1
|
Gomes AR, Varela CL, Pires AS, Tavares-da-Silva EJ, Roleira FMF. Synthetic and natural guanidine derivatives as antitumor and antimicrobial agents: A review. Bioorg Chem 2023; 138:106600. [PMID: 37209561 DOI: 10.1016/j.bioorg.2023.106600] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/15/2023] [Accepted: 05/05/2023] [Indexed: 05/22/2023]
Abstract
Guanidines are fascinating small nitrogen-rich organic compounds, which have been frequently associated with a wide range of biological activities. This is mainly due to their interesting chemical features. For these reasons, for the past decades, researchers have been synthesizing and evaluating guanidine derivatives. In fact, there are currently on the market several guanidine-bearing drugs. Given the broad panoply of pharmacological activities displayed by guanidine compounds, in this review, we chose to focus on antitumor, antibacterial, antiviral, antifungal, and antiprotozoal activities presented by several natural and synthetic guanidine derivatives, which are undergoing preclinical and clinical studies from January 2010 to January 2023. Moreover, we also present guanidine-containing drugs currently in the market for the treatment of cancer and several infectious diseases. In the preclinical and clinical setting, most of the synthesized and natural guanidine derivatives are being evaluated as antitumor and antibacterial agents. Even though DNA is the most known target of this type of compounds, their cytotoxicity also involves several other different mechanisms, such as interference with bacterial cell membranes, reactive oxygen species (ROS) formation, mitochondrial-mediated apoptosis, mediated-Rac1 inhibition, among others. As for the compounds already used as pharmacological drugs, their main application is in the treatment of different types of cancer, such as breast, lung, prostate, and leukemia. Guanidine-containing drugs are also being used for the treatment of bacterial, antiprotozoal, antiviral infections and, recently, have been proposed for the treatment of COVID-19. To conclude, the guanidine group is a privileged scaffold in drug design. Its remarkable cytotoxic activities, especially in the field of oncology, still make it suitable for a deeper investigation to afford more efficient and target-specific drugs.
Collapse
Affiliation(s)
- Ana R Gomes
- Univ Coimbra, CIEPQPF, Faculty of Pharmacy, Laboratory of Pharmaceutical Chemistry, Azinhaga de Santa Comba, Pólo III - Pólo das Ciências da Saúde, 3000-548 Coimbra, Portugal; Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) area of Environment Genetics and Oncobiology (CIMAGO), Institute of Biophysics, Faculty of Medicine, Azinhaga de Santa Comba, Pólo III - Pólo das Ciências da Saúde, 3000-548 Coimbra, Portugal
| | - Carla L Varela
- Clinical Academic Center of Coimbra (CACC), Praceta Professor Mota Pinto, 3004-561 Coimbra, Portugal; Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Rua Larga, 3004-504 Coimbra, Portugal; Univ Coimbra, CIEPQPF, Faculty of Medicine, Azinhaga de Santa Comba, Pólo III - Pólo das Ciências da Saúde, 3000-548 Coimbra, Portugal
| | - Ana S Pires
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) area of Environment Genetics and Oncobiology (CIMAGO), Institute of Biophysics, Faculty of Medicine, Azinhaga de Santa Comba, Pólo III - Pólo das Ciências da Saúde, 3000-548 Coimbra, Portugal; Clinical Academic Center of Coimbra (CACC), Praceta Professor Mota Pinto, 3004-561 Coimbra, Portugal; Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Rua Larga, 3004-504 Coimbra, Portugal
| | - Elisiário J Tavares-da-Silva
- Univ Coimbra, CIEPQPF, Faculty of Pharmacy, Laboratory of Pharmaceutical Chemistry, Azinhaga de Santa Comba, Pólo III - Pólo das Ciências da Saúde, 3000-548 Coimbra, Portugal.
| | - Fernanda M F Roleira
- Univ Coimbra, CIEPQPF, Faculty of Pharmacy, Laboratory of Pharmaceutical Chemistry, Azinhaga de Santa Comba, Pólo III - Pólo das Ciências da Saúde, 3000-548 Coimbra, Portugal.
