1
|
Fallica AN, Ciaffaglione V, Modica MN, Pittalà V, Salerno L, Amata E, Marrazzo A, Romeo G, Intagliata S. Structure-activity relationships of mixed σ1R/σ2R ligands with antiproliferative and anticancer effects. Bioorg Med Chem 2022; 73:117032. [DOI: 10.1016/j.bmc.2022.117032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/16/2022] [Accepted: 09/21/2022] [Indexed: 11/27/2022]
|
2
|
Romeo G, Bonanno F, Wilson LL, Arena E, Modica MN, Pittalà V, Salerno L, Prezzavento O, McLaughlin JP, Intagliata S. Development of New Benzylpiperazine Derivatives as σ 1 Receptor Ligands with in Vivo Antinociceptive and Anti-Allodynic Effects. ACS Chem Neurosci 2021; 12:2003-2012. [PMID: 34019387 PMCID: PMC8291485 DOI: 10.1021/acschemneuro.1c00106] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/10/2021] [Indexed: 12/22/2022] Open
Abstract
σ-1 receptors (σ1R) modulate nociceptive signaling, driving the search for selective antagonists to take advantage of this promising target to treat pain. In this study, a new series of benzylpiperazinyl derivatives has been designed, synthesized, and characterized for their affinities toward σ1R and selectivity over the σ-2 receptor (σ2R). Notably, 3-cyclohexyl-1-{4-[(4-methoxyphenyl)methyl]piperazin-1-yl}propan-1-one (15) showed the highest σ1R receptor affinity (Ki σ1 = 1.6 nM) among the series with a significant improvement of the σ1R selectivity (Ki σ2/Ki σ1= 886) compared to the lead compound 8 (Ki σ2/Ki σ1= 432). Compound 15 was further tested in a mouse formalin assay of inflammatory pain and chronic nerve constriction injury (CCI) of neuropathic pain, where it produced dose-dependent (3-60 mg/kg, i.p.) antinociception and anti-allodynic effects. Moreover, compound 15 demonstrated no significant effects in a rotarod assay, suggesting that this σ1R antagonist did not produce sedation or impair locomotor responses. Overall, these results encourage the further development of our benzylpiperazine-based σ1R antagonists as potential therapeutics for chronic pain.
Collapse
Affiliation(s)
- Giuseppe Romeo
- Department
of Drug and Health Sciences, University
of Catania, viale A. Doria 6, 95125 Catania, Italy
| | - Federica Bonanno
- Department
of Drug and Health Sciences, University
of Catania, viale A. Doria 6, 95125 Catania, Italy
| | - Lisa L. Wilson
- Department
of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| | - Emanuela Arena
- Department
of Drug and Health Sciences, University
of Catania, viale A. Doria 6, 95125 Catania, Italy
| | - Maria N. Modica
- Department
of Drug and Health Sciences, University
of Catania, viale A. Doria 6, 95125 Catania, Italy
| | - Valeria Pittalà
- Department
of Drug and Health Sciences, University
of Catania, viale A. Doria 6, 95125 Catania, Italy
| | - Loredana Salerno
- Department
of Drug and Health Sciences, University
of Catania, viale A. Doria 6, 95125 Catania, Italy
| | - Orazio Prezzavento
- Department
of Drug and Health Sciences, University
of Catania, viale A. Doria 6, 95125 Catania, Italy
| | - Jay P. McLaughlin
- Department
of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| | - Sebastiano Intagliata
- Department
of Drug and Health Sciences, University
of Catania, viale A. Doria 6, 95125 Catania, Italy
| |
Collapse
|
3
|
Romeo G, Prezzavento O, Intagliata S, Pittalà V, Modica MN, Marrazzo A, Turnaturi R, Parenti C, Chiechio S, Arena E, Campisi A, Sposito G, Salerno L. Synthesis, in vitro and in vivo characterization of new benzoxazole and benzothiazole-based sigma receptor ligands. Eur J Med Chem 2019; 174:226-235. [PMID: 31042618 DOI: 10.1016/j.ejmech.2019.04.056] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/18/2019] [Accepted: 04/19/2019] [Indexed: 02/07/2023]
Abstract
A new set of 5-chlorobenzoxazole- and 5-chlorobenzothiazole-based derivatives containing the azepane ring as a basic moiety was designed, synthesized and evaluated through binding assays to measure their affinity and selectivity towards σ1 and σ2 receptors. Compounds 19, 22 and 24, with a four units spacer between the bicyclic scaffold and the azepane ring, showed nanomolar affinity towards both receptor subtype and the best Ki values (Ki σ1 = 1.27, 2.30, and 0.78 and Ki σ2 = 7.9, 3.8, and 7.61 nM, respectively). Evaluation of cytotoxic and apoptotic effects in MCF-7 human cancer cells was useful to assess σ2 receptor activity, while an in vivo mice model of inflammatory pain allowed to analyze σ1 receptor pharmacological properties. In vitro and in vivo results suggested that compound 19 is a σ1/σ2 agonist, compound 24 a σ1 antagonist/σ2 agonist, whereas compound 22 might act as σ1 antagonist/σ2 partial agonist. Due to their pharmacological profile, a potential therapeutic application in cancer of aforesaid novel σ1/σ2 receptor ligands, especially 22 and 24, is proposed.
