1
|
Multifunctional radical quenchers as potential therapeutic agents for the treatment of mitochondrial dysfunction. Future Med Chem 2019; 11:1605-1624. [DOI: 10.4155/fmc-2018-0481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Mitochondrial dysfunction is associated with a wide range of human diseases, including neurodegenerative diseases, and is believed to cause or contribute to the etiology of these diseases. These disorders are frequently associated with increased levels of reactive oxygen species. One of the design strategies for therapeutic intervention involves the development of novel small molecules containing redox cores, which can scavenge reactive oxygen radicals and selectively block oxidative damage to the mitochondria. Presently, we describe recent research dealing with multifunctional radical quenchers as antioxidants able to scavenge reactive oxygen radicals. The review encompasses ubiquinone and tocopherol analogs, as well as novel pyri(mi)dinol derivatives, and their ability to function as protective agents in cellular models of mitochondrial diseases.
Collapse
|
2
|
Verma DK, Gupta S, Biswas J, Joshi N, Sivarama Raju K, Wahajuddin M, Singh S. Metabolic Enhancer Piracetam Attenuates the Translocation of Mitochondrion-Specific Proteins of Caspase-Independent Pathway, Poly [ADP-Ribose] Polymerase 1 Up-regulation and Oxidative DNA Fragmentation. Neurotox Res 2018; 34:198-219. [PMID: 29532444 DOI: 10.1007/s12640-018-9878-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 01/29/2018] [Accepted: 01/31/2018] [Indexed: 11/28/2022]
Abstract
Piracetam, a nootropic drug, has been clinically used for decades; however, its mechanism of action still remains enigmatic. The present study was undertaken to evaluate the role of mitochondrion-specific factors of caspase-independent pathway like apoptotic-inducing factor (AIF) and endonuclease-G (endo-G) in piracetam-induced neuroprotection. N2A cells treated with lipopolysaccharide (LPS) exhibited significant cytotoxicity, impaired mitochondrial activity, and reactive oxygen species generation which was significantly attenuated with piracetam co-treatment. Cells co-treated with LPS and piracetam exhibited significant uptake of piracetam in comparison to only piracetam-treated cells as estimated by liquid chromatography-mass spectrometry (LC-MSMS). LPS treatment caused significant translocation of AIF and endonuclease-G in neuronal N2A cells which were significantly attenuated with piracetam co-treatment. Significant over-expression of proinflammatory cytokines was also observed after treatment of LPS to cells which was inhibited with piracetam co-treatment demonstrating its anti-inflammatory property. LPS-treated cells exhibited significant oxidative DNA fragmentation and poly [ADP-ribose] polymerase-1 (PARP-1) up-regulation in nucleus, both of which were attenuated with piracetam treatment. Antioxidant melatonin but not z-VAD offered the inhibited LPS-induced DNA fragmentation indicating the involvement of oxidative DNA fragmentation. Further, we did not observe the altered caspase-3 level after LPS treatment initially while at a later time point, significantly augmented level of caspase-3 was observed which was not inhibited with piracetam treatment. In total, our findings indicate the interference of piracetam in mitochondrion-mediated caspase-independent pathway, as well as its anti-inflammatory and antioxidative properties. Graphical Abstract Graphical abstract indicating the novel interference of metabolic enhancer piracetam (P) in neuronal death mechanisms.
Collapse
Affiliation(s)
- Dinesh Kumar Verma
- Toxicology Division, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
| | - Sonam Gupta
- Toxicology Division, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
| | - Joyshree Biswas
- Toxicology Division, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
| | - Neeraj Joshi
- Department of Biochemistry and Biophysics, Helen Diller Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - K Sivarama Raju
- Pharmacokinetics & Metabolism Division, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
| | - Mu Wahajuddin
- Pharmacokinetics & Metabolism Division, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
| | - Sarika Singh
- Toxicology Division, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India.
| |
Collapse
|
3
|
Montenegro L, Turnaturi R, Parenti C, Pasquinucci L. Idebenone: Novel Strategies to Improve Its Systemic and Local Efficacy. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E87. [PMID: 29401722 PMCID: PMC5853719 DOI: 10.3390/nano8020087] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 01/27/2018] [Accepted: 01/30/2018] [Indexed: 12/16/2022]
Abstract
The key role of antioxidants in treating and preventing many systemic and topical diseases is well recognized. One of the most potent antioxidants available for pharmaceutical and cosmetic use is Idebenone (IDE), a synthetic analogue of Coenzyme Q10. Unfortunately, IDE's unfavorable physicochemical properties such as poor water solubility and high lipophilicity impair its bioavailability after oral and topical administration and prevent its parenteral use. In recent decades, many strategies have been proposed to improve IDE effectiveness in the treatment of neurodegenerative diseases and skin disorders. After a brief description of IDE potential therapeutic applications and its pharmacokinetic and pharmacodynamic profile, this review will focus on the different approaches investigated to overcome IDE drawbacks, such as IDE incorporation into different types of delivery systems (liposomes, cyclodextrins, microemulsions, self-micro-emulsifying drug delivery systems, lipid-based nanoparticles, polymeric nanoparticles) and IDE chemical modification. The results of these studies will be illustrated with emphasis on the most innovative strategies and their future perspectives.
