1
|
Xie X, Zhang N, Li X, Huang H, Peng C, Huang W, Foster LJ, He G, Han B. Small-molecule dual inhibitors targeting heat shock protein 90 for cancer targeted therapy. Bioorg Chem 2023; 139:106721. [PMID: 37467620 DOI: 10.1016/j.bioorg.2023.106721] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/21/2023] [Accepted: 07/06/2023] [Indexed: 07/21/2023]
Abstract
Heat shock protein 90, also known as Hsp90, is an extensively preserved molecular chaperone that performs a critical function in organizing various biological pathways and cellular operations. As a potential drug target, Hsp90 is closely linked to cancer. Hsp90 inhibitors are a class of drugs that have been extensively studied in preclinical models and have shown promise in a variety of diseases, especially cancer. However, Hsp90 inhibitors have encountered several challenges in clinical development, such as low efficacy, toxicity, or drug resistance, few Hsp90 small molecule inhibitors have been approved worldwide. Nonetheless, combining Hsp90 inhibitors with other tumor inhibitors, such as HDAC inhibitors, tubulin inhibitors, and Topo II inhibitors, has been shown to have synergistic antitumor effects. Consequently, the development of Hsp90 dual-target inhibitors is an effective strategy in cancer treatment, as it enhances potency while reducing drug resistance. This article provides an overview of Hsp90's domain structure and biological functions, as well as a discussion of the design, discovery, and structure-activity relationships of Hsp90 dual inhibitors, aiming to provide insights into clinical drug research from a medicinal chemistry perspective and discover novel Hsp90 dual inhibitors.
Collapse
Affiliation(s)
- Xin Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Michael Smith Laboratories, University of British Columbia, Vancouver V6T 1Z4, Canada
| | - Nan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Department of Dermatology & Venereology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - He Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Wei Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Leonard J Foster
- Michael Smith Laboratories, University of British Columbia, Vancouver V6T 1Z4, Canada.
| | - Gu He
- Department of Dermatology & Venereology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
2
|
Sukumaran S, Tan M, Ben-Uliel SF, Zhang H, De Zotti M, Chua MS, So SK, Qvit N. Rational design, synthesis and structural characterization of peptides and peptidomimetics to target Hsp90/Cdc37 interaction for treating hepatocellular carcinoma. Comput Struct Biotechnol J 2023; 21:3159-3172. [PMID: 37304004 PMCID: PMC10250827 DOI: 10.1016/j.csbj.2023.05.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/23/2023] [Accepted: 05/23/2023] [Indexed: 06/13/2023] Open
Abstract
Heat shock protein 90 (Hsp90) and cell division cycle 37 (Cdc37) work together as a molecular chaperone complex to regulate the activity of a multitude of client protein kinases. These kinases belong to a wide array of intracellular signaling networks that mediate multiple cellular processes including proliferation. As a result, Hsp90 and Cdc37 represent innovative therapeutic targets in various cancers (such as leukemia, multiple myeloma, and hepatocellular carcinoma (HCC)) in which their expression levels are elevated. Conventional small molecule Hsp90 inhibitors act by blocking the conserved adenosine triphosphate (ATP) binding site. However, by targeting less conserved sites in a more specific manner, peptides and peptidomimetics (modified peptides) hold potential as more efficacious and less toxic alternatives to the conventional small molecule inhibitors. Using a rational approach, we herein developed bioactive peptides targeting Hsp90/Cdc37 interaction. A six amino acid linear peptide derived from Cdc37, KTGDEK, was designed to target Hsp90. We used in silico computational docking to first define its mode of interaction, and binding orientation, and then conjugated the peptide with a cell penetrating peptide, TAT, and a fluorescent dye to confirm its ability to colocalize with Hsp90 in HCC cells. Based on the parent linear sequence, we developed a peptidomimetics library of pre-cyclic and cyclic derivatives. These peptidomimetics were evaluated for their binding affinity to Hsp90, and bioactivity in HCC cell lines. Among them, a pre-cyclic peptidomimetic demonstrates high binding affinity and bioactivity in HCC cells, causing reduced cell proliferation that is associated with induction of cell apoptosis, and down-regulation of phosphorylated MEK1/2. Overall, this generalized approach of rational design, structural optimization, and cellular validation of 'drug-like' peptidomimetics against Hsp90/Cdc37 offers a feasible and promising way to design novel therapeutic agents for malignancies and other diseases that are dependent on this molecular chaperone complex.