Collapse
Affiliation(s)
- Giuseppe Romeo
- Department of Drug Sciences, University of Catania, Viale A. Doria 6, 95125, Catania, Italy
| | - Orazio Prezzavento
- Department of Drug Sciences, University of Catania, Viale A. Doria 6, 95125, Catania, Italy.
| | - Sebastiano Intagliata
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA; Department of Drug Sciences, University of Catania, Viale A. Doria 6, 95125, Catania, Italy.
| | - Valeria Pittalà
- Department of Drug Sciences, University of Catania, Viale A. Doria 6, 95125, Catania, Italy
| | - Maria N Modica
- Department of Drug Sciences, University of Catania, Viale A. Doria 6, 95125, Catania, Italy
| | - Agostino Marrazzo
- Department of Drug Sciences, University of Catania, Viale A. Doria 6, 95125, Catania, Italy
| | - Rita Turnaturi
- Department of Drug Sciences, University of Catania, Viale A. Doria 6, 95125, Catania, Italy
| | - Carmela Parenti
- Department of Drug Sciences, University of Catania, Viale A. Doria 6, 95125, Catania, Italy
| | - Santina Chiechio
- Department of Drug Sciences, University of Catania, Viale A. Doria 6, 95125, Catania, Italy; Oasi Research Institute-IRCCS, Troina, Italy
| | - Emanuela Arena
- Department of Drug Sciences, University of Catania, Viale A. Doria 6, 95125, Catania, Italy
| | - Agata Campisi
- Department of Drug Sciences, University of Catania, Viale A. Doria 6, 95125, Catania, Italy
| | - Giovanni Sposito
- Department of Drug Sciences, University of Catania, Viale A. Doria 6, 95125, Catania, Italy
| | - Loredana Salerno
- Department of Drug Sciences, University of Catania, Viale A. Doria 6, 95125, Catania, Italy
| |
Collapse
|
4
|
Rui M, Rossino G, Coniglio S, Monteleone S, Scuteri A, Malacrida A, Rossi D, Catenacci L, Sorrenti M, Paolillo M, Curti D, Venturini L, Schepmann D, Wünsch B, Liedl KR, Cavaletti G, Pace V, Urban E, Collina S. Identification of dual Sigma1 receptor modulators/acetylcholinesterase inhibitors with antioxidant and neurotrophic properties, as neuroprotective agents. Eur J Med Chem 2018; 158:353-370. [PMID: 30223122 DOI: 10.1016/j.ejmech.2018.09.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 09/03/2018] [Accepted: 09/04/2018] [Indexed: 12/17/2022]
Abstract
In this manuscript we report on the design, synthesis and evaluation of dual Sigma 1 Receptor (S1R) modulators/Acetylcholinesterase (AChE) inhibitors endowed with antioxidant and neurotrophic properties, potentially able to counteract neurodegeneration. The compounds based on arylalkylaminoketone scaffold integrate the pharmacophoric elements of RRC-33, a S1R modulator developed by us, donepezil, a well-known AChE inhibitor, and curcumin, a natural antioxidant compound with neuroprotective properties. A small library of compounds was synthesized and preliminary in vitro screening performed. Some compounds showed good S1R binding affinity, selectivity towards S2R and N-Methyl-d-Aspartate (NMDA) receptor, AChE relevant inhibiting activity and are potentially able to bypass the BBB, as predicted by the in silico study. For the hits 10 and 20, the antioxidant profile was assessed in SH-SY5Y human neuroblastoma cell lines by evaluating their protective effect against H2O2 cytotoxicity and reactive oxygen species (ROS) production. Tested compounds resulted effective in decreasing ROS production, thus ameliorating the cellular survival. Moreover, compounds 10 and 20 showed to be effective in promoting the neurite elongation of Dorsal Root Ganglia (DRG), thus demonstrating a promising neurotrophic activity. Of note, the tested compounds did not show any cytotoxic effect at the concentration assayed. Relying on these encouraging results, both compounds will undergo a structure optimization program for the development of therapeutic candidates for neurodegenerative diseases treatment.