Collapse
Affiliation(s)
- Lucia Montenegro
- Department of Drug Sciences, Pharmaceutical Technology Section, University of Catania, Viale A. Doria 6, 95125 Catania, Italy.
| | - Rita Turnaturi
- Department of Drug Sciences, Medicinal Chemistry Section, University of Catania, Viale A. Doria 6, 95125 Catania, Italy.
| | - Carmela Parenti
- Department of Drug Sciences, Pharmacology and Toxicology Section, University of Catania, Viale A. Doria 6, 95125 Catania, Italy.
| | - Lorella Pasquinucci
- Department of Drug Sciences, Medicinal Chemistry Section, University of Catania, Viale A. Doria 6, 95125 Catania, Italy.
| |
Collapse
|
4
|
Mastroeni D, Nolz J, Khdour OM, Sekar S, Delvaux E, Cuyugan L, Liang WS, Hecht SM, Coleman PD. Oligomeric amyloid β preferentially targets neuronal and not glial mitochondrial-encoded mRNAs. Alzheimers Dement 2018; 14:775-786. [PMID: 29396107 DOI: 10.1016/j.jalz.2017.12.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 11/28/2017] [Accepted: 12/07/2017] [Indexed: 01/04/2023]
Abstract
INTRODUCTION Our laboratories have demonstrated that accumulation of oligomeric amyloid β (OAβ) in neurons is an essential step leading to OAβ-mediated mitochondrial dysfunction. METHODS Alzheimer's disease (AD) and matching control hippocampal neurons, astrocytes, and microglia were isolated by laser-captured microdissection from the same subjects, followed by whole-transcriptome sequencing. Complementary in vitro work was performed in OAβ-treated differentiated SH-SY5Y, followed by the use of a novel CoQ10 analogue for protection. This compound is believed to be effective both in suppressing reactive oxygen species and also functioning in mitochondrial electron transport. RESULTS We report decreases in the same mitochondrial-encoded mRNAs in Alzheimer's disease laser-captured CA1 neurons and in OAβ-treated SH-SY5Y cells, but not in laser-captured microglia and astrocytes. Pretreatment with a novel CoQ10 analogue, protects neuronal mitochondria from OAβ-induced mitochondrial changes. DISCUSSION Similarity of expression changes in neurons from Alzheimer's disease brain and neuronal cells treated with OAβ, and the effect of a CoQ10 analogue on the latter, suggests a pretreatment option to prevent OAβ toxicity, long before the damage is apparent.
Collapse
Affiliation(s)
- Diego Mastroeni
- ASU-Banner Biodesign Neurodegenerative Disease Research Center, Biodesign Institute, and School of Life Sciences, Arizona State University, Tempe, AZ.