Collapse
Affiliation(s)
- Surya Sukumaran
- The Azrieli Faculty of Medicine in the Galilee, Bar-Ilan University, Henrietta Szold St. 8, Safed 1311502, Israel
| | - Mingdian Tan
- Asian Liver Center, Department of Surgery, Stanford University School of Medicine, 1201 Welch Road, Palo Alto, CA 94305, USA
| | - Shulamit Fluss Ben-Uliel
- The Azrieli Faculty of Medicine in the Galilee, Bar-Ilan University, Henrietta Szold St. 8, Safed 1311502, Israel
| | - Hui Zhang
- Asian Liver Center, Department of Surgery, Stanford University School of Medicine, 1201 Welch Road, Palo Alto, CA 94305, USA
| | - Marta De Zotti
- Department of Chemistry, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Mei-Sze Chua
- Asian Liver Center, Department of Surgery, Stanford University School of Medicine, 1201 Welch Road, Palo Alto, CA 94305, USA
| | - Samuel K. So
- Asian Liver Center, Department of Surgery, Stanford University School of Medicine, 1201 Welch Road, Palo Alto, CA 94305, USA
| | - Nir Qvit
- The Azrieli Faculty of Medicine in the Galilee, Bar-Ilan University, Henrietta Szold St. 8, Safed 1311502, Israel
| |
Collapse
|
3
|
Monti A, Vitagliano L, Caporale A, Ruvo M, Doti N. Targeting Protein-Protein Interfaces with Peptides: The Contribution of Chemical Combinatorial Peptide Library Approaches. Int J Mol Sci 2023; 24:7842. [PMID: 37175549 PMCID: PMC10178479 DOI: 10.3390/ijms24097842] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/22/2023] [Accepted: 04/23/2023] [Indexed: 05/15/2023] Open
Abstract
Protein-protein interfaces play fundamental roles in the molecular mechanisms underlying pathophysiological pathways and are important targets for the design of compounds of therapeutic interest. However, the identification of binding sites on protein surfaces and the development of modulators of protein-protein interactions still represent a major challenge due to their highly dynamic and extensive interfacial areas. Over the years, multiple strategies including structural, computational, and combinatorial approaches have been developed to characterize PPI and to date, several successful examples of small molecules, antibodies, peptides, and aptamers able to modulate these interfaces have been determined. Notably, peptides are a particularly useful tool for inhibiting PPIs due to their exquisite potency, specificity, and selectivity. Here, after an overview of PPIs and of the commonly used approaches to identify and characterize them, we describe and evaluate the impact of chemical peptide libraries in medicinal chemistry with a special focus on the results achieved through recent applications of this methodology. Finally, we also discuss the role that this methodology can have in the framework of the opportunities, and challenges that the application of new predictive approaches based on artificial intelligence is generating in structural biology.
Collapse
Affiliation(s)
- Alessandra Monti
- Institute of Biostructures and Bioimaging (IBB), National Research Council (CNR), 80131 Napoli, Italy; (A.M.); (L.V.); (M.R.)
| | - Luigi Vitagliano
- Institute of Biostructures and Bioimaging (IBB), National Research Council (CNR), 80131 Napoli, Italy; (A.M.); (L.V.); (M.R.)
| | - Andrea Caporale
- Institute of Crystallography (IC), National Research Council (CNR), Strada Statale 14 km 163.5, Basovizza, 34149 Triese, Italy;
| | - Menotti Ruvo
- Institute of Biostructures and Bioimaging (IBB), National Research Council (CNR), 80131 Napoli, Italy; (A.M.); (L.V.); (M.R.)
| | - Nunzianna Doti
- Institute of Biostructures and Bioimaging (IBB), National Research Council (CNR), 80131 Napoli, Italy; (A.M.); (L.V.); (M.R.)
