1
|
Lin L, Liu Y, Tang R, Ding S, Lin H, Li H. Evodiamine: A Extremely Potential Drug Development Candidate of Alkaloids from Evodia rutaecarpa. Int J Nanomedicine 2024; 19:9843-9870. [PMID: 39345907 PMCID: PMC11430234 DOI: 10.2147/ijn.s459510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 07/23/2024] [Indexed: 10/01/2024] Open
Abstract
Evodiamine (EVO) is a tryptamine indole alkaloid and the main active ingredient in Evodia rutaecarpa. In recent years, the antitumor, cardioprotective, anti-inflammatory, and anti-Alzheimer's disease effects of EVO have been reported. EVO exerts antitumor effects by inhibiting tumor cell activity and proliferation, blocking the cell cycle, promoting apoptosis and autophagy, and inhibiting the formation of the tumor microvasculature. However, EVO has poor solubility and low bioavailability. Several derivatives with high antitumor activity have been discovered through the structural optimization of EVO, and new drug delivery systems have been developed to improve the solubility and bioavailability of EVO. Current research found that EVO could have toxic effects, such as hepatotoxicity, nephrotoxicity, and cardiac toxicity. This article reviews the pharmacological activity, derivatives, drug delivery systems, toxicity, and pharmacokinetics of EVO and provides research ideas and references for its further in-depth development and clinical applications.
Collapse
Affiliation(s)
- Longfei Lin
- Institute Chinese Materia Medica China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| | - Yuling Liu
- Institute Chinese Materia Medica China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| | - Ruying Tang
- Institute Chinese Materia Medica China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| | - Shilan Ding
- Institute Chinese Materia Medica China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| | - Hongmei Lin
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, People's Republic of China
- National Medical Products Administration Key Laboratory for Research Evaluation of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Hui Li
- Institute Chinese Materia Medica China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
- Institute of Traditional Chinese Medicine Health Industry, China Academy of Chinese Medical Sciences, Nanchang, People's Republic of China
| |
Collapse
|
2
|
Zhang G, Tang Z, Fan S, Li C, Li Y, Liu W, Long X, Zhang W, Zhang Y, Li Z, Wang Z, Chen D, Ouyang G. Synthesis and biological assessment of indole derivatives containing penta-heterocycles scaffold as novel anticancer agents towards A549 and K562 cells. J Enzyme Inhib Med Chem 2023; 38:2163393. [PMID: 36629428 PMCID: PMC9848270 DOI: 10.1080/14756366.2022.2163393] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Herein, a new series of 2-chloro-N-(5-(2-oxoindolin-3-yl)-4H-pyrazol-3-yl) acetamide derivatives containing 1,3,4-thiadiazole (10a-i) and 4H-1,2,4-triazol-4-amine (11a-r) moiety was designed, synthesised as novel anticancer agents. The antiproliferative activity values indicated that compound 10 b stood as the most potent derivative with IC50 values of 12.0 nM and 10 nM against A549 and K562 cells, respectively. Mechanism investigation and docking studies of 10 b indicated that it possessed good apoptosis characteristic and dose-dependent growth arrest of A549 and K562 cells, blocked cell cycle into G2/M phase. Interestingly, 10 b suppressed the growth of A549 and K562 cells via modulation of EGFR and p53-MDM2 mediated pathway.
Collapse
Affiliation(s)
- Guanglong Zhang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals of Guizhou University, Guiyang, China
| | - Zhenhua Tang
- College of Pharmacy, Guizhou University, Guiyang, China
| | - Sili Fan
- College of Pharmacy, Guizhou University, Guiyang, China
| | - Chengpeng Li
- College of Pharmacy, Guizhou University, Guiyang, China
| | - Yan Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals of Guizhou University, Guiyang, China
| | - Weiqin Liu
- College of Pharmacy, Guizhou University, Guiyang, China
| | - Xuesha Long
- College of Pharmacy, Guizhou University, Guiyang, China
| | - Wenjing Zhang
- College of Pharmacy, Guizhou University, Guiyang, China
| | - Yi Zhang
- College of Pharmacy, Guizhou University, Guiyang, China
| | - Zhurui Li
- College of Pharmacy, Guizhou University, Guiyang, China
| | - Zhenchao Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals of Guizhou University, Guiyang, China,College of Pharmacy, Guizhou University, Guiyang, China,Guizhou Engineering Laboratory for Synthetic Drugs, Guizhou University, Guiyang, China,CONTACT Zhenchao Wang
| | - Danping Chen
- College of Pharmacy, Guizhou University, Guiyang, China,Danping Chen
| | - Guiping Ouyang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals of Guizhou University, Guiyang, China,College of Pharmacy, Guizhou University, Guiyang, China,Guizhou Engineering Laboratory for Synthetic Drugs, Guizhou University, Guiyang, China,Guiping Ouyang
| |
Collapse
|
3
|
Wang Z, Xiong Y, Peng Y, Zhang X, Li S, Peng Y, Peng X, Zhuo L, Jiang W. Natural product evodiamine-inspired medicinal chemistry: Anticancer activity, structural optimization and structure-activity relationship. Eur J Med Chem 2023; 247:115031. [PMID: 36549115 DOI: 10.1016/j.ejmech.2022.115031] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/06/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022]
Abstract
It is a well-known phenomenon that natural products can serve as powerful drug leads to generate new molecular entities with novel therapeutic utility. Evodiamine (Evo), a major alkaloid component in traditional Chinese medicine Evodiae Fructus, is considered a desirable lead scaffold as its multifunctional pharmacological properties. Although natural Evo has suboptimal biological activity, poor pharmacokinetics, low water solubility, and chemical instability, medicinal chemists have succeeded in producing synthetic analogs that overshadow the deficiency of Evo in terms of further clinical application. Recently, several reviews on the synthesis, structural modification, mechanism pharmacological actions, structure-activity relationship (SAR) of Evo have been published, while few reviews that incorporates intensive structural basis and extensive SAR are reported. The purpose of this article is to review the structural basis, anti-cancer activities, and mechanisms of Evo and its derivatives. Emphasis will be placed on the optimizing strategies to improve the anticancer activities, such as structural modifications, pharmacophore combination and drug delivery systems. The current review would benefit further structural modifications of Evo to discover novel anticancer drugs.