| |
Collapse
|
2
|
Santalova EA, Kuzmich AS, Chingizova EA, Menchinskaya ES, Pislyagin EA, Dmitrenok PS. Phytoceramides from the Marine Sponge Monanchora clathrata: Structural Analysis and Cytoprotective Effects. Biomolecules 2023; 13:677. [PMID: 37189423 PMCID: PMC10136155 DOI: 10.3390/biom13040677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/09/2023] [Accepted: 04/11/2023] [Indexed: 05/17/2023] Open
Abstract
In our research on sphingolipids from marine invertebrates, a mixture of phytoceramides was isolated from the sponge Monanchora clathrata (Western Australia). Total ceramide, ceramide molecular species (obtained by RP-HPLC, high-performance liquid chromatography on reversed-phase column) and their sphingoid/fatty acid components were analyzed by NMR (nuclear magnetic resonance) spectroscopy and mass spectrometry. Sixteen new (1b, 3a, 3c, 3d, 3f, 3g, 5c, 5d, 5f, 5g, 6b-g) and twelve known (2b, 2e, 2f, 3b, 3e, 4a-c, 4e, 4f, 5b, 5e) compounds were shown to contain phytosphingosine-type backbones i-t17:0 (1), n-t17:0 (2), i-t18:0 (3), n-t18:0 (4), i-t19:0 (5), or ai-t19:0 (6), N-acylated with saturated (2R)-2-hydroxy C21 (a), C22 (b), C23 (c), i-C23 (d), C24 (e), C25 (f), or C26 (g) acids. The used combination of the instrumental and chemical methods permitted the more detailed investigation of the sponge ceramides than previously reported. It was found that the cytotoxic effect of crambescidin 359 (alkaloid from M. clathrata) and cisplatin decreased after pre-incubation of MDA-MB-231 and HL-60 cells with the investigated phytoceramides. In an in vitro paraquat model of Parkinson's disease, the phytoceramides decreased the neurodegenerative effect and ROS (reactive oxygen species) formation induced by paraquat in neuroblastoma cells. In general, the preliminary treatment (for 24 or 48 h) of the cells with the phytoceramides of M. clathrata was necessary for their cytoprotective functions, otherwise the additive damaging effect of these sphingolipids and cytotoxic compounds (crambescidin 359, cisplatin or paraquat) was observed.
Collapse
Affiliation(s)
- Elena A. Santalova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-let Vladivostoku 159, 690022 Vladivostok, Russia; (A.S.K.); (E.A.C.); (E.S.M.); (E.A.P.)
| | | | | | | | | | - Pavel S. Dmitrenok
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-let Vladivostoku 159, 690022 Vladivostok, Russia; (A.S.K.); (E.A.C.); (E.S.M.); (E.A.P.)
| |
Collapse
|
3
|
Negm WA, Ezzat SM, Zayed A. Marine organisms as potential sources of natural products for the prevention and treatment of malaria. RSC Adv 2023; 13:4436-4475. [PMID: 36760290 PMCID: PMC9892989 DOI: 10.1039/d2ra07977a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/26/2023] [Indexed: 02/05/2023] Open
Abstract
Vector-borne diseases (VBDs) are a worldwide critical concern accounting for 17% of the estimated global burden of all infectious diseases in 2020. Despite the various medicines available for the management, the deadliest VBD malaria, caused by Plasmodium sp., has resulted in hundreds of thousands of deaths in sub-Saharan Africa only. This finding may be explained by the progressive loss of antimalarial medication efficacy, inherent toxicity, the rise of drug resistance, or a lack of treatment adherence. As a result, new drug discoveries from uncommon sources are desperately needed, especially against multi-drug resistant strains. Marine organisms have been investigated, including sponges, soft corals, algae, and cyanobacteria. They have been shown to produce many bioactive compounds that potentially affect the causative organism at different stages of its life cycle, including the chloroquine (CQ)-resistant strains of P. falciparum. These compounds also showed diverse chemical structures belonging to various phytochemical classes, including alkaloids, terpenoids, polyketides, macrolides, and others. The current article presents a comprehensive review of marine-derived natural products with antimalarial activity as potential candidates for targeting different stages and species of Plasmodium in both in vitro and in vivo and in comparison with the commercially available and terrestrial plant-derived products, i.e., quinine and artemisinin.
Collapse
Affiliation(s)
- Walaa A Negm
- Department of Pharmacognosy, Tanta University, College of Pharmacy El-Guish Street Tanta 31527 Egypt
| | - Shahira M Ezzat
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University Kasr El-Aini Street Cairo 11562 Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA) Giza 12451 Egypt
| | - Ahmed Zayed
- Department of Pharmacognosy, Tanta University, College of Pharmacy El-Guish Street Tanta 31527 Egypt
| |
Collapse
|
4
|
New Guanidine Alkaloids Batzelladines O and P from the Marine Sponge Monanchora pulchra Induce Apoptosis and Autophagy in Prostate Cancer Cells. Mar Drugs 2022; 20:md20120738. [PMID: 36547885 PMCID: PMC9783649 DOI: 10.3390/md20120738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/16/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
Two new guanidine alkaloids, batzelladines O (1) and P (2), were isolated from the deep-water marine sponge Monanchora pulchra. The structures of these metabolites were determined by NMR spectroscopy, mass spectrometry, and ECD. The isolated compounds exhibited cytotoxic activity in human prostate cancer cells PC3, PC3-DR, and 22Rv1 at low micromolar concentrations and inhibited colony formation and survival of the cancer cells. Batzelladines O (1) and P (2) induced apoptosis, which was detected by Western blotting as caspase-3 and PARP cleavage. Additionally, induction of pro-survival autophagy indicated as upregulation of LC3B-II and suppression of mTOR was observed in the treated cells. In line with this, the combination with autophagy inhibitor 3-methyladenine synergistically increased the cytotoxic activity of batzelladines O (1) and P (2). Both compounds were equally active in docetaxel-sensitive and docetaxel-resistant prostate cancer cells, despite exhibiting a slight p-glycoprotein substrate-like activity. In combination with docetaxel, an additive effect was observed. In conclusion, the isolated new guanidine alkaloids are promising drug candidates for the treatment of taxane-resistant prostate cancer.