Collapse
Affiliation(s)
- Marta Rui
- Department of Drug Sciences, Medicinal Chemistry, Pharmaceutical Technology and Pharmacological Sections, University of Pavia, Viale Taramelli 6 and 12, 27100 Pavia, Italy
| | - Giacomo Rossino
- Department of Drug Sciences, Medicinal Chemistry, Pharmaceutical Technology and Pharmacological Sections, University of Pavia, Viale Taramelli 6 and 12, 27100 Pavia, Italy
| | - Stefania Coniglio
- Department of Drug Sciences, Medicinal Chemistry, Pharmaceutical Technology and Pharmacological Sections, University of Pavia, Viale Taramelli 6 and 12, 27100 Pavia, Italy
| | - Stefania Monteleone
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria; Department of Pharmaceutical Chemistry, Philipps-University Marburg, Marbacher Weg 6, 35032 Marburg, Germany
| | - Arianna Scuteri
- School of Medicine and Surgery, University Milano-Bicocca, Via Cadore 48, 20900 Monza, Italy
| | - Alessio Malacrida
- School of Medicine and Surgery, University Milano-Bicocca, Via Cadore 48, 20900 Monza, Italy
| | - Daniela Rossi
- Department of Drug Sciences, Medicinal Chemistry, Pharmaceutical Technology and Pharmacological Sections, University of Pavia, Viale Taramelli 6 and 12, 27100 Pavia, Italy
| | - Laura Catenacci
- Department of Drug Sciences, Medicinal Chemistry, Pharmaceutical Technology and Pharmacological Sections, University of Pavia, Viale Taramelli 6 and 12, 27100 Pavia, Italy
| | - Milena Sorrenti
- Department of Drug Sciences, Medicinal Chemistry, Pharmaceutical Technology and Pharmacological Sections, University of Pavia, Viale Taramelli 6 and 12, 27100 Pavia, Italy
| | - Mayra Paolillo
- Department of Drug Sciences, Medicinal Chemistry, Pharmaceutical Technology and Pharmacological Sections, University of Pavia, Viale Taramelli 6 and 12, 27100 Pavia, Italy
| | - Daniela Curti
- Department of Biology and Biotechnology "L. Spallanzani", Lab. of Cellular and Molecular Neuropharmacology, University of Pavia, Via Ferrata 9, 27100 Pavia, Italy
| | - Letizia Venturini
- Department of Internal Medicine and Therapeutics, University of Pavia, Via Taramelli 24, 27100 Pavia, Italy
| | - Dirk Schepmann
- Institute of Pharmaceutical and Medicinal Chemistry, University of Muenster, Correnstrasse 48, 48149, Muenster, Germany
| | - Bernhard Wünsch
- Institute of Pharmaceutical and Medicinal Chemistry, University of Muenster, Correnstrasse 48, 48149, Muenster, Germany
| | - Klaus R Liedl
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Guido Cavaletti
- School of Medicine and Surgery, University Milano-Bicocca, Via Cadore 48, 20900 Monza, Italy
| | - Vittorio Pace
- Department of Pharmaceutical Chemistry, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Ernst Urban
- Department of Pharmaceutical Chemistry, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Simona Collina
- Department of Drug Sciences, Medicinal Chemistry, Pharmaceutical Technology and Pharmacological Sections, University of Pavia, Viale Taramelli 6 and 12, 27100 Pavia, Italy.