Collapse
Affiliation(s)
- Zhen Wang
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China; School of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Yongxia Xiong
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Ying Peng
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China; School of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Xi Zhang
- School of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Shuang Li
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Yan Peng
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Xue Peng
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Linsheng Zhuo
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China; Postdoctoral Station for Basic Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Weifan Jiang
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China; Postdoctoral Station for Basic Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
4
|
Abinaya R, Srinath S, Soundarya S, Sridhar R, Balasubramanian KK, Baskar B. Recent Developments on Synthesis Strategies, SAR Studies and Biological Activities of β-Carboline Derivatives – An Update. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
5
|
Fan M, Yao L. The Synthesis, Structural Modification and Mode of Anticancer Action of Evodiamine: a review. Recent Pat Anticancer Drug Discov 2021; 17:284-296. [PMID: 34939550 DOI: 10.2174/1574892817666211221165739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/29/2021] [Accepted: 11/12/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Finding novel antitumor reagents from naturally occurring alkaloids is a widely accepted strategy. Evodiamine, a tryptamine indole alkaloid isolated from Evodia rutaecarpa, has a wide range of biological activities, such as antitumor, anti-inflammation, and anti-bacteria. Hence, research works on the structural modification of evodiamine will facilitate the discovery of new antitumor drugs. OBJECTIVE The recent advances in the synthesis of evodiamine, and studies on the drug design, biological activities, and structure-activity-relationships of its derivatives, published in patents and primary literatures, are reviewed in this paper. METHODS The literatures, including patents and follow-up research papers from 2015 to 2020, related to evodiamine is searched in the Scifinder, PubMed, Espacenet, China National Knowledge Infrastructure (CNKI), and Wanfang databases. The key words are evodiamine, synthesis, modification, anticancer, mechanism. RESULTS The synthesis of evodiamine are summarized. Then, structural modifications of evodiamine are described, and the possible modes of actions are discussed. CONCLUSION Evodiamine has a 6/5/6/6/6 ring system, and the structural modifications are focused on ring A, D, E, C5, N-13, and N-14. Some compounds show promising anticancer potentials and warrant further study.
Collapse
Affiliation(s)
- Meixia Fan
- School of Pharmacy, Yantai University, 30 Qingquan Road, Yantai, 264005, Shandong. China
| | - Lei Yao
- School of Pharmacy, Yantai University, 30 Qingquan Road, Yantai, 264005, Shandong. China
| |
Collapse
|
6
|
Yin C, Cheng J, Peng H, Yuan S, Chen K, Li J. Antitumor Effects of Evodiamine in Mice Model Experiments: A Systematic Review and Meta-Analysis. Front Oncol 2021; 11:774201. [PMID: 34900724 PMCID: PMC8660089 DOI: 10.3389/fonc.2021.774201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 10/18/2021] [Indexed: 11/29/2022] Open
Abstract
Background Evodiamine (EVO), an alkaloid extracted from the traditional Chinese medicine Euodia rutaecarpa, plays an important role in the treatment of cancer. This study was performed to clarify the effects of evodiamine in mice tumor model studies. Methods Electronic databases and search engines involved China Knowledge Resource Integrated Database (CNKI), Wanfang Database, Chinese Scientific Journal Database (CSJD-VIP), China Biomedical Literature Database (CBM), PubMed, Embase, Web of Science, and ClinicalTrials.gov databases, which were searched for literature related to the antitumor effects of evodiamine in animal tumor models (all until 1 October 2021). The evodiamine effects on the tumor volume and tumor weight were compared between the treatment and control groups using the standardized mean difference (SMD). Results Evodiamine significantly inhibited tumor growth in mice, as was assessed with tumor volume [13 studies, n=267; 138 for EVO and 129 for control; standard mean difference (SMD)= -5.99; 95% (CI): -8.89 to -3.10; I2 = 97.69%, p ≤ 0.00], tumor weight [6 studies, n=89; 49 for EVO and 40 for control; standard mean difference (SMD)= -3.51; 95% (CI): -5.13 to -3.90; I2 = 83.02%, p ≤ 0.00]. Conclusion EVO significantly suppresses tumor growth in mice models, which would be beneficial for clinical transformation. However, due to the small number of studies included in this meta-analysis, the experimental design and experimental method limitations should be considered when interpreting the results. Significant clinical and animal studies are still required to evaluate whether EVO can be used in the adjuvant treatment of clinical tumor patients.
Collapse
Affiliation(s)
- Cong Yin
- Hubei Province Key Laboratory of Traditional Chinese Medicine Resource and Chemistry, Hubei University of Chinese Medicine, Wuhan, China
| | - Jing Cheng
- Hubei Province Key Laboratory of Traditional Chinese Medicine Resource and Chemistry, Hubei University of Chinese Medicine, Wuhan, China
| | - Hongbing Peng
- Hubei Province Key Laboratory of Traditional Chinese Medicine Resource and Chemistry, Hubei University of Chinese Medicine, Wuhan, China
| | - Shijun Yuan
- Hubei Province Key Laboratory of Traditional Chinese Medicine Resource and Chemistry, Hubei University of Chinese Medicine, Wuhan, China
| | - Keli Chen
- Hubei Province Key Laboratory of Traditional Chinese Medicine Resource and Chemistry, Hubei University of Chinese Medicine, Wuhan, China
| | - Juan Li
- Hubei Province Key Laboratory of Traditional Chinese Medicine Resource and Chemistry, Hubei University of Chinese Medicine, Wuhan, China
| |
Collapse
|
7
|
Patrykei S, Korobko Y, Ogorodniichuk O, Garazd M, Polishchuk P, Džubák P, Gurská S, Hajdúch M, Lesyk R. Synthesis and evaluation of the anticancer activity of some semisynthetic derivatives of rutaecarpine and evodiamine. SYNTHETIC COMMUN 2021. [DOI: 10.1080/00397911.2021.1919712] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
| | | | | | | | - Pavel Polishchuk
- Institute of Molecular and Translational Medicine (IMTM), Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Petr Džubák
- Institute of Molecular and Translational Medicine (IMTM), Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Soňa Gurská
- Institute of Molecular and Translational Medicine (IMTM), Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Marián Hajdúch
- Institute of Molecular and Translational Medicine (IMTM), Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Roman Lesyk
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
- Department of Public Health, Dietetics and Lifestyle Disorders, Faculty of Medicine, University of Information Technology and Management in Rzeszow, Rzeszow, Poland
| |
Collapse
|
8
|
Mu C, Peng RK, Guo CL, Li A, Yang XM, Zeng R, Li YL, Gu J, Ouyang Q. Discovery of sertraline and its derivatives able to combat drug-resistant gastric cancer cell via inducing apoptosis. Bioorg Med Chem Lett 2021; 41:127997. [PMID: 33775839 DOI: 10.1016/j.bmcl.2021.127997] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/09/2021] [Accepted: 03/22/2021] [Indexed: 11/16/2022]
Abstract
Resistance phenomena during chemotherapy of tumor has been severely hampering the applications of chemotherapeutics. Due to advantage of drug repurposing, discovery of new chemosensitizers based on approved drugs is an effect strategy to find new candidates. Herein, we found antidepressant drug - sertraline, could sensitize drug-resistant gastric cancer cell (SGC-7901/DDP) with the IC50 value of 18.73 μM. To understand the structure-activity relationship and improve the activity, 30 derivatives were synthesized and evaluated. The IC50 value of the best compound was improved to 5.2 μM. Moreover, we found apoptosis induction and cell cycle arrest was the reason for the cell death of the drug-resistant cells after treatment of sertraline and derivatives, and PI3K/Akt/mTOR pathway was involved.