Collapse
|
5
|
Abstract
This review deals with the synthesis of naturally occurring alkaloids containing partially or completely saturated pyrimidine nuclei. The interest in these compounds is associated with their structural diversity, high biological activity and toxicity. The review is divided into four parts, each of which describes a number of synthetic methodologies toward structurally different naturally occurring alkaloids containing saturated cyclic six-membered amidine, guanidine, aminal and urea (thiourea) moieties, respectively. The development of various synthetic strategies for the preparation of these compounds has remarkably increased during the past few decades. This is primarily due to the fact that some of these compounds are isolated only in limited quantities, which makes it practically impossible to study their full structural characteristics and biological activity.
Collapse
|
6
|
Allred TK, Shaghafi MB, Chen PP, Tran Q, Houk KN, Overman LE. Constructing Saturated Guanidinum Heterocycles by Cycloaddition of N-Amidinyliminium Ions with Indoles. Org Lett 2021; 23:7618-7623. [PMID: 34546759 DOI: 10.1021/acs.orglett.1c02832] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We report that structurally complex guanidinium heterocycles can be prepared in one step by regio- and stereoselective [4 + 2]-cycloadditions of N-amidinyliminium ions with indoles or benzothiophene. In contrast to reactions of these heterodienes with alkenes, density functional theory (DFT) calculations show that these cycloadditions take place in a concerted asynchronous fashion. The [4 + 2]-cycloaddition of N-amidinyliminium ions (1,3-diaza-1,3-dienes) with indoles and benzothiophene are distinctive, as related [4 + 2]-cycloadditions of N-acyliminium ions (1-oxa-3-aza-1,3-dienes) are apparently unknown.
Collapse
Affiliation(s)
- Tyler K Allred
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - Michael B Shaghafi
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - Pan-Pan Chen
- Department of Chemistry & Biochemistry, University of California, Los Angeles, California 90095-1569, United States
| | - Quan Tran
- Department of Chemistry & Biochemistry, University of California, Los Angeles, California 90095-1569, United States
| | - K N Houk
- Department of Chemistry & Biochemistry, University of California, Los Angeles, California 90095-1569, United States
| | - Larry E Overman
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| |
Collapse
|
7
|
Song Y, Niu Y, Zheng H, Yao Y. Interaction of Bis-Guanidinium Acetates Surfactants with Bovine Serum Albumin Evaluated by Spectroscopy. TENSIDE SURFACT DET 2021. [DOI: 10.1515/tsd-2020-2283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
The interactions between cocopropane bis-guanidinium acetates, tallowpropane bis-guanidinium acetates with bovine serum albumin (BSA) in an aqueous solution were studied by fluorescence and circular dichroic spectroscopy measurements. The aim of the study was to elucidate the influence of the hydrophilic group and the length of the hydrophobic chain of these surfactants on the mechanism of binding to BSA. The results revealed that for both surfactants, at low concentrations, the Stern–Volmer plots had an upward curvature and at high concentrations, the quenching efficiency was decreased with increase in surfactant concentration. Different thermodynamics parameters demonstrated the existence of hydrogen bond and van der Waals force which acting as binding forces. Static quenching was observed among the protein and surfactant. The conformation of BSA was changed at higher surfactant concentrations as shown by synchronous fluorescence and CD spectroscopy. This work reveals the mechanism and binding characteristics between guanidine surfactants and protein, and provided the basis for further applications of surfactants.