| | - Jennifer Nolz
- ASU-Banner Biodesign Neurodegenerative Disease Research Center, Biodesign Institute, and School of Life Sciences, Arizona State University, Tempe, AZ
| | - Omar M Khdour
- Biodesign Center for BioEnergetics, and School of Molecular Sciences, Arizona State University, Tempe, AZ
| | | | - Elaine Delvaux
- ASU-Banner Biodesign Neurodegenerative Disease Research Center, Biodesign Institute, and School of Life Sciences, Arizona State University, Tempe, AZ
| | | | | | - Sidney M Hecht
- Biodesign Center for BioEnergetics, and School of Molecular Sciences, Arizona State University, Tempe, AZ
| | - Paul D Coleman
- ASU-Banner Biodesign Neurodegenerative Disease Research Center, Biodesign Institute, and School of Life Sciences, Arizona State University, Tempe, AZ
| |
Collapse
|
5
|
Inagaki Y, Kobayashi Y, Mutoh K, Abe J. A Simple and Versatile Strategy for Rapid Color Fading and Intense Coloration of Photochromic Naphthopyran Families. J Am Chem Soc 2017; 139:13429-13441. [DOI: 10.1021/jacs.7b06293] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Yuki Inagaki
- Department
of Chemistry, School of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5258, Japan
| | - Yoichi Kobayashi
- Department
of Applied Chemistry, College of Life Sciences, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga 525-8577, Japan
| | - Katsuya Mutoh
- Department
of Chemistry, School of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5258, Japan
| | - Jiro Abe
- Department
of Chemistry, School of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5258, Japan
| |
Collapse
|
6
|
Roy Chowdhury S, Khdour OM, Bandyopadhyay I, Hecht SM. Lipophilic methylene violet analogues as modulators of mitochondrial function and dysfunction. Bioorg Med Chem 2017; 25:5537-5547. [PMID: 28927904 DOI: 10.1016/j.bmc.2017.08.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 08/08/2017] [Accepted: 08/10/2017] [Indexed: 11/16/2022]
Abstract
In an effort to identify methylene blue analogues having improved antioxidant activity, a series of new methylene violet analogues have been designed and synthesized. The analogues were prepared following a synthetic route that is more efficient than the previously reported methods, both in terms of yield and purity of the final products. The route involves the Smiles rearrangement as one of the crucial steps. Smiles rearrangement of suitably substituted diphenyl sulfide intermediates afforded the corresponding phenothiazine analogues in high yields, which were subsequently converted to the final products. The methylene violet analogues were evaluated for their ability to preserve mitochondrial function in Friedreich's ataxia (FRDA) lymphocytes. The analogues were shown to be efficient ROS scavengers, and able to protect cultured FRDA lymphocytes from oxidative stress resulting from inhibition of complex I. The analogues also preserved mitochondrial membrane potential and augmented ATP production. The analogues were found to be better antioxidants than the parent compounds methylene blue and methylene violet.
Collapse
Affiliation(s)
- Sandipan Roy Chowdhury
- Biodesign Center for BioEnergetics, and School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, United States
| | - Omar M Khdour
- Biodesign Center for BioEnergetics, and School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, United States
| | - Indrajit Bandyopadhyay
- Biodesign Center for BioEnergetics, and School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, United States
| | - Sidney M Hecht
- Biodesign Center for BioEnergetics, and School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, United States.
| |
Collapse
|
7
|
Chevalier A, Khdour OM, Schmierer M, Bandyopadhyay I, Hecht SM. Influence of substituent heteroatoms on the cytoprotective properties of pyrimidinol antioxidants. Bioorg Med Chem 2017; 25:1703-1716. [PMID: 28189395 DOI: 10.1016/j.bmc.2017.01.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 01/18/2017] [Accepted: 01/21/2017] [Indexed: 01/04/2023]
Abstract
Recently, we described the optimization of novel pyrimidinol-based antioxidants as potential therapeutic molecules for targeting mitochondrial diseases. That study focused on improving the potency and metabolic stability of pyrimidinol antioxidants. This led us to consider the possibility of altering the positions of the exocyclic alkoxy and alkylamino substituents on the pyrimidinol scaffold. Twelve new analogues were prepared and their biological activities were investigated. The metabolic stability of the prepared regioisomers was also assessed in vitro using bovine liver microsomes. Unexpectedly, the 2-alkoxy-4-alkylamino substituted pyrimidinol antioxidants were found to have properties in protecting mitochondrial function superior to the isomeric 4-alkoxy-2-alkylamino substituted pyrimidinols evaluated in all earlier studies. This observation suggests a possible mode of action involving the intermediacy of an ortho-iminoquinone, a species not previously associated with mitochondrial respiratory chain function.
Collapse
Affiliation(s)
- Arnaud Chevalier
- Biodesign Center for BioEnergetics, Biodesign Institute, and School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, United States
| | - Omar M Khdour
- Biodesign Center for BioEnergetics, Biodesign Institute, and School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, United States
| | - Margaret Schmierer
- Biodesign Center for BioEnergetics, Biodesign Institute, and School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, United States
| | - Indrajit Bandyopadhyay
- Biodesign Center for BioEnergetics, Biodesign Institute, and School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, United States
| | - Sidney M Hecht
- Biodesign Center for BioEnergetics, Biodesign Institute, and School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, United States.
| |
Collapse
|
8
|
Abstract
Telocyte (TC) is a new identified interstitial cell type with a small nuclear and one or several long and thin prolongations with enlargements on them. They were found in many mammals including humans, mouse, rats, dogs, and monkeys and play vital roles in many physiological and pathological conditions. The ultrastructure of mitochondria was observed in TCs, and the alterations were found in TCs from inflammatory ureter tissue. MtDNA is associated with mitochondria normal functions and involved in physiological and pathological processes. However, mitochondria and mtDNA in TCs were not investigated deeply. This review will introduce the origin, distribution, morphology, and functions of TCs and the distribution and functions of TC mitochondria in order to improve a better understanding of the potential functions of mtDNA in TCs.
Collapse
|