Collapse
Affiliation(s)
- Chao Mu
- College of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, Zigong 643000, China
| | - Rui-Kun Peng
- Department of Medicinal Chemistry, School of Pharmacy, Third Military Medical University, Chongqing 40038, China
| | - Chun-Ling Guo
- Department of Medicinal Chemistry, School of Pharmacy, Third Military Medical University, Chongqing 40038, China
| | - Ao Li
- College of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, Zigong 643000, China
| | - Xiu-Ming Yang
- Department of Medicinal Chemistry, School of Pharmacy, Third Military Medical University, Chongqing 40038, China
| | - Rong Zeng
- Department of Medicinal Chemistry, School of Pharmacy, Third Military Medical University, Chongqing 40038, China
| | - Yu-Long Li
- College of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, Zigong 643000, China.
| | - Jing Gu
- Department of Medicinal Chemistry, School of Pharmacy, Third Military Medical University, Chongqing 40038, China.
| | - Qin Ouyang
- Department of Medicinal Chemistry, School of Pharmacy, Third Military Medical University, Chongqing 40038, China.
| |
Collapse
|
9
|
Hu X, Gao X, Gao G, Wang Y, Cao H, Li D, Hua H. Discovery of β-carboline-(phenylsulfonyl)furoxan hybrids as potential anti-breast cancer agents. Bioorg Med Chem Lett 2021; 40:127952. [DOI: 10.1016/j.bmcl.2021.127952] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/26/2021] [Accepted: 03/07/2021] [Indexed: 12/11/2022]
|
10
|
Huo JL, Wang S, Yuan XH, Yu B, Zhao W, Liu HM. Discovery of [1,2,4]triazolo[1,5-a]pyrimidines derivatives as potential anticancer agents. Eur J Med Chem 2020; 211:113108. [PMID: 33385852 DOI: 10.1016/j.ejmech.2020.113108] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/02/2020] [Accepted: 12/14/2020] [Indexed: 10/22/2022]
Abstract
In this work, we reported the discovery of compound 6i with potent antiproliferative activity against MGC-803. Among these compounds, the most potent compound 6i could effectively inhibit MGC-803 (IC50 = 0.96 μM), being around 38-fold selectivity over GES-1. Further underlying mechanism studies indicated that 6i inhibited the colony formation, migration of MGC-803, and exerted anti-proliferative effect by inducing G0/G1 phase arrest in MGC-803 cells. Cell apoptosis was induced by 6i through activating mitochondria-mediated intrinsic pathway and the death receptor-mediated extrinsic pathway. 6i induced cell apoptosis by elevating the level of ROS. Also, 6i up-regulated pro-apoptotic Bax and p53 level, while down-regulating anti-apoptotic Bcl-2 protein expression. Furthermore, acute toxicity experiment indicated 6i exhibited good safety in vivo. Therefore, 6i may be a template for future development of [1,2,4]triazolo [1,5-a]pyrimidine-based anti-cancer agents.
Collapse
Affiliation(s)
- Jin-Ling Huo
- School of Pharmaceutical Sciences and Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, 450001, China
| | - Shuai Wang
- School of Pharmaceutical Sciences and Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, 450001, China; Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02129, USA
| | - Xiao-Han Yuan
- School of Pharmaceutical Sciences and Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, 450001, China
| | - Bin Yu
- School of Pharmaceutical Sciences and Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, 450001, China.
| | - Wen Zhao
- School of Pharmaceutical Sciences and Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, 450001, China.
| | - Hong-Min Liu
- School of Pharmaceutical Sciences and Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
11
|
Sun Q, Xie L, Song J, Li X. Evodiamine: A review of its pharmacology, toxicity, pharmacokinetics and preparation researches. JOURNAL OF ETHNOPHARMACOLOGY 2020; 262:113164. [PMID: 32738391 DOI: 10.1016/j.jep.2020.113164] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/17/2020] [Accepted: 07/06/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Evodia rutaecarpa, a well-known herb medicine in China, is extensively applied in traditional Chinese medicine (TCM). The plant has the effects of dispersing cold and relieving pain, arresting vomiting, and helping Yang and stopping diarrhea. Modern research demonstrates that evodiamine, the main component of Evodia rutaecarpa, is the material basis for its efficacy. AIMS OF THE REVIEW This paper is primarily addressed to summarize the current studies on evodiamine. The progress in research on the pharmacology, toxicology, pharmacokinetics, preparation researches and clinical application are reviewed. Moreover, outlooks and directions for possible future studies concerning it are also discussed. MATERIALS AND METHODS The information of this systematic review was conducted with resources of multiple literature databases including PubMed, Google scholar, Web of Science and Wiley Online Library and so on, with employing a combination of keywords including "pharmacology", "toxicology", "pharmacokinetics" and "clinical application", etc. RESULTS: As the main component of Evodia rutaecarpa, evodiamine shows considerable pharmacological activities, such as analgesic, anti-inflammatory, anti-tumor, anti-microbial, heart protection and metabolic disease regulation. However, it is also found that it has significant hepatotoxicity and cardiotoxicity, thereby it should be monitored in clinical. In addition, available data demonstrate that the evodiamine has a needy solubility in aqueous medium. Scientific and reasonable pharmaceutical strategies should be introduced to improve the above defects. Meanwhile, more efforts should be made to develop novel efficient and low toxic derivatives. CONCLUSIONS This review summarizes the results from current studies of evodiamine, which is one of the valuable medicinal ingredients from Evodia rutaecarpa. With the assistance of relevant pharmacological investigation, some conventional application and problems in pharmaceutical field have been researched in recent years. In addition, unresolved issues include toxic mechanisms, pharmacokinetics, novel pharmaceutical researches and relationship between residues and intestinal environment, which are still being explored and excavate before achieving integration into clinical practice.