| |
Collapse
|
4
|
Ershov PV, Mezentsev YV, Ivanov AS. Interfacial Peptides as Affinity Modulating Agents of Protein-Protein Interactions. Biomolecules 2022; 12:106. [PMID: 35053254 PMCID: PMC8773757 DOI: 10.3390/biom12010106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/06/2022] [Accepted: 01/06/2022] [Indexed: 12/25/2022] Open
Abstract
The identification of disease-related protein-protein interactions (PPIs) creates objective conditions for their pharmacological modulation. The contact area (interfaces) of the vast majority of PPIs has some features, such as geometrical and biochemical complementarities, "hot spots", as well as an extremely low mutation rate that give us key knowledge to influence these PPIs. Exogenous regulation of PPIs is aimed at both inhibiting the assembly and/or destabilization of protein complexes. Often, the design of such modulators is associated with some specific problems in targeted delivery, cell penetration and proteolytic stability, as well as selective binding to cellular targets. Recent progress in interfacial peptide design has been achieved in solving all these difficulties and has provided a good efficiency in preclinical models (in vitro and in vivo). The most promising peptide-containing therapeutic formulations are under investigation in clinical trials. In this review, we update the current state-of-the-art in the field of interfacial peptides as potent modulators of a number of disease-related PPIs. Over the past years, the scientific interest has been focused on following clinically significant heterodimeric PPIs MDM2/p53, PD-1/PD-L1, HIF/HIF, NRF2/KEAP1, RbAp48/MTA1, HSP90/CDC37, BIRC5/CRM1, BIRC5/XIAP, YAP/TAZ-TEAD, TWEAK/FN14, Bcl-2/Bax, YY1/AKT, CD40/CD40L and MINT2/APP.
Collapse
Affiliation(s)
- Pavel V. Ershov
- Institute of Biomedical Chemistry, 119121 Moscow, Russia; (Y.V.M.); (A.S.I.)
| | | | | |
Collapse
|
5
|
Targeting Chaperone/Co-Chaperone Interactions with Small Molecules: A Novel Approach to Tackle Neurodegenerative Diseases. Cells 2021; 10:cells10102596. [PMID: 34685574 PMCID: PMC8534281 DOI: 10.3390/cells10102596] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/23/2021] [Accepted: 09/25/2021] [Indexed: 01/07/2023] Open
Abstract
The dysfunction of the proteostasis network is a molecular hallmark of neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, and amyotrophic lateral sclerosis. Molecular chaperones are a major component of the proteostasis network and maintain cellular homeostasis by folding client proteins, assisting with intracellular transport, and interfering with protein aggregation or degradation. Heat shock protein 70 kDa (Hsp70) and 90 kDa (Hsp90) are two of the most important chaperones whose functions are dependent on ATP hydrolysis and collaboration with their co-chaperones. Numerous studies implicate Hsp70, Hsp90, and their co-chaperones in neurodegenerative diseases. Targeting the specific protein–protein interactions between chaperones and their particular partner co-chaperones with small molecules provides an opportunity to specifically modulate Hsp70 or Hsp90 function for neurodegenerative diseases. Here, we review the roles of co-chaperones in Hsp70 or Hsp90 chaperone cycles, the impacts of co-chaperones in neurodegenerative diseases, and the development of small molecules modulating chaperone/co-chaperone interactions. We also provide a future perspective of drug development targeting chaperone/co-chaperone interactions for neurodegenerative diseases.
Collapse
|
6
|
Serwetnyk MA, Blagg BS. The disruption of protein-protein interactions with co-chaperones and client substrates as a strategy towards Hsp90 inhibition. Acta Pharm Sin B 2021; 11:1446-1468. [PMID: 34221862 PMCID: PMC8245820 DOI: 10.1016/j.apsb.2020.11.015] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/12/2020] [Accepted: 11/13/2020] [Indexed: 12/16/2022] Open
Abstract
The 90-kiloDalton (kD) heat shock protein (Hsp90) is a ubiquitous, ATP-dependent molecular chaperone whose primary function is to ensure the proper folding of several hundred client protein substrates. Because many of these clients are overexpressed or become mutated during cancer progression, Hsp90 inhibition has been pursued as a potential strategy for cancer as one can target multiple oncoproteins and signaling pathways simultaneously. The first discovered Hsp90 inhibitors, geldanamycin and radicicol, function by competitively binding to Hsp90's N-terminal binding site and inhibiting its ATPase activity. However, most of these N-terminal inhibitors exhibited detrimental activities during clinical evaluation due to induction of the pro-survival heat shock response as well as poor selectivity amongst the four isoforms. Consequently, alternative approaches to Hsp90 inhibition have been pursued and include C-terminal inhibition, isoform-selective inhibition, and the disruption of Hsp90 protein-protein interactions. Since the Hsp90 protein folding cycle requires the assembly of Hsp90 into a large heteroprotein complex, along with various co-chaperones and immunophilins, the development of small molecules that prevent assembly of the complex offers an alternative method of Hsp90 inhibition.