Collapse
Affiliation(s)
- Yongbo Song
- Department of Chemistry and Chemical Engineering Taiyuan Institute of Technology , 31# Xinlan Road Taiyuan Shanxi Province P. R. China
| | - Yulan Niu
- Department of Chemistry and Chemical Engineering Taiyuan Institute of Technology , 31# Xinlan Road Taiyuan Shanxi Province P. R. China
| | - Hongyan Zheng
- Department of Chemistry and Chemical Engineering Taiyuan Institute of Technology , 31# Xinlan Road Taiyuan Shanxi Province P. R. China
| | - Ying Yao
- Department of Chemistry and Chemical Engineering Taiyuan Institute of Technology , 31# Xinlan Road Taiyuan Shanxi Province P. R. China
| |
Collapse
|
8
|
Valdes-Pena MA, Massaro NP, Lin YC, Pierce JG. Leveraging Marine Natural Products as a Platform to Tackle Bacterial Resistance and Persistence. Acc Chem Res 2021; 54:1866-1877. [PMID: 33733746 DOI: 10.1021/acs.accounts.1c00007] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Antimicrobial resistance to existing antibiotics represents one of the greatest threats to human health and is growing at an alarming rate. To further complicate treatment of bacterial infections, many chronic infections are the result of bacterial biofilms that are tolerant to treatment with antibiotics because of the presence of metabolically dormant persister cell populations. Together these threats are creating an increasing burden on the healthcare system, and a "preantibiotic" age is on the horizon if significant action is not taken by the scientific and medical communities. While the golden era of antibiotic discovery (1940s-1960s) produced most of the antibiotic classes in clinical use today, followed by several decades of limited development, there has been a resurgence in antibiotic drug discovery in recent years fueled by the academic and biotech sectors. Historically, great success has been achieved by developing next-generation variants of existing classes of antibiotics, but there remains a dire need for the identification of novel scaffolds and/or antimicrobial targets to drive future efforts to overcome resistance and tolerance. In this regard, there has been no more valuable source for the identification of antibiotics than natural products, with 69-77% of approved antibiotics either being such compounds or being derived from them.Our group has developed a program centered on the chemical synthesis and chemical microbiology of marine natural products with unusual structures and promising levels of activity against multidrug-resistant (MDR) bacterial pathogens. As we are motivated by preparing and studying the biological effects of these molecules, we are not initially pursuing a biological question but instead are allowing the observed phenotypes and activities to guide the ultimate project direction. In this Account, our recent efforts on the synoxazolidinone, lipoxazolidinone, and batzelladine natural products will be discussed and placed in the context of the field's greatest challenges and opportunities. Specifically, the synoxazolidinone family of 4-oxazolidinone-containing natural products has led to the development of several chemical methods to prepare antimicrobial scaffolds and has revealed compounds with potent activity as adjuvants to treat bacterial biofilms. Bearing the same 4-oxazolidinone core, the lipoxazolidinones have proven to be potent single-agent antibiotics. Finally, our synthetic efforts toward the batzelladines revealed analogues with activity against a number of MDR pathogens, highlighted by non-natural stereochemical isomers with superior activity and simplified synthetic access. Taken together, these studies provide several distinct platforms for the development of novel therapeutics that can add to our arsenal of scaffolds for preclinical development and can provide insight into the biochemical processes and pathways that can be targeted by small molecules in the fight against antimicrobial-resistant and -tolerant infections. We hope that this work will serve as inspiration for increased efforts by the scientific community to leverage synthetic chemistry and chemical microbiology toward novel antibiotics that can combat the growing crisis of MDR and tolerant bacterial infections.
Collapse
Affiliation(s)
- M. Alejandro Valdes-Pena
- Department of Chemistry and Comparative Medicine Institute, NC State University, Raleigh, North Carolina 27695, United States
| | - Nicholas P. Massaro
- Department of Chemistry and Comparative Medicine Institute, NC State University, Raleigh, North Carolina 27695, United States
| | - You-Chen Lin
- Department of Chemistry and Comparative Medicine Institute, NC State University, Raleigh, North Carolina 27695, United States
| | - Joshua G. Pierce
- Department of Chemistry and Comparative Medicine Institute, NC State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
9
|
Mayer AMS, Guerrero AJ, Rodríguez AD, Taglialatela-Scafati O, Nakamura F, Fusetani N. Marine Pharmacology in 2016-2017: Marine Compounds with Antibacterial, Antidiabetic, Antifungal, Anti-Inflammatory, Antiprotozoal, Antituberculosis and Antiviral Activities; Affecting the Immune and Nervous Systems, and Other Miscellaneous Mechanisms of Action. Mar Drugs 2021; 19:49. [PMID: 33494402 PMCID: PMC7910995 DOI: 10.3390/md19020049] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/13/2021] [Accepted: 01/15/2021] [Indexed: 12/12/2022] Open
Abstract
The review of the 2016-2017 marine pharmacology literature was prepared in a manner similar as the 10 prior reviews of this series. Preclinical marine pharmacology research during 2016-2017 assessed 313 marine compounds with novel pharmacology reported by a growing number of investigators from 54 countries. The peer-reviewed literature reported antibacterial, antifungal, antiprotozoal, antituberculosis, and antiviral activities for 123 marine natural products, 111 marine compounds with antidiabetic and anti-inflammatory activities as well as affecting the immune and nervous system, while in contrast 79 marine compounds displayed miscellaneous mechanisms of action which upon further investigation may contribute to several pharmacological classes. Therefore, in 2016-2017, the preclinical marine natural product pharmacology pipeline generated both novel pharmacology as well as potentially new lead compounds for the growing clinical marine pharmaceutical pipeline, and thus sustained with its contributions the global research for novel and effective therapeutic strategies for multiple disease categories.