Collapse
Affiliation(s)
- Qiang Sun
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Long Xie
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Jiawen Song
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Xiaofang Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China.
| |
Collapse
|
12
|
Evodiamine inhibits migration and invasion by Sirt1-mediated post-translational modulations in colorectal cancer. Anticancer Drugs 2020; 30:611-617. [PMID: 30789361 PMCID: PMC6530977 DOI: 10.1097/cad.0000000000000760] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Colorectal cancer (CRC) is one of the most difficult cancers to cure. An important prognostic factor is metastasis, which precludes curative surgical resection. Recent evidences show that Evodiamine (EVO) exerts an inhibitory effect on cancer cell apoptosis, migration, and invasion. In this study, we investigated the effects of EVO on the metastasis of CRC cells in vitro and in vivo. In vitro, wound-healing and transwell assay showed that migration and invasion of HT-29 and HCT-116 CRC cells were inhibited significantly by EVO. Western blot and RT-PCR showed that EVO reduced the expression of matrix metalloproteinase-9 in a dose-dependent manner. In EVO-induced cells, the intracellular NAD+/NADH ratio was increased, the level of Sirt1 was increased, and acetyl-NF-κB P65 was decreased. This process was inhibited by nicotinamide, an inhibitor of Sirt1. In vivo, EVO reduced tumor metastasis markedly. These findings provide evidences that EVO suppresses the migration and invasion of CRC cells by inhibiting the acetyl-NF-κB p65 by Sirt1, resulting in suppression of metalloproteinase-9 expression in vitro and in vivo.
Collapse
|
13
|
Lu N, Huo JL, Wang S, Yuan XH, Liu HM. Drug repurposing: Discovery of troxipide analogs as potent antitumor agents. Eur J Med Chem 2020; 202:112471. [PMID: 32619887 PMCID: PMC7319647 DOI: 10.1016/j.ejmech.2020.112471] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/14/2020] [Accepted: 05/14/2020] [Indexed: 11/17/2022]
Abstract
Drug repurposing plays a vital role in the discovery of undescribed bioactivities in clinical drugs. Based on drug repurposing strategy, we for the first time reported a novel series of troxipide analogs and then evaluated their antiproliferative activity against MCF-7, PC3, MGC-803, and PC9 cancer cell lines and WPMY-1, most of which showed obvious selectivity toward PC-3 over the other three cancer cell lines and WPMY-1. Compound 5q, especially, could effectively inhibit PC3 with an IC50 value of 0.91 μM, which exhibited around 53-fold selectivity toward WPMY-1. Data indicated that 5q effectively inhibited the colony formation, suppressed the cell migration, and induced G1/S phase arrest in PC3 cells. Also, compound 5q induced cell apoptosis by activating the two apoptotic signaling pathways in PC3 cells: death receptor-mediated extrinsic pathway and mitochondria-mediated intrinsic pathway. Compound 5q up-regulated the expression of both pro-apoptotic Bax and P53, while down-regulated anti-apoptotic Bcl-2 expression. Besides, compound 5q significantly increased the expression of cleaved caspase 3/9 and cleaved PARP. Therefore, the successful discovery of compound 5q may further validate the feasibility of this theory, which will encourage researchers to reveal undescribed bioactivities in traditional drugs. A novel series of troxipide analogs were designed using drug repurposing strategy. 5q effectively inhibited PC3 (IC50 = 0.91 μM), being around 53-fold selectivity toward WPMY-1. 5q effectively inhibited the colony formation, suppressed the cell migration, and induced G1/S phase arrest in PC3 . 5q induced apoptosis by activating death receptor-mediated extrinsic and mitochondria-mediated intrinsic pathways in PC3.
Collapse
Affiliation(s)
- Nan Lu
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - Jin-Ling Huo
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Shuai Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China; Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02129, USA
| | - Xiao-Han Yuan
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Hong-Min Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
14
|
Chen H, Yang J, Hao J, Lv Y, Chen L, Lin Q, Yuan J, Yang X. A Novel Flavonoid Kushenol Z from Sophora flavescens Mediates mTOR Pathway by Inhibiting Phosphodiesterase and Akt Activity to Induce Apoptosis in Non-Small-Cell Lung Cancer Cells. Molecules 2019; 24:molecules24244425. [PMID: 31817093 PMCID: PMC6943755 DOI: 10.3390/molecules24244425] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/26/2019] [Accepted: 11/27/2019] [Indexed: 12/26/2022] Open
Abstract
The roots of Sophora flavescens (SF) are clinically used as a traditional Chinese medicine for the treatment of various lung diseases. In this study, we investigated the mechanism by which SF inhibits proliferation and induces apoptosis in non-small-cell lung cancer (NSCLC) cells. A new compound, kushenol Z (KZ), and 14 known flavonoids were isolated from SF. KZ, sophoraflavanone G, and kushenol A demonstrated potent cytotoxicity against NSCLC cells in a dose- and time-dependent manner; KZ showed a wide therapeutic window. We also found that KZ induced NSCLC cell apoptosis by increasing the Bax/Bcl-2 ratio and by activating caspase-3 and caspase-9 leading to mitochondrial apoptosis, and upregulated CHOP and activatedcaspase-7 and caspase-12, which triggered the endoplasmic reticulum stress pathway. After KZ treatment, we observed cAMP accumulation, which reflected the inhibition of cAMP-phosphodiesterase (PDE), along with the increase in PKA activity; additionally, phospho-p70 S6 kinase was downregulated. KZ also attenuated the phosphorylation of Akt and PRAS40, which was partially rescued by an Akt activator. This suggested that KZ mediated the antiproliferative activity in NSCLC cells by inhibiting the mTOR pathway through the inhibition of cAMP-PDE and Akt. These findings suggested that KZ may be used as a promising cAMP-PDE and Akt inhibitor in targeted chemotherapeutic drug development.
Collapse
Affiliation(s)
- Hao Chen
- Guangxi Scientific Research Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning 530001, China;
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China; (J.Y.); (J.H.); (Y.L.); (Q.L.)
