Zhao B, Lu T, Zhang R, DesJarlais RL, DiLoreto K, Huebert N, Shook B, Rentzeperis D, Santulli R, Eckardt A, Demarest K. Design, synthesis and structure activity relationships of indazole and indole derivatives as potent glucagon receptor antagonists. Bioorg Med Chem Lett 2019; 29:1974-1980. [DOI: 10.1016/j.bmcl.2019.05.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/16/2019] [Accepted: 05/17/2019] [Indexed: 02/02/2023]
|
11
|
Synthesis, characterization, DFT and antimicrobial studies of transition metal ion complexes of a new schiff base ligand, 5-methylpyrazole-3yl-N-(2́-hydroxyphenylamine)methyleneimine, (MPzOAP). J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2018.09.095] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
12
|
Kerru N, Singh-Pillay A, Awolade P, Singh P. Current anti-diabetic agents and their molecular targets: A review. Eur J Med Chem 2018; 152:436-488. [PMID: 29751237 DOI: 10.1016/j.ejmech.2018.04.061] [Citation(s) in RCA: 185] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 04/17/2018] [Accepted: 04/30/2018] [Indexed: 12/22/2022]
Abstract
Diabetes mellitus is a medical condition characterized by the body's loss of control over blood sugar. The frequency of diagnosed cases and consequential increases in medical costs makes it a rapidly growing chronic disease that threatens human health worldwide. In addition, its unnerving statistical projections are perilous to both the economy of the nation and man's life expectancy. Type-I and type-II diabetes are the two clinical forms of diabetes mellitus. Type-II diabetes mellitus (T2DM) is illustrated by the abnormality of glucose homeostasis in the body, resulting in hyperglycemia. Although significant research attention has been devoted to the development of diabetes regimens, which demonstrates success in lowering blood glucose levels, their efficacies are unsustainable due to undesirable side effects such as weight gain and hypoglycemia. Over the years, heterocyclic scaffolds have been the basis of anti-diabetic chemotherapies; hence, in this review we consolidate the use of bioactive scaffolds, which have been evaluated for their biological response as inhibitors against their respective anti-diabetic molecular targets over the past five years (2012-2017). Our investigation reveals a diverse target set which includes; protein tyrosine phosphatase 1 B (PTP1B), dipeptidly peptidase-4 (DPP-4), free fatty acid receptors 1 (FFAR1), G protein-coupled receptors (GPCR), peroxisome proliferator activated receptor-γ (PPARγ), sodium glucose co-transporter-2 (SGLT2), α-glucosidase, aldose reductase, glycogen phosphorylase (GP), fructose-1,6-bisphosphatase (FBPase), glucagon receptor (GCGr) and phosphoenolpyruvate carboxykinase (PEPCK). This review offers a medium on which future drug design and development toward diabetes management may be modelled (i.e. optimization via structural derivatization), as many of the drug candidates highlighted show promise as an effective anti-diabetic chemotherapy.
Collapse
Affiliation(s)
- Nagaraju Kerru
- School of Chemistry and Physics, University of KwaZulu-Natal, P/Bag X54001, Westville, Durban, South Africa
| | - Ashona Singh-Pillay
- School of Chemistry and Physics, University of KwaZulu-Natal, P/Bag X54001, Westville, Durban, South Africa.
| | - Paul Awolade
- School of Chemistry and Physics, University of KwaZulu-Natal, P/Bag X54001, Westville, Durban, South Africa
| | - Parvesh Singh
- School of Chemistry and Physics, University of KwaZulu-Natal, P/Bag X54001, Westville, Durban, South Africa.
| |
Collapse
|
13
|
Shu S, Dai A, Wang J, Wang B, Feng Y, Li J, Cai X, Yang D, Ma D, Wang MW, Liu H. A novel series of 4-methyl substituted pyrazole derivatives as potent glucagon receptor antagonists: Design, synthesis and evaluation of biological activities. Bioorg Med Chem 2018. [PMID: 29523469 DOI: 10.1016/j.bmc.2018.02.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
A novel series of 4-methyl substituted pyrazole derivatives were designed, synthesized and biologically evaluated as potent glucagon receptor (GCGR) antagonists. In this study, compounds 9q, 9r, 19d and 19e showed high GCGR binding (IC50 = 0.09 μM, 0.06 μM, 0.07 μM and 0.08 μM, respectively) and cyclic-adenosine monophosphate (cAMP) activities (IC50 = 0.22 μM, 0.26 μM, 0.44 μM and 0.46 μM, respectively) in cell-based assays. Most importantly, the docking experiment demonstrated that compound 9r formed extensive hydrophobic interactions with the receptor binding pocket, making it justifiable to further investigate the potential of becoming a GCGR antagonist.
Collapse
Affiliation(s)
- Shuangjie Shu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China; The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), 555 Zu Chong Zhi Road, Shanghai 201203, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Antao Dai
- The National Center for Drug Screening, 189 Guo Shou Jing Road, Shanghai 201203, China
| | - Jiang Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China; The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), 555 Zu Chong Zhi Road, Shanghai 201203, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Bin Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China; The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), 555 Zu Chong Zhi Road, Shanghai 201203, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Yang Feng
- The National Center for Drug Screening, 189 Guo Shou Jing Road, Shanghai 201203, China
| | - Jia Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China; The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), 555 Zu Chong Zhi Road, Shanghai 201203, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Xiaoqing Cai
- The National Center for Drug Screening, 189 Guo Shou Jing Road, Shanghai 201203, China
| | - Dehua Yang
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), 555 Zu Chong Zhi Road, Shanghai 201203, China; The National Center for Drug Screening, 189 Guo Shou Jing Road, Shanghai 201203, China
| | - Dakota Ma
- The National Center for Drug Screening, 189 Guo Shou Jing Road, Shanghai 201203, China
| | - Ming-Wei Wang
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), 555 Zu Chong Zhi Road, Shanghai 201203, China; The National Center for Drug Screening, 189 Guo Shou Jing Road, Shanghai 201203, China; School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China.
| | - Hong Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China; The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), 555 Zu Chong Zhi Road, Shanghai 201203, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China.
| |
Collapse
|