Collapse
Affiliation(s)
- Alejandro M. S. Mayer
- Department of Pharmacology, College of Graduate Studies, Midwestern University, 555 31st Street, Downers Grove, IL 60515, USA;
| | - Aimee J. Guerrero
- Department of Pharmacology, College of Graduate Studies, Midwestern University, 555 31st Street, Downers Grove, IL 60515, USA;
| | - Abimael D. Rodríguez
- Molecular Sciences Research Center, University of Puerto Rico, 1390 Ponce de León Avenue, San Juan, PR 00926, USA;
| | | | - Fumiaki Nakamura
- Department of Chemistry and Biochemistry, Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan;
| | | |
Collapse
|
10
|
Voloshina AD, Sapunova AS, Kulik NV, Belenok MG, Strobykina IY, Lyubina AP, Gumerova SK, Kataev VE. Antimicrobial and cytotoxic effects of ammonium derivatives of diterpenoids steviol and isosteviol. Bioorg Med Chem 2020; 32:115974. [PMID: 33461146 DOI: 10.1016/j.bmc.2020.115974] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 12/20/2020] [Accepted: 12/21/2020] [Indexed: 12/24/2022]
Abstract
Antimicrobial and cytotoxic activities of several ammonium derivatives of diterpenoids steviol and isosteviol have been investigated in vitro. The results have showed that these compounds possess high antibacterial activity against MRSA strains and cytotoxic effect against cancer cell lines MCF-7, M-HeLa, A-549, PC3, HepG2, T98G. Lead compounds 4 and 5 were detected, which, in the case of the MCF-7 cell line (human breast adenocarcinoma), showed IC50 at the doxorubicin level with a selectivity index of 5.0-5.2. Flow cytometry and laser confocal microscopy analysis demonstrated that the mechanism of cytotoxic effects of the tested compounds on MCF-7 cells could be associated with the induction of apoptosis along the mitochondrial pathway. At the same time, they did not cause hemolysis and showed only slight cytotoxicity with respect to normal human cells of embryonic lung (Wi-38). The obtained results allow us to consider the studied compounds as promising scaffolds for the design of new effective antibacterial drugs and anticancer agents targeting mitochondria.
Collapse
Affiliation(s)
- Alexandra D Voloshina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str., 8, Kazan 420088, Russia.
| | - Anastasiia S Sapunova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str., 8, Kazan 420088, Russia
| | - Natalia V Kulik
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str., 8, Kazan 420088, Russia
| | - Mayya G Belenok
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str., 8, Kazan 420088, Russia
| | - Irina Yu Strobykina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str., 8, Kazan 420088, Russia
| | - Anna P Lyubina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str., 8, Kazan 420088, Russia
| | - Syumbelya K Gumerova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str., 8, Kazan 420088, Russia
| | - Vladimir E Kataev
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str., 8, Kazan 420088, Russia
| |
Collapse
|
11
|
Huang D, Wang S, Song D, Cao X, Huang W, Ke S. Discovery of γ-Lactam Alkaloid Derivatives as Potential Fungicidal Agents Targeting Steroid Biosynthesis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:14438-14451. [PMID: 33225708 DOI: 10.1021/acs.jafc.0c05823] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Biological control of plant pathogens is considered as one of the green and effective technologies using beneficial microorganisms or microbial secondary metabolites against plant diseases, and so microbial natural products have played important roles in the research and development of new and green agrochemicals. To explore the potential applications for natural γ-lactam alkaloids and their derivatives, 26 γ-lactams that have flexible substituent patterns were synthesized and characterized, and their in vitro antifungal activities against eight kinds of plant pathogens belonging to oomycetes, basidiomycetes, and deuteromycetes were fully evaluated. In addition, the high potential compounds were further tested using an in vivo assay against Phytophthora blight of pepper to verify a practical application for controlling oomycete diseases. The potential modes of action for compound D1 against Phytophthora capsici were also investigated using microscopic technology (optical microscopy, scanning electron microscopy, and transmission electron microscopy) and label-free quantitative proteomics analysis. The results demonstrated that compound D1 may be a potential novel fungicidal agent against oomycete diseases (EC50 = 4.9748 μg·mL-1 for P. capsici and EC50 = 5.1602 μg·mL-1 for Pythium aphanidermatum) that can act on steroid biosynthesis, which can provide a certain theoretical basis for the development of natural lactam derivatives as potential antifungal agents.