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jie Yang
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China; (J.Y.); (J.H.); (Y.L.); (Q.L.)
| | - Ji Hao
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China; (J.Y.); (J.H.); (Y.L.); (Q.L.)
| | - Yibing Lv
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China; (J.Y.); (J.H.); (Y.L.); (Q.L.)
| | - Lu Chen
- Guangxi Institute of Medicinal Plant, Nanning 530023, China;
| | - Qinxiong Lin
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China; (J.Y.); (J.H.); (Y.L.); (Q.L.)
| | - Jingquan Yuan
- Guangxi Scientific Research Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning 530001, China;
- Correspondence: (J.Y.); (X.Y.); Tel./Fax: +86-771-394-6492 (J.Y.); +86-27-6784-1196 (X.Y.)
| | - Xinzhou Yang
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China; (J.Y.); (J.H.); (Y.L.); (Q.L.)
- Correspondence: (J.Y.); (X.Y.); Tel./Fax: +86-771-394-6492 (J.Y.); +86-27-6784-1196 (X.Y.)
| |
Collapse
|
15
|
Diethelm-Varela B, Ai Y, Liang D, Xue F. Nitrogen Mustards as Anticancer Chemotherapies: Historic Perspective, Current Developments and Future Trends. Curr Top Med Chem 2019; 19:691-712. [PMID: 30931858 DOI: 10.2174/1568026619666190401100519] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/11/2019] [Accepted: 02/25/2019] [Indexed: 12/30/2022]
Abstract
Nitrogen mustards, a family of DNA alkylating agents, marked the start of cancer pharmacotherapy. While traditionally characterized by their dose-limiting toxic effects, nitrogen mustards have been the subject of intense research efforts, which have led to safer and more effective agents. Even though the alkylating prodrug mustards were first developed decades ago, active research on ways to improve their selectivity and cytotoxic efficacy is a currently active topic of research. This review addresses the historical development of the nitrogen mustards, outlining their mechanism of action, and discussing the improvements on their therapeutic profile made through rational structure modifications. A special emphasis is made on discussing the nitrogen mustard prodrug category, with Cyclophosphamide (CPA) serving as the main highlight. Selected insights on the latest developments on nitrogen mustards are then provided, limiting such information to agents that preserve the original nitrogen mustard mechanism as their primary mode of action. Additionally, future trends that might follow in the quest to optimize these invaluable chemotherapeutic medications are succinctly suggested.
Collapse
Affiliation(s)
- Benjamin Diethelm-Varela
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, United States
| | - Yong Ai
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, United States
| | - Dongdong Liang
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, United States
| | - Fengtian Xue
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, United States
| |
Collapse
|
16
|
Liang X, Wu Q, Luan S, Yin Z, He C, Yin L, Zou Y, Yuan Z, Li L, Song X, He M, Lv C, Zhang W. A comprehensive review of topoisomerase inhibitors as anticancer agents in the past decade. Eur J Med Chem 2019; 171:129-168. [PMID: 30917303 DOI: 10.1016/j.ejmech.2019.03.034] [Citation(s) in RCA: 136] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/14/2019] [Accepted: 03/14/2019] [Indexed: 01/28/2023]
Abstract
The topoisomerase enzymes play an important role in DNA metabolism, and searching for enzyme inhibitors is an important target in the search for new anticancer drugs. Discovery of new anticancer chemotherapeutical capable of inhibiting topoisomerase enzymes is highlighted in anticancer research. Therefore, biologists, organic chemists and medicinal chemists all around the world have been identifying, designing, synthesizing and evaluating a variety of novel bioactive molecules targeting topoisomerase. This review summarizes types of topoisomerase inhibitors in the past decade, and divides them into nine classes by structural characteristics, including N-heterocycles compounds, quinone derivatives, flavonoids derivatives, coumarin derivatives, lignan derivatives, polyphenol derivatives, diterpenes derivatives, fatty acids derivatives, and metal complexes. Then we discussed the application prospect and development of these anticancer compounds, as well as concluded parts of their structural-activity relationships. We believe this review would be invaluable in helping to further search potential topoisomerase inhibition as antitumor agent in clinical usage.
Collapse
Affiliation(s)
- Xiaoxia Liang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China.
| | - Qiang Wu
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Shangxian Luan
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Zhongqiong Yin
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Changliang He
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Lizi Yin
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Yuanfeng Zou
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Zhixiang Yuan
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Lixia Li
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Xu Song
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Min He
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Cheng Lv
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Wei Zhang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| |
Collapse
|
17
|
Liu C, Liu H, Wen Y, Huang H, Hao J, Lv Y, Qin R, Yang X. Aspernolide A Inhibits the Proliferation of Human Laryngeal Carcinoma Cells through the Mitochondrial Apoptotic and STAT3 Signaling Pathways. Molecules 2019; 24:E1074. [PMID: 30893785 PMCID: PMC6471715 DOI: 10.3390/molecules24061074] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 03/14/2019] [Accepted: 03/15/2019] [Indexed: 12/19/2022] Open
Abstract
Aspernolide A, a butyrolactone secondary metabolite, was purified from the endophytic fungus Cladosporium cladosporioides derived from roots of Camptotheca acuminata Decne. In this study, the antitumor activity and mechanisms of aspernolide A on human laryngeal cancer Hep-2 and TU212 cells were studied by MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay, morphological observation and Western blotting. The results showed that aspernolide A significantly inhibited the proliferation of Hep-2 and TU212 cells in dose- and time-dependent manners. Morphological changes of apoptotic cells could be observed under an inverted microscope, such as irregular margins, decreased adherence ability and chromatin condensation. The expressions of Bax, Caspase-9, Caspase-3 and PARP (poly ADP-ribose polymerase) increased with the increase of dosage while Bcl-2 decreased, suggesting that the apoptotic mechanism might be related to the mitochondrial apoptotic pathway. Moreover, the expression of the phosphorylation of STAT3 decreased with the increase of dosage, suggesting that the apoptotic mechanism might be related to the STAT3 signaling pathway. All these conclusions indicated that aspernolide A has the potential anti-laryngocarcinoma effects.