Collapse
Key Words
- ADP, adenosine diphosphate
- ATP, adenosine triphosphate
- Aha1, activator of Hsp90 ATPase homologue 1
- CTD, C-terminal domain
- Cdc37, cell division cycle 37
- Disruptors
- Grp94, 94-kD glucose-regulated protein
- HIF-1α, hypoxia-inducing factor-1α
- HIP, Hsp70-interaction protein
- HOP, Hsp70‒Hsp90 organizing protein
- HSQC, heteronuclear single quantum coherence
- Her-2, human epidermal growth factor receptor-2
- Hsp90
- Hsp90, 90-kD heat shock protein
- MD, middle domain
- NTD, N-terminal domain
- Natural products
- PPI, protein−protein interaction
- Peptidomimetics
- Protein−protein interactions
- SAHA, suberoylanilide hydroxamic acid
- SAR, structure–activity relationship
- SUMO, small ubiquitin-like modifier
- Small molecules
- TPR2A, tetratricopeptide-containing repeat 2A
- TRAP1, Hsp75tumor necrosis factor receptor associated protein 1
- TROSY, transverse relaxation-optimized spectroscopy
- hERG, human ether-à-go-go-related gene
Collapse
|
7
|
Wang L, Zhang Q, You Q. Targeting the HSP90-CDC37-kinase chaperone cycle: A promising therapeutic strategy for cancer. Med Res Rev 2021; 42:156-182. [PMID: 33846988 DOI: 10.1002/med.21807] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 03/19/2021] [Accepted: 03/31/2021] [Indexed: 12/25/2022]
Abstract
Heat shock protein 90 (HSP90) is an indispensable molecular chaperone that facilitates the maturation of numerous oncoproteins in cancer cells, including protein kinases, ribonucleoproteins, steroid hormone receptors, and transcription factors. Although over 30 HSP90 inhibitors have steadily entered clinical trials, further clinical advancement has been restricted by their limited efficacy, inevitable heat shock response, and multiple side-effects, likely induced via an ATP inhibition mechanism. Since both ATP and various co-chaperones play essential roles in the HSP90 chaperone cycle to achieve integrated function, optimal therapeutics require an understanding of the dynamic interactions among HSP90, ATP, and cochaperones. To date, continuous research has promoted the exploration of the cochaperone cell division cycle 37 (CDC37) as a kinase-specific recognizer and has shown that the HSP90-CDC37-kinase complex is particularly relevant in cancers. Indeed, disrupting the HSP90-CDC37-kinase complex, rather than totally blocking the ATP function of HSP90, is emerging as an alternative way to avoid the limitations of current inhibitors. In this review, we first briefly introduce the HSP90-CDC37-kinase cycle and present the currently available approaches for inhibitor development targeting this cycle and provide insights into selective regulation of the kinase clients of HSP90 by more directional ways.
Collapse
Affiliation(s)
- Lei Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China.,Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, China
| | - Qiuyue Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China.,Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, China
| | - Qidong You
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China.,Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
8
|
Zhang Q, Wu X, Zhou J, Zhang L, Xu X, Zhang L, You Q, Wang L. Design, synthesis and bioevaluation of inhibitors targeting HSP90-CDC37 protein-protein interaction based on a hydrophobic core. Eur J Med Chem 2020; 210:112959. [PMID: 33109397 DOI: 10.1016/j.ejmech.2020.112959] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/15/2020] [Accepted: 10/19/2020] [Indexed: 02/06/2023]
Abstract
HSP90-CDC37 protein-protein interaction (PPI) works as a kinase specific-molecular chaperone system to regulate the maturation of kinases. Currently, selectively disrupting HSP90-CDC37 PPI, rather than the direct inhibition of the ATPase function of HSP90, is emerging as a promising strategy for cancer therapy by specifically blocking the maturation of kinases. However, due to the limited understanding of HSP90-CDC37 binding interface, design of small molecule inhibitors targeting HSP90-CDC37 PPI is challenging. In this work, based on the binding mode of compound 11 (previously reported by our group), we discovered a hydrophobic pocket centered on Phe213, which was previously unknown, contributing to the binding affinity of HSP90-CDC37 PPI inhibitors. A series of hydrophobic substituted inhibitors were utilized to confirm the importance of Phe213 hydrophobic core. Finally, we obtained an optimum compound DDO-5994 (exhibited an ideal binding pattern on hydrophobic core) with improved binding affinity (KD = 5.52 μM) and antiproliferative activity (IC50 = 6.34 μM). Both in vitro and in vivo assays confirmed DDO-5994 as a promising inhibitor to exhibit ideal antitumor efficacy through blocking HSP90-CDC37 PPI.