Collapse
Affiliation(s)
- Daye Huang
- National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Science, Wuhan 430064, China
| | - Shuangshuang Wang
- Department of Chemistry, College of Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Di Song
- Department of Chemistry, College of Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiufang Cao
- Department of Chemistry, College of Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenbo Huang
- National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Science, Wuhan 430064, China
| | - Shaoyong Ke
- National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Science, Wuhan 430064, China
| |
Collapse
|
12
|
Berlinck RGS, Bernardi DI, Fill T, Fernandes AAG, Jurberg ID. The chemistry and biology of guanidine secondary metabolites. Nat Prod Rep 2020; 38:586-667. [PMID: 33021301 DOI: 10.1039/d0np00051e] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Covering: 2017-2019Guanidine natural products isolated from microorganisms, marine invertebrates and terrestrial plants, amphibians and spiders, represented by non-ribosomal peptides, guanidine-bearing polyketides, alkaloids, terpenoids and shikimic acid derived, are the subject of this review. The topics include the discovery of new metabolites, total synthesis of natural guanidine compounds, biological activity and mechanism-of-action, biosynthesis and ecological functions.
Collapse
Affiliation(s)
- Roberto G S Berlinck
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, CEP 13560-970, São Carlos, SP, Brazil.
| | | | | | | | | |
Collapse
|
13
|
Marine alkaloid monanchoxymycalin C: a new specific activator of JNK1/2 kinase with anticancer properties. Sci Rep 2020; 10:13178. [PMID: 32764580 PMCID: PMC7411023 DOI: 10.1038/s41598-020-69751-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 07/16/2020] [Indexed: 12/22/2022] Open
Abstract
Monanchoxymycalin C (MomC) is a new marine pentacyclic guanidine alkaloid, recently isolated from marine sponge Monanchora pulchra by us. Here, anticancer activity and mechanism of action was investigated for the first time using a human prostate cancer (PCa) model. MomC was active in all PCa cell lines at low micromolar concentrations and induced an unusual caspase-independent, non-apoptotic cell death. Kinase activity screening identified activation of mitogen-activated protein kinase (MAPK) c-Jun N-terminal protein kinase (JNK1/2) to be one of the primary molecular mechanism of MomC anticancer activity. Functional assays demonstrated a specific and selective JNK1/2 activation prior to the induction of other cell death related processes. Inhibition of JNK1/2 by pretreatment with the JNK-inhibitor SP600125 antagonized cytotoxic activity of the marine compound. MomC caused an upregulation of cytotoxic ROS. However, in contrast to other ROS-inducing agents, co-treatment with PARP-inhibitor olaparib revealed antagonistic effects indicating an active PARP to be necessary for MomC activity. Interestingly, although no direct regulation of p38 and ERK1/2 were detected, active p38 kinase was required for MomC efficacy, while the inhibition of ERK1/2 increased its cytotoxicity. In conclusion, MomC shows promising activity against PCa, which is exerted via JNK1/2 activation and non-apoptotic cell death.
Collapse
|
14
|
Urupocidin C: a new marine guanidine alkaloid which selectively kills prostate cancer cells via mitochondria targeting. Sci Rep 2020; 10:9764. [PMID: 32555282 PMCID: PMC7299949 DOI: 10.1038/s41598-020-66428-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 05/20/2020] [Indexed: 12/12/2022] Open
Abstract
New bicyclic guanidine alkaloid, urupocidin C (Ur-C) along with the previously known urupocidin A (Ur-A) were isolated from the rare deep-sea marine sponge Monanchora pulchra, harvested in Northwestern Pacific waters. The unique structure of Ur-C was elucidated using 1D and 2D NMR spectroscopy as well as mass spectra. We discovered a promising selectivity of both alkaloids for human prostate cancer (PCa) cells, including highly drug-resistant lines, compared to non-malignant cells. In cancer cells, marine derived compounds were able to induce G1- and S-cell cycle arrest as well as caspase-mediated cell death. For the first time we have identified mitochondrial targeting as a central mechanism of anticancer action for these and similar molecules. Thus, treatment with the isolated alkaloids resulted in mitochondrial membrane permeabilization consequently leading to the release of cytotoxic mitochondrial proteins to cellular cytoplasm, ROS upregulation, consequent activation of caspase-9 and -3, followed by PARP cleavage, DNA fragmentation, and apoptosis. Moreover, synergistic effects were observed when Ur-A and Ur-C were combined with clinically approved PARP inhibitor olaparib. Finally, these alkaloids exhibited additive effects in combination with docetaxel and androgen receptor inhibitor enzalutamide, both applied in PCa therapy. In conclusion, urupocidin-like compounds are promising lead molecules for the development of new drugs for the treatment of advanced PCa.