Collapse
Affiliation(s)
- Chang Liu
- College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China.
| | - Hong Liu
- College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China.
| | - Yanzhang Wen
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China.
| | - Huiqi Huang
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China.
| | - Ji Hao
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China.
| | - Yibing Lv
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China.
| | - Rui Qin
- College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China.
| | - Xinzhou Yang
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China.
| |
Collapse
|
18
|
Discovery of novel NO-releasing celastrol derivatives with Hsp90 inhibition and cytotoxic activities. Eur J Med Chem 2018; 160:1-8. [DOI: 10.1016/j.ejmech.2018.10.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 10/01/2018] [Accepted: 10/05/2018] [Indexed: 11/19/2022]
|
19
|
Kulikov AS, Epishina MA, Churakov AI, Anikina LV, Fershtat LL, Makhova NN. Regioselective synthesis, structural diversification and cytotoxic activity of (thiazol-4-yl)furoxans. MENDELEEV COMMUNICATIONS 2018. [DOI: 10.1016/j.mencom.2018.11.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
20
|
Antiproliferative Effects of Alkaloid Evodiamine and Its Derivatives. Int J Mol Sci 2018; 19:ijms19113403. [PMID: 30380774 PMCID: PMC6274956 DOI: 10.3390/ijms19113403] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 10/20/2018] [Accepted: 10/24/2018] [Indexed: 12/18/2022] Open
Abstract
Alkaloids, a category of natural products with ring structures and nitrogen atoms, include most U.S. Food and Drug Administration approved plant derived anti-cancer agents. Evodiamine is an alkaloid with attractive multitargeting antiproliferative activity. Its high content in the natural source ensures its adequate supply on the market and guarantees further medicinal study. To the best of our knowledge, there is no systematic review about the antiproliferative effects of evodiamine derivatives. Therefore, in this article the review of the antiproliferative activities of evodiamine will be updated. More importantly, the antiproliferative activities of structurally modified new analogues of evodiamine will be summarized for the first time.
Collapse
|
21
|
Tandon R, Singh I, Luxami V, Tandon N, Paul K. Recent Advances and Developments ofin vitroEvaluation of Heterocyclic Moieties on Cancer Cell Lines. CHEM REC 2018; 19:362-393. [DOI: 10.1002/tcr.201800024] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 06/06/2018] [Indexed: 01/16/2023]
Affiliation(s)
- Runjhun Tandon
- Department of Chemistry, School of Physical SciencesLovely Professional University Phagwara- 144411 India
| | - Iqubal Singh
- School of Chemistry and BiochemistryThapar Institute of Engineering and Technology Patiala- 147001 India
| | - Vijay Luxami
- School of Chemistry and BiochemistryThapar Institute of Engineering and Technology Patiala- 147001 India
| | - Nitin Tandon
- Department of Chemistry, School of Physical SciencesLovely Professional University Phagwara- 144411 India
| | - Kamaldeep Paul
- School of Chemistry and BiochemistryThapar Institute of Engineering and Technology Patiala- 147001 India
| |
Collapse
|
22
|
Antiproliferative hydrogen sulfide releasing evodiamine derivatives and their apoptosis inducing properties. Eur J Med Chem 2018; 151:376-388. [DOI: 10.1016/j.ejmech.2018.04.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 04/02/2018] [Accepted: 04/03/2018] [Indexed: 12/26/2022]
|
23
|
Yang J, Chen H, Wang Q, Deng S, Huang M, Ma X, Song P, Du J, Huang Y, Wen Y, Ren Y, Yang X. Inhibitory Effect of Kurarinone on Growth of Human Non-small Cell Lung Cancer: An Experimental Study Both in Vitro and in Vivo Studies. Front Pharmacol 2018; 9:252. [PMID: 29628889 PMCID: PMC5876310 DOI: 10.3389/fphar.2018.00252] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 03/06/2018] [Indexed: 12/16/2022] Open
Abstract
Kurarinone, a flavonoid isolated from Sophora flavescens Aiton, has been reported to have significant antitumor activity. However, the cytotoxic activity of kurarinone against non-small cell lung cancer (NSCLC) cells is still under explored. In our study, we have evaluated the inhibitory effects of kurarinone on the growth of NSCLC both in vivo and in vitro as well as the molecular mechanisms underlying kurarinone-induced A549 cell apoptosis. The results showed that kurarinone effectively inhibited the proliferation of A549 cells with little toxic effects on human bronchial epithelial cell line BEAS-2B. FASC examination and Hoechst 33258 staining assay showed that kurarinone dose-dependently provoked A549 cells apoptosis. Mechanistically, kurarinone significantly decreased the ratio of Bcl-2/Bax, thereby causing the activation of caspase 9 and caspase 3, and reduced the expression of Grp78, which led to relieve the inhibition of caspase-12 and caspase-7, as well as suppressing the activity of AKT. Meanwhile, modeling results from the Surflex-Dock program suggested that residue Ser473 of Akt is a potential binding site for kurarinone. In vivo, kurarinone inhibited the growth of A549 xenograft mouse models without apparent signs of toxicity. Our study indicated that kurarinone has the potential effects of anti-NSCLC, implemented through activating mitochondria apoptosis signaling pathway, as well as repressing the activity of endoplasmic reticulum pathway and AKT in A549 cells.
Collapse
Affiliation(s)
- Jie Yang
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
| | - Hao Chen
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China.,College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Qiang Wang
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
| | - Shihao Deng
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
| | - Mi Huang
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
| | - Xinhua Ma
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
| | - Ping Song
- Division of Science & Technology, Qinghai University for Nationalities, Xining, China
| | - Jingwen Du
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
| | - Yun Huang
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
| | - Yanzhang Wen
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
| | - Yongshen Ren
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
| | - Xinzhou Yang
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
| |
Collapse
|
24
|
Li LY, Peng JD, Zhou W, Qiao H, Deng X, Li ZH, Li JD, Fu YD, Li S, Sun K, Liu HM, Zhao W. Potent hydrazone derivatives targeting esophageal cancer cells. Eur J Med Chem 2018; 148:359-371. [PMID: 29475156 DOI: 10.1016/j.ejmech.2018.02.033] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/19/2017] [Accepted: 02/10/2018] [Indexed: 01/06/2023]
Abstract
Hydrazone and their derivatives are a series of highly active molecules, which are widely used as lead compounds for the research and development of new anti-cancer drugs. In this study, 20 compounds were synthesized, based on this scaffold and their in vitro cytotoxicity against 6 cancer cell lines, including EC9706, SMMC-7721, MCF7, PC3, MGC-803 and EC109 was tested. Among them, compound 6p, showed strong anti-proliferative activities on esophageal carcinoma cells: EC9706 and EC109 with IC50 values of 1.09 ± 0.03 and 2.79 ± 0.45 μM, respectively. 6p also significantly induces both EC9706 and EC109 cell cycle arrest at G0/G1 phase and cell apoptosis, as well as intracellular ROS accumulation, which could be markedly reversed caspase or ROS inhibitor: NAC. Meanwhile, treatment of compound 6p results in significant declined mitochondria membrane potential, increases in the expression of P53 and bax, as well as decrease in Bcl-2. 6p also activates caspase-8/9/3, PARP and Bid, indicating that 6p induces cancer cell apoptosis via the death receptor-mediated extrinsic pathway and the mitochondria-mediated intrinsic pathway. Further studies also proved that 6p does not show obvious side effects at cellular and in vivo levels. Our findings suggested that hydrazone derivative: compound 6p may serve as a lead compound for further optimization against esophageal cancer cells.