Collapse
Affiliation(s)
- Qiuyue Zhang
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Xuexuan Wu
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Jianrui Zhou
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Lixiao Zhang
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Xiaoli Xu
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Lianshan Zhang
- Shanghai Hengrui Pharmaceutical Co., Ltd., Shanghai, 200245, China
| | - Qidong You
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Lei Wang
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
9
|
Wang L, Xu X, Jiang Z, You Q. Modulation of protein fate decision by small molecules: targeting molecular chaperone machinery. Acta Pharm Sin B 2020; 10:1904-1925. [PMID: 33163343 PMCID: PMC7606112 DOI: 10.1016/j.apsb.2020.01.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/10/2019] [Accepted: 01/20/2020] [Indexed: 12/14/2022] Open
Abstract
Modulation of protein fate decision and protein homeostasis plays a significant role in altering the protein level, which acts as an orientation to develop drugs with new mechanisms. The molecular chaperones exert significant biological functions on modulation of protein fate decision and protein homeostasis under constantly changing environmental conditions through extensive protein–protein interactions (PPIs) with their client proteins. With the help of molecular chaperone machinery, the processes of protein folding, trafficking, quality control and degradation of client proteins could be arranged properly. The core members of molecular chaperones, including heat shock proteins (HSPs) family and their co-chaperones, are emerging as potential drug targets since they are involved in numerous disease conditions. Development of small molecule modulators targeting not only chaperones themselves but also the PPIs among chaperones, co-chaperones and clients is attracting more and more attention. These modulators are widely used as chemical tools to study chaperone networks as well as potential drug candidates for a broader set of diseases. Here, we reviewed the key checkpoints of molecular chaperone machinery HSPs as well as their co-chaperones to discuss the small molecules targeting on them for modulation of protein fate decision.
Collapse
Affiliation(s)
- Lei Wang
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaoli Xu
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Zhengyu Jiang
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
- Corresponding authors. Tel./fax: +86 25 83271351.
| | - Qidong You
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
- Corresponding authors. Tel./fax: +86 25 83271351.
| |
Collapse
|
10
|
Li L, Wang L, You QD, Xu XL. Heat Shock Protein 90 Inhibitors: An Update on Achievements, Challenges, and Future Directions. J Med Chem 2019; 63:1798-1822. [DOI: 10.1021/acs.jmedchem.9b00940] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Li Li
- State Key Laboratory of Natural Medicines, and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Lei Wang
- State Key Laboratory of Natural Medicines, and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Qi-Dong You
- State Key Laboratory of Natural Medicines, and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xiao-Li Xu
- State Key Laboratory of Natural Medicines, and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
11
|
Bosch J. PPI inhibitor and stabilizer development in human diseases. DRUG DISCOVERY TODAY. TECHNOLOGIES 2018; 24:3-9. [PMID: 29233297 DOI: 10.1016/j.ddtec.2017.10.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 10/12/2017] [Indexed: 12/20/2022]
Abstract
All processes in living organisms are regulated by, or at least influenced by, protein-protein interactions (PPI). Membrane proteins play a fundamental part in this class of interactions: by providing inter-cellular communication and sensing capabilities to the cell, they lead to downstream regulation signaling events. It is therefore not surprising that PPI modulators are of keen interest when developing drug-like molecules for a range of diseases and medical conditions. However, techniques for exploiting PPIs in meaningful ways have only recently become readily available. This review is meant to provide a brief overview of applied techniques for PPI elucidation, and present various case studies of PPI exploitation ranging from early discovery efforts to now-approved market drugs.