| |
Collapse
|
5
|
Bautista-Aguilera ÓM, Budni J, Mina F, Medeiros EB, Deuther-Conrad W, Entrena JM, Moraleda I, Iriepa I, López-Muñoz F, Marco-Contelles J. Contilisant, a Tetratarget Small Molecule for Alzheimer's Disease Therapy Combining Cholinesterase, Monoamine Oxidase Inhibition, and H3R Antagonism with S1R Agonism Profile. J Med Chem 2018; 61:6937-6943. [PMID: 29969030 DOI: 10.1021/acs.jmedchem.8b00848] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Contilisant, a permeable, antioxidant, and neuroprotectant agent, showing high nM affinity at H3R and excellent inhibition of the monoamine oxidases and cholinesterases, is an affine and selective S1R agonist in the nanomolar range, based on the binding affinity and functional experiment, a result confirmed by molecular modeling. In addition, contilisant significantly restores the cognitive deficit induced by Aβ1-42 in the radial maze assay in an in vivo Alzheimer's disease test, comparing very favorably with donepezil.
Collapse
Affiliation(s)
| | - Josiane Budni
- Laboratório de Neurologia Experimental , Universidade do Extremo Sul Catarinense , Av. Universitária , 1105 Criciúma , Brazil
| | - Francielle Mina
- Laboratório de Neurologia Experimental , Universidade do Extremo Sul Catarinense , Av. Universitária , 1105 Criciúma , Brazil
| | - Eduarda Behenck Medeiros
- Laboratório de Neurologia Experimental , Universidade do Extremo Sul Catarinense , Av. Universitária , 1105 Criciúma , Brazil
| | - Winnie Deuther-Conrad
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research , Helmholtz-Zentrum Dresden-Rossendorf , 04318 Leipzig , Germany
| | - José M Entrena
- Animal Behavior Research Unit, Scientific Instrumentation Center , University of Granada , Parque Tecnológico de Ciencias de la Salud , 18100 Armilla , Granada , Spain
| | - Ignacio Moraleda
- Departamento de Química Orgánica and Química Inorgánica , Universidad de Alcalá , Ctra. Madrid-Barcelona, Km. 33,6 , 28871 Madrid , Spain
| | - Isabel Iriepa
- Departamento de Química Orgánica and Química Inorgánica , Universidad de Alcalá , Ctra. Madrid-Barcelona, Km. 33,6 , 28871 Madrid , Spain
| | - Francisco López-Muñoz
- Faculty of Health , Camilo José Cela University , 28692 Villanueva de la Cañada, Madrid , Spain
- Neuropsychopharmacology Unit , "Hospital 12 de Octubre" Research Institute , 28041 Madrid , Spain
| | - José Marco-Contelles
- Laboratory of Medicinal Chemistry, IQOG, CSIC , C/Juan de la Cierva 3 , 28006 Madrid , Spain
| |
Collapse
|
6
|
Arena E, Dichiara M, Floresta G, Parenti C, Marrazzo A, Pittalà V, Amata E, Prezzavento O. Novel Sigma-1 receptor antagonists: from opioids to small molecules: what is new? Future Med Chem 2018; 10:231-256. [PMID: 29185346 DOI: 10.4155/fmc-2017-0164] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023] Open
Abstract
Sigma-1 (σ1) receptor has been identified as a chaperone protein that interacts with other proteins, such as N-methyl-D-aspartate (NMDA) and opioid receptors, modulating their activity. σ1 receptor antagonists have been developed to obtain useful compounds for the treatment of psychoses, pain, drug abuse and cancer. Some interesting compounds such as E-5842 (5) and MS-377 (24), haloperidol and piperazine derivatives, respectively, were endowed with high affinity for σ1 receptors (Ki σ1 = 4 and 73 nM; Ki σ2 = 220 and 6900, respectively). They were developed for the treatment of psychotic disorders and 5 also underwent Phase II clinical trials suggesting interesting potential therapeutic applications. Here, σ1 receptor antagonists have been grouped based on chemical structure and reviewed according to structure-activity relationship and potential therapeutic role.