Collapse
Affiliation(s)
- Ling-Yu Li
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Co-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Jia-Di Peng
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Co-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Wenjuan Zhou
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Co-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Hui Qiao
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Co-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Xin Deng
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Co-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Zhou-Hua Li
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Co-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Ji-Deng Li
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Co-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Yun-Dong Fu
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Co-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Song Li
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Co-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Kai Sun
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Co-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, PR China.
| | - Hong-Min Liu
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Co-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, PR China.
| | - Wen Zhao
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Co-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, PR China.
| |
Collapse
|
25
|
Li DH, Li JY, Xue CM, Han T, Sai CM, Wang KB, Lu JC, Jing YK, Hua HM, Li ZL. Antiproliferative Dimeric Aporphinoid Alkaloids from the Roots of Thalictrum cultratum. JOURNAL OF NATURAL PRODUCTS 2017; 80:2893-2904. [PMID: 29131616 DOI: 10.1021/acs.jnatprod.7b00387] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Inspired by the intriguing structures and bioactivities of dimeric alkaloids, 11 new thalifaberine-type aporphine-benzylisoquinoline alkaloids, thalicultratines A-K, a tetrahydroprotoberberine-aporphine alkaloid, thalicultratine L, and five known ones were isolated from the roots of Thalictrum cultratum. Their structures were defined on the basis of NMR and HRESIMS data. The antiproliferative activities of compounds 1-17 were evaluated against human leukemia HL-60 and prostate cancer PC-3 cells. Most alkaloids showed potent cytotoxicity against selected cancer cells. Preliminary SARs are discussed. The most active new compound (3), with an IC50 value of 1.06 μM against HL-60 cells, was selected for mechanism of action studies. The results revealed that compound 3 induced apoptosis and arrested the HL-60 cell cycle at the S phase with the loss of mitochondria membrane potential. The nuclear morphological Hoechst 33258 staining assay was also carried out, and the results confirmed apoptosis.
Collapse
Affiliation(s)
- Da-Hong Li
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and ‡School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University , Shenyang 110016, People's Republic of China
| | - Jian-Yong Li
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and ‡School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University , Shenyang 110016, People's Republic of China
| | - Chun-Mei Xue
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and ‡School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University , Shenyang 110016, People's Republic of China
| | - Tong Han
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and ‡School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University , Shenyang 110016, People's Republic of China
| | - Chun-Mei Sai
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and ‡School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University , Shenyang 110016, People's Republic of China
| | - Kai-Bo Wang
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and ‡School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University , Shenyang 110016, People's Republic of China
| | - Jin-Cai Lu
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and ‡School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University , Shenyang 110016, People's Republic of China
| | - Yong-Kui Jing
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and ‡School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University , Shenyang 110016, People's Republic of China
| | - Hui-Ming Hua
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and ‡School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University , Shenyang 110016, People's Republic of China
| | - Zhan-Lin Li
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and ‡School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University , Shenyang 110016, People's Republic of China
| |
Collapse
|
26
|
Sai C, Li D, Li S, Han T, Guo Y, Li Z, Hua H. LC-MS guided isolation of three pairs of enantiomeric alkaloids from Macleaya cordata and their enantioseparations, antiproliferative activity, apoptosis-inducing property. Sci Rep 2017; 7:15410. [PMID: 29133815 PMCID: PMC5684219 DOI: 10.1038/s41598-017-15423-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 10/27/2017] [Indexed: 12/27/2022] Open
Abstract
(±)-Macleayins F-H (1-3), three pairs of new enantiomeric alkaloid dimers, along with four known alkaloids (4-7) as their plausible biogenetic precursors, were isolated from the aerial parts of Macleaya cordata. Compounds 1-3 were obtained under the guidance of LC-MS investigation, and their structures were elucidated by analysis of the 1D and 2D NMR spectroscopic data. The racemic mixtures were successfully separated by chiral HPLC, and the absolute configurations of enantiomers were determined by electronic circular dichroism (ECD) spectroscopy. Compounds 1-7 showed antiproliferative activity against HL-60 with IC50 values of 1.34-41.30 μM, especially compounds 1-2 exhibited the best inhibitory activity against HL-60 cell lines. In addition, the preliminary mechanism investigation for compound 2 using Annexin V/7-AAD double-staining assay, DAPI staining assay and JC-1 staining method, indicated that 2 inhibited cancer cell proliferation potentially through inducing apoptosis via the mitochondria-related pathway and arrested cell cycle of HL-60 cells at S phase.
Collapse
Affiliation(s)
- Chunmei Sai
- School of Pharmacy, Jining Medical University, Rizhao, 276826, Shandong Province, People's Republic of China. .,Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning Province, People's Republic of China.
| | - Dahong Li
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning Province, People's Republic of China
| | - Shengge Li
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning Province, People's Republic of China
| | - Tong Han
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning Province, People's Republic of China
| | - Yongzhi Guo
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning Province, People's Republic of China
| | - Zhanlin Li
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning Province, People's Republic of China.
| | - Huiming Hua
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning Province, People's Republic of China.