Collapse
|
15
|
Lin YC, Ribaucourt A, Moazami Y, Pierce JG. Concise Synthesis and Antimicrobial Evaluation of the Guanidinium Alkaloid Batzelladine D: Development of a Stereodivergent Strategy. J Am Chem Soc 2020; 142:9850-9857. [PMID: 32396001 PMCID: PMC7685371 DOI: 10.1021/jacs.0c04091] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Herein, we describe a stereodivergent route to (±)-batzelladine D (2), (+)-batzelladine D (2), (-)-batzelladine D (2), and a series of stereochemical analogues and explore their antimicrobial activity for the first time. The concise synthetic approach enables access to the natural products in a sequence of 8-12 steps from readily available building blocks. Highlights of the synthetic strategy include gram-scale preparation of a late stage intermediate, pinpoint stereocontrol around the tricyclic skeleton, and a modular strategy that enables analogue generation. A key bicyclic β-lactam intermediate not only serves as the key controlling element for pyrrolidine stereochemistry but also serves as a preactivated coupling partner to install the ester side chain. The stereocontrolled synthesis allowed for the investigation of the antimicrobial activity of batzelladine D, demonstrating promising activity that is more potent for non-natural stereoisomers.
Collapse
Affiliation(s)
- You-Chen Lin
- Department of Chemistry, College of Sciences, NC State University, 2620 Yarbrough Drive, Raleigh, North Carolina 27695, United States
- Comparative Medicine Institute, NC State University, Raleigh, North Carolina 27695, United States
| | - Aubert Ribaucourt
- Department of Chemistry, College of Sciences, NC State University, 2620 Yarbrough Drive, Raleigh, North Carolina 27695, United States
| | - Yasamin Moazami
- Department of Chemistry, College of Sciences, NC State University, 2620 Yarbrough Drive, Raleigh, North Carolina 27695, United States
| | - Joshua G Pierce
- Department of Chemistry, College of Sciences, NC State University, 2620 Yarbrough Drive, Raleigh, North Carolina 27695, United States
- Comparative Medicine Institute, NC State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
16
|
Cho SM, Lee HK, Liu Q, Wang MW, Kwon HJ. A Guanidine-Based Synthetic Compound Suppresses Angiogenesis via Inhibition of Acid Ceramidase. ACS Chem Biol 2019; 14:11-19. [PMID: 30507149 DOI: 10.1021/acschembio.8b00558] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Angiogenesis generates new blood vessels from pre-existing vessels. Tumors induce the formation of new blood vessels to ensure sufficient oxygen and nutrients for their growth. Normally, angiogenesis is induced by various pro-angiogenesis factors, including vascular endothelial growth factor (VEGF). Inhibition of VEGF is a promising approach to cancer treatment. A guanidine-based synthetic compound, E2, was identified as a potent hit from 68 guanidine-based derivatives by screening for angiogenesis inhibitors showing antiproliferative activity in human umbilical vein endothelial cells (HUVECs). To explore the mode of action of E2, target proteins were investigated using phage display biopanning, and acid ceramidase 1 (ASAH1) was identified as an E2-binding protein. Drug affinity responsive target stability (DARTS) and ASAH1 activity assays revealed the direct binding of E2 to ASAH1. Moreover, siRNA knockdown of ASAH1 demonstrated its role as an angiogenesis factor. Consequently, E2 inhibited chemoinvasion and tube formation of HUVECs in a dose-dependent manner. E2 also potently suppressed neo-vascularization of chorioallantoic membranes in vivo. Collectively, these data suggest that E2 is a novel angiogenesis inhibitor and ASAH1 is proposed to be a new antiangiogenesis target.
Collapse
Affiliation(s)
- Sung Min Cho
- Chemical Genomics Global Research Laboratory, Department of Biotechnology, College of Life Science & Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea
| | - Hyung Keun Lee
- Chemical Genomics Global Research Laboratory, Department of Biotechnology, College of Life Science & Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea
| | - Qing Liu
- The National Center for Drug Screening and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Ming-Wei Wang
- The National Center for Drug Screening and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Ho Jeong Kwon
- Chemical Genomics Global Research Laboratory, Department of Biotechnology, College of Life Science & Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea
| |
Collapse
|
17
|
Dubovtsev AY, Ivanov DM, Dabranskaya U, Bokach NA, Kukushkin VY. Saccharin guanidination via facile three-component “two saccharins-one dialkylcyanamide” integration. NEW J CHEM 2019. [DOI: 10.1039/c9nj02656h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Novel three-component “two saccharins-one dialkylcyanamide” integration.
Collapse
Affiliation(s)
| | - Daniil M. Ivanov
- Saint Petersburg State University
- 199034 Saint Petersburg
- Russian Federation
| | | | - Nadezhda A. Bokach
- Saint Petersburg State University
- 199034 Saint Petersburg
- Russian Federation
| | | |
Collapse
|
18
|
Belen’kii LI, Evdokimenkova YB. The literature of heterocyclic chemistry, part XVII, 2017. ADVANCES IN HETEROCYCLIC CHEMISTRY 2019:337-418. [DOI: 10.1016/bs.aihch.2019.01.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
19
|
Shubina LK, Makarieva TN, Guzii AG, Denisenko VA, Popov RS, Dmitrenok PS, Stonik VA. Absolute Configuration of the Cytotoxic Marine Alkaloid Monanchocidin A. JOURNAL OF NATURAL PRODUCTS 2018; 81:1113-1115. [PMID: 29553737 DOI: 10.1021/acs.jnatprod.8b00105] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The absolute configuration of the cytotoxic guanidine alkaloid monanchocidin A with 11 stereogenic centers from the marine sponge Monanchora pulchra was determined as 5 R, 8 S, 10 S, 13 R, 14 S, 15 R, 19 R, 23 R, 37 S, 42 S, 43 R after extensive reductive degradation and conversion of the resulting alcohols to MTPA derivatives.