Collapse
Affiliation(s)
- Jürgen Bosch
- Pediatric Pulmonology Division, Department of Pediatrics, Case Western Reserve University School of Medicine, 2109 Adelbert Rd, Biomedical Research Building Room 835, Cleveland, OH, USA; InterRayBio, LLC, Baltimore, MD, USA.
| |
Collapse
|
12
|
Ferraro M, D’Annessa I, Moroni E, Morra G, Paladino A, Rinaldi S, Compostella F, Colombo G. Allosteric Modulators of HSP90 and HSP70: Dynamics Meets Function through Structure-Based Drug Design. J Med Chem 2018; 62:60-87. [DOI: 10.1021/acs.jmedchem.8b00825] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Mariarosaria Ferraro
- Istituto di Chimica del Riconoscimento Molecolare, CNR, Via Mario Bianco 9, 20131 Milano, Italy
| | - Ilda D’Annessa
- Istituto di Chimica del Riconoscimento Molecolare, CNR, Via Mario Bianco 9, 20131 Milano, Italy
| | | | - Giulia Morra
- Istituto di Chimica del Riconoscimento Molecolare, CNR, Via Mario Bianco 9, 20131 Milano, Italy
| | - Antonella Paladino
- Istituto di Chimica del Riconoscimento Molecolare, CNR, Via Mario Bianco 9, 20131 Milano, Italy
| | - Silvia Rinaldi
- Istituto di Chimica del Riconoscimento Molecolare, CNR, Via Mario Bianco 9, 20131 Milano, Italy
| | - Federica Compostella
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Via Saldini, 50, 20133 Milano, Italy
| | - Giorgio Colombo
- Istituto di Chimica del Riconoscimento Molecolare, CNR, Via Mario Bianco 9, 20131 Milano, Italy
- Dipartimento di Chimica, Università di Pavia, V.le Taramelli 12, 27100 Pavia, Italy
| |
Collapse
|
13
|
Zheng M, Luan S, Gao S, Cheng L, Hao B, Li J, Chen Y, Hou X, Chen L, Li H. Proton pump inhibitor ilaprazole suppresses cancer growth by targeting T-cell-originated protein kinase. Oncotarget 2018; 8:39143-39153. [PMID: 28388576 PMCID: PMC5503601 DOI: 10.18632/oncotarget.16609] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 03/02/2017] [Indexed: 12/20/2022] Open
Abstract
T-cell-originated protein kinase (TOPK) is highly and frequently expressed in various cancer tissues and plays an indispensable role in the mitosis of cancer cells, and therefore, it is an important target for drug treatment of tumor. Ilaprazole was identified to be a potent TOPK inhibitor. The data indicated that ilaprazole inhibited TOPK activities with high affinity and selectivity. In vitro studies showed that ilaprazole inhibited TOPK activities in HCT116, ES-2, A549, SW1990 cancer cells. Moreover, knockdown of TOPK in these cells decreased their sensitivities to ilaprazole. Results of an in vivo study demonstrated that gavage of ilaprazole in HCT116 colon tumor-bearing mice effectively suppressed cancer growth. The TOPK downstream signaling molecule phospho-histone H3 in tumor tissues was also decreased after ilaprazole treatment. Our results suggested that ilaprazole inhibited the cancer growth by targeting TOPK both in vitro and in vivo.
Collapse
Affiliation(s)
- Mengzhu Zheng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shanshan Luan
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Suyu Gao
- School of Traditional Chinese Materia Medica, Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Li Cheng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Bin Hao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jiacheng Li
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yao Chen
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xuemei Hou
- Livzon Pharmaceutical Group Inc., Zhuhai 519090, China
| | - Lixia Chen
- School of Traditional Chinese Materia Medica, Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Hua Li
- School of Traditional Chinese Materia Medica, Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China.,Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
14
|
Li T, Jiang HL, Tong YG, Lu JJ. Targeting the Hsp90-Cdc37-client protein interaction to disrupt Hsp90 chaperone machinery. J Hematol Oncol 2018; 11:59. [PMID: 29699578 PMCID: PMC5921262 DOI: 10.1186/s13045-018-0602-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 04/20/2018] [Indexed: 12/15/2022] Open
Abstract
Heat shock protein 90 (Hsp90) is a critical molecular chaperone protein that regulates the folding, maturation, and stability of a wide variety of proteins. In recent years, the development of Hsp90-directed inhibitors has grown rapidly, and many of these inhibitors have entered clinical trials. In parallel, the functional dissection of the Hsp90 chaperone machinery has highlighted the activity disruption of Hsp90 co-chaperone as a potential target. With the roles of Hsp90 co-chaperones being elucidated, cell division cycle 37 (Cdc37), a ubiquitous co-chaperone of Hsp90 that directs the selective client proteins into the Hsp90 chaperone cycle, shows great promise. Moreover, the Hsp90-Cdc37-client interaction contributes to the regulation of cellular response and cellular growth and is more essential to tumor tissues than normal tissues. Herein, we discuss the current understanding of the clients of Hsp90-Cdc37, the interaction of Hsp90-Cdc37-client protein, and the therapeutic possibilities of targeting Hsp90-Cdc37-client protein interaction as a strategy to inhibit Hsp90 chaperone machinery to present new insights on alternative ways of inhibiting Hsp90 chaperone machinery.