| |
Collapse
|
27
|
Zlotin SG, Churakov AM, Dalinger IL, Luk’yanov OA, Makhova NN, Sukhorukov AY, Tartakovsky VA. Recent advances in synthesis of organic nitrogen–oxygen systems for medicine and materials science. MENDELEEV COMMUNICATIONS 2017. [DOI: 10.1016/j.mencom.2017.11.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
28
|
Design and synthesis of novel nitrogen mustard-evodiamine hybrids with selective antiproliferative activity. Bioorg Med Chem Lett 2017; 27:4989-4993. [DOI: 10.1016/j.bmcl.2017.10.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 09/26/2017] [Accepted: 10/07/2017] [Indexed: 11/22/2022]
|
29
|
Larin AA, Fershtat LL, Ananyev IV, Makhova NN. Versatile approach to heteroarylfuroxan derivatives from oximinofuroxans via a one-pot, nitration/thermolysis/[3+2]-cycloaddition cascade. Tetrahedron Lett 2017. [DOI: 10.1016/j.tetlet.2017.09.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
30
|
Bai L, Gao C, Liu Q, Yu C, Zhang Z, Cai L, Yang B, Qian Y, Yang J, Liao X. Research progress in modern structure of platinum complexes. Eur J Med Chem 2017; 140:349-382. [PMID: 28985575 DOI: 10.1016/j.ejmech.2017.09.034] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 07/18/2017] [Accepted: 09/18/2017] [Indexed: 10/18/2022]
Abstract
Since the antitumor activity of cisplatin was discovered in 1967 by Rosenberg, platinum-based anticancer drugs have played an important role in chemotherapy in clinic. Nevertheless, platinum anticancer drugs also have caused severe side effects and cross drug resistance which limited their applications. Therefore, a significant amount of efforts have been devoted to developing new platinum-based anticancer agents with equal or higher antitumor activity but lower toxicity. Until now, a large number of platinum-based complexes have been prepared and extensively investigated in vitro and in vivo. Among them, some platinum-based complexes revealing excellent anticancer activity showed the potential to be developed as novel type of anticancer agents. In this account, we present such platinum-based anticancer complexes which owning various types of ligands, such as, amine carrier ligands, leaving groups, reactive molecule, steric hindrance groups, non-covalently binding platinum (II) complexes, Platinum(IV) complexes and polynuclear platinum complexes. Overall, platinum-based anticancer complexes reported recently years upon modern structure are emphasized.
Collapse
Affiliation(s)
- Linkui Bai
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Chuanzhu Gao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| | - Qinghua Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Congtao Yu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Zhuxin Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Linxiang Cai
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Bo Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Yunxu Qian
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Jian Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Xiali Liao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| |
Collapse
|
31
|
Tian K, Xu F, Gao X, Han T, Li J, Pan H, Zang L, Li D, Li Z, Uchita T, Gao M, Hua H. Nitric oxide-releasing derivatives of brefeldin A as potent and highly selective anticancer agents. Eur J Med Chem 2017; 136:131-143. [DOI: 10.1016/j.ejmech.2017.05.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 05/01/2017] [Accepted: 05/04/2017] [Indexed: 12/27/2022]
|
32
|
Discovery of novel antitumor nitric oxide-donating β -elemene hybrids through inhibiting the PI3K/Akt pathway. Eur J Med Chem 2017; 135:414-423. [DOI: 10.1016/j.ejmech.2017.04.045] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 04/16/2017] [Accepted: 04/19/2017] [Indexed: 12/18/2022]
|
33
|
Fershtat LL, Makhova NN. Molecular Hybridization Tools in the Development of Furoxan-Based NO-Donor Prodrugs. ChemMedChem 2017; 12:622-638. [DOI: 10.1002/cmdc.201700113] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 03/27/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Leonid L. Fershtat
- N. D. Zelinsky Institute of Organic Chemistry; Russian Academy of Sciences; Leninsky Prosp. 47 Moscow 119991 Russian Federation
| | - Nina N. Makhova
- N. D. Zelinsky Institute of Organic Chemistry; Russian Academy of Sciences; Leninsky Prosp. 47 Moscow 119991 Russian Federation
| |
Collapse
|
34
|
Design and synthesis of novel tetrandrine derivatives as potential anti-tumor agents against human hepatocellular carcinoma. Eur J Med Chem 2017; 127:554-566. [DOI: 10.1016/j.ejmech.2017.01.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 01/06/2017] [Accepted: 01/06/2017] [Indexed: 12/13/2022]
|
35
|
Fang Y, Wang R, He M, Huang H, Wang Q, Yang Z, Li Y, Yang S, Jin Y. Nitric oxide-donating derivatives of hederacolchiside A 1: Synthesis and biological evaluation in vitro and in vivo as potential anticancer agents. Bioorg Med Chem Lett 2016; 27:98-101. [PMID: 27866816 DOI: 10.1016/j.bmcl.2016.11.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 11/02/2016] [Accepted: 11/09/2016] [Indexed: 10/20/2022]
Abstract
A series of nitric oxide (NO) donating derivatives of hederacolchiside A1 bearing triterpenoid saponin motif were designed, synthesized and evaluated for their anticancer activity. All of the tested furoxan-based NO releasing compounds showed significant proliferation inhibitory activities. Especially compound 6a exhibited strong cytotoxicity (IC50=1.6-6.5μM) against four human tumor cell lines (SMMC-7721, NCI-H460, U251, HCT-116) in vitro and the highest level of NO releasing. Furthermore, compound 6a was revealed low acute toxicity to mice and weak haemolytic activity with potent tumor growth inhibition against mice H22 hepatocellular cells in vivo (51.5%).
Collapse
Affiliation(s)
- Yuanying Fang
- National Engineering Research Center for Manufacturing Technology of TCM Solid Preparation, Jiangxi University of Traditional Chinese Medicine, 56 Yangming Road, Nanchang 330006, China
| | - Rikang Wang
- National Engineering Research Center for Manufacturing Technology of TCM Solid Preparation, Jiangxi University of Traditional Chinese Medicine, 56 Yangming Road, Nanchang 330006, China
| | - Mingzhen He
- National Engineering Research Center for Manufacturing Technology of TCM Solid Preparation, Jiangxi University of Traditional Chinese Medicine, 56 Yangming Road, Nanchang 330006, China
| | - Hesong Huang
- National Engineering Research Center for Manufacturing Technology of TCM Solid Preparation, Jiangxi University of Traditional Chinese Medicine, 56 Yangming Road, Nanchang 330006, China
| | - Qi Wang
- National Engineering Research Center for Manufacturing Technology of TCM Solid Preparation, Jiangxi University of Traditional Chinese Medicine, 56 Yangming Road, Nanchang 330006, China
| | - Zunhua Yang
- College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, 818 Xingwan Road, Nanchang 330004, China.
| | - Yan Li
- National Engineering Research Center for Manufacturing Technology of TCM Solid Preparation, Jiangxi University of Traditional Chinese Medicine, 56 Yangming Road, Nanchang 330006, China
| | - Shilin Yang
- College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, 818 Xingwan Road, Nanchang 330004, China
| | - Yi Jin
- National Engineering Research Center for Manufacturing Technology of TCM Solid Preparation, Jiangxi University of Traditional Chinese Medicine, 56 Yangming Road, Nanchang 330006, China.
| |
Collapse
|