Collapse
Affiliation(s)
- Emanuela Arena
- Department of Drug Sciences, Medicinal Chemistry Section, University of Catania, Viale A Doria 6, 95125 Catania, Italy
| | - Maria Dichiara
- Department of Drug Sciences, Medicinal Chemistry Section, University of Catania, Viale A Doria 6, 95125 Catania, Italy
| | - Giuseppe Floresta
- Department of Drug Sciences, Medicinal Chemistry Section, University of Catania, Viale A Doria 6, 95125 Catania, Italy
- Department of Chemical Sciences, University of Catania, Viale A Doria 6, 95125 Catania, Italy
| | - Carmela Parenti
- Department of Drug Sciences, Pharmacology Section, University of Catania, Viale A Doria 6, 95125 Catania, Italy
| | - Agostino Marrazzo
- Department of Drug Sciences, Medicinal Chemistry Section, University of Catania, Viale A Doria 6, 95125 Catania, Italy
| | - Valeria Pittalà
- Department of Drug Sciences, Medicinal Chemistry Section, University of Catania, Viale A Doria 6, 95125 Catania, Italy
| | - Emanuele Amata
- Department of Drug Sciences, Medicinal Chemistry Section, University of Catania, Viale A Doria 6, 95125 Catania, Italy
| | - Orazio Prezzavento
- Department of Drug Sciences, Medicinal Chemistry Section, University of Catania, Viale A Doria 6, 95125 Catania, Italy
| |
Collapse
|
7
|
Carbone C, Arena E, Pepe V, Prezzavento O, Cacciatore I, Turkez H, Marrazzo A, Di Stefano A, Puglisi G. Nanoencapsulation strategies for the delivery of novel bifunctional antioxidant/σ1 selective ligands. Colloids Surf B Biointerfaces 2017; 155:238-247. [PMID: 28432957 DOI: 10.1016/j.colsurfb.2017.04.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 04/07/2017] [Accepted: 04/10/2017] [Indexed: 11/15/2022]
Abstract
Nowadays sigma-1 receptors are considered as new therapeutic objectives for central nervous system neurodegenerative diseases. Among different molecules, alpha lipoic acid has been identified as a natural potent antioxidant drug, whose therapeutic efficacy is limited by its many drawbacks, such as fast metabolism, poor bioavailability and high physico-chemical instability. Alfa-lipoic acid derivatives have been recently developed demonstrating their neuroprotective activity and effectiveness in different types of oxidative stress. In this work, two derivatives containing an amide or an ester functional group with different lipophilicity, were selected for their important affinity for sigma-1 receptors. Herein, in order to improve the in vitro stability and antioxidant effectiveness of alpha-lipoic acid derivatives, we focused our efforts in the nanoencapsulation strategies. Aqueous-core nanocapsules for the delivery of the hydrophilic compound and nanostructured lipid carrier for the lipophilic derivative, were properly designed and prepared using a direct or inverse eco-friendly organic solvent-free procedure. All nanosystems were characterized in terms of mean size, polydispersity, stability, morphology, encapsulation efficiency and in vitro release profiles. In order to evaluate the nanocarriers biocompatibility and antioxidant effectiveness, in vitro biological studies (cell viability, total antioxidant capacity and total oxidative status) were developed on primary human whole blood cell cultures, on both unloaded and derivatives-loaded nanodevices.
Collapse
Affiliation(s)
- Claudia Carbone
- Department of Drug Sciences, University of Catania, v.le A. Doria 6, 95100, Catania, Italy.
| | - Emanuela Arena
- Department of Drug Sciences, University of Catania, v.le A. Doria 6, 95100, Catania, Italy
| | - Veronica Pepe
- Department of Drug Sciences, University of Catania, v.le A. Doria 6, 95100, Catania, Italy
| | - Orazio Prezzavento
- Department of Drug Sciences, University of Catania, v.le A. Doria 6, 95100, Catania, Italy
| | - Ivana Cacciatore
- Department of Pharmacy, University G. d'Annunzio Chieti-Pescara, Via dei Vestini 31, 66100, Chieti, Italy
| | - Hasan Turkez
- Department of Pharmacy, University G. d'Annunzio Chieti-Pescara, Via dei Vestini 31, 66100, Chieti, Italy; Department of Molecular Biology and Genetics, Erzurum Technical University, Erzurum 25240, Turkey
| | - Agostino Marrazzo
- Department of Drug Sciences, University of Catania, v.le A. Doria 6, 95100, Catania, Italy
| | - Antonio Di Stefano
- Department of Pharmacy, University G. d'Annunzio Chieti-Pescara, Via dei Vestini 31, 66100, Chieti, Italy
| | - Giovanni Puglisi
- Department of Drug Sciences, University of Catania, v.le A. Doria 6, 95100, Catania, Italy
| |
Collapse
|