Collapse
Affiliation(s)
- Ting Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau, China
| | - Hu-Lin Jiang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Yun-Guang Tong
- Department of Pathology, Xinxiang Medical University, 601 East Jinsui Ave, Xinxiang, Henan, China.,Omigen, Inc., 15375 Barranca Pkwy, Irvine, CA, H106, USA
| | - Jin-Jian Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau, China.
| |
Collapse
|
15
|
Weidenauer L, Wang T, Joshi S, Chiosis G, Quadroni MR. Proteomic interrogation of HSP90 and insights for medical research. Expert Rev Proteomics 2017; 14:1105-1117. [PMID: 28990809 PMCID: PMC6027630 DOI: 10.1080/14789450.2017.1389649] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Heat shock protein 90 (HSP90) regulates protein homeostasis in eukaryotes. As a 'professional interactor', HSP90 binds to and chaperones many proteins and has both housekeeping and disease-related functions but its regulation remains in part elusive. HSP90 complexes are a target for therapy, notably against cancer, and several inhibitors are currently in clinical trials. Proteomic studies have revealed the vast interaction network of HSP90 and, in doing so, the extent of cellular processes the chaperone takes part in, especially in yeast and human cells. Furthermore, small-molecule inhibitors were used to probe the global impact of its inhibition on the proteome. Areas covered: We review here recent HSP90-related interactomics and total proteome studies and their relevance for research on cancer, neurodegenerative and pathogen diseases. Expert commentary: Proteomics experiments are our best chance to identify the context-dependent global proteome of HSP90 and thus uncover and understand its disease-specific biology. However, understanding the complexity of HSP90 will require multiple complementary, quantitative approaches and novel bioinformatics to translate interactions into ordered functional networks and pathways. Developing therapies will necessitate more knowledge on HSP90 complexes and networks with disease relevance and on total proteome changes induced by their perturbation. Most work has been done in cancer, thus a lot remains to be done in the context of other diseases.
Collapse
Affiliation(s)
- Lorenz Weidenauer
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Tai Wang
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Suhasini Joshi
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Gabriela Chiosis
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | |
Collapse
|
16
|
Structure-based virtual screening and optimization of modulators targeting Hsp90-Cdc37 interaction. Eur J Med Chem 2017; 136:63-73. [PMID: 28482218 DOI: 10.1016/j.ejmech.2017.04.074] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 04/26/2017] [Accepted: 04/29/2017] [Indexed: 11/21/2022]
Abstract
Identification of novel Hsp90 inhibitors to disrupt Hsp90-Cdc37 protein-protein interaction (PPI) could be an alternative strategy to achieve Hsp90 inhibition. In this paper, a series of small molecules targeting Hsp90-Cdc37 complex are addressed and characterized. The molecules' key characters are determined by utilizing a structure-based virtual screening workflow, derivatives synthesis, and biological evaluation. Structural optimization and structure-activity relationship (SAR) analysis were then carried out on the virtual hit of VS-8 with potent activity, which resulted in the discovery of compound 10 as a more potent regulator of Hsp90-Cdc37 interaction with a promising inhibitory effect (IC50 = 27 μM), a moderate binding capacity (KD = 40 μM) and a preferable antiproliferative activity against several cancer lines including MCF-7, SKBR3 and A549 cell lines (IC50 = 26 μM, 15 μM and 38 μM respectively). All the data suggest that compound 10 exhibits moderate inhibitory effect on Hsp90-Cdc37 and could be regard as a first evidence of a non-natural compound targeting Hsp90-Cdc37 PPI.
Collapse
|