Collapse
Affiliation(s)
- Larisa K Shubina
- G. B. Elyakov Pacific Institute of Bioorganic Chemistry , Far-Eastern Branch of the Russian Academy of Sciences , Prospect 100-let Vladivostoku 159 , Vladivostok 690022 , Russian Federation
| | - Tatyana N Makarieva
- G. B. Elyakov Pacific Institute of Bioorganic Chemistry , Far-Eastern Branch of the Russian Academy of Sciences , Prospect 100-let Vladivostoku 159 , Vladivostok 690022 , Russian Federation
| | - Alla G Guzii
- G. B. Elyakov Pacific Institute of Bioorganic Chemistry , Far-Eastern Branch of the Russian Academy of Sciences , Prospect 100-let Vladivostoku 159 , Vladivostok 690022 , Russian Federation
| | - Vladimir A Denisenko
- G. B. Elyakov Pacific Institute of Bioorganic Chemistry , Far-Eastern Branch of the Russian Academy of Sciences , Prospect 100-let Vladivostoku 159 , Vladivostok 690022 , Russian Federation
| | - Roman S Popov
- G. B. Elyakov Pacific Institute of Bioorganic Chemistry , Far-Eastern Branch of the Russian Academy of Sciences , Prospect 100-let Vladivostoku 159 , Vladivostok 690022 , Russian Federation
| | - Pavel S Dmitrenok
- G. B. Elyakov Pacific Institute of Bioorganic Chemistry , Far-Eastern Branch of the Russian Academy of Sciences , Prospect 100-let Vladivostoku 159 , Vladivostok 690022 , Russian Federation
| | - Valentin A Stonik
- G. B. Elyakov Pacific Institute of Bioorganic Chemistry , Far-Eastern Branch of the Russian Academy of Sciences , Prospect 100-let Vladivostoku 159 , Vladivostok 690022 , Russian Federation
| |
Collapse
|
20
|
Barbero H, Díez-Poza C, Barbero A. The Oxepane Motif in Marine Drugs. Mar Drugs 2017; 15:E361. [PMID: 29140270 PMCID: PMC5706050 DOI: 10.3390/md15110361] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/03/2017] [Accepted: 11/08/2017] [Indexed: 12/12/2022] Open
Abstract
Oceans have shown to be a remarkable source of natural products. The biological properties of many of these compounds have helped to produce great advances in medicinal chemistry. Within them, marine natural products containing an oxepanyl ring are present in a great variety of algae, sponges, fungus and corals and show very important biological activities, many of them possessing remarkable cytotoxic properties against a wide range of cancer cell lines. Their rich chemical structures have attracted the attention of many researchers who have reported interesting synthetic approaches to these targets. This review covers the most prominent examples of these types of compounds, focusing the discussion on the isolation, structure determination, medicinal properties and total synthesis of these products.
Collapse
Affiliation(s)
- Héctor Barbero
- GIR MIOMeT, IU CINQUIMA/Inorganic Chemistry, University of Valladolid, Campus Miguel Delibes, 47011 Valladolid, Spain.
| | - Carlos Díez-Poza
- Department of Organic Chemistry, University of Valladolid, Campus Miguel Delibes, 47011 Valladolid, Spain.
| | - Asunción Barbero
- Department of Organic Chemistry, University of Valladolid, Campus Miguel Delibes, 47011 Valladolid, Spain.
| |
Collapse
|
21
|
Liu J, Li XW, Guo YW. Recent Advances in the Isolation, Synthesis and Biological Activity of Marine Guanidine Alkaloids. Mar Drugs 2017; 15:E324. [PMID: 29064383 PMCID: PMC5666430 DOI: 10.3390/md15100324] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 10/10/2017] [Accepted: 10/16/2017] [Indexed: 01/13/2023] Open
Abstract
Marine organisms are prolific resources of guanidine-containing natural products with intriguing structures and promising biological activities. These molecules have therefore attracted the attention of chemists and biologists for their further studies towards potential drug leads. This review focused on the guanidine alkaloids derived from marine sources and discussed the recent progress on their isolation, synthesis and biological activities, covering the literature from the year 2010 to the present.
Collapse
Affiliation(s)
- Jin Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China.
- Nano Science and Technology Institute, University of Science and Technology of China, 166 Ren Ai Road, Suzhou 215123, China.
| | - Xu-Wen Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China.
| | - Yue-Wei Guo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China.
| |
Collapse
|