1
|
Taghizadeh MS, Niazi A, Mirzapour-Kouhdasht A, Pereira EC, Garcia-Vaquero M. Enhancing cyclotide bioproduction: harnessing biological synthesis methods and various expression systems for large-scale manufacturing. Crit Rev Biotechnol 2024:1-23. [PMID: 39510598 DOI: 10.1080/07388551.2024.2412780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 08/18/2024] [Accepted: 08/27/2024] [Indexed: 11/15/2024]
Abstract
Peptide-based medications hold immense potential in addressing a wide range of human disorders and discomforts. However, their widespread utilization encounters two major challenges: preservation and production efficiency. Cyclotides, a class of ribosomally synthesized and post-translationally modified peptides (RiPPs), exhibit unique characteristics, such as a cyclic backbone and cystine knot, enhancing their stability and contributing to a wide range of pharmacological properties exhibited by these compounds. Cyclotides are efficient in the biomedical (e.g., antitumor, antidiabetic, antimicrobial, antiviral) and agrochemical fields by exhibiting activity against pests and plant diseases. Furthermore, their structural attributes make them suitable as molecular scaffolds for grafting and drug delivery. Notably, the mutated variant of kalata B1 cyclotide ([T20K] kalata B1) has recently entered phase 1 of human clinical trials for multiple sclerosis, building upon the success observed in animal trials. To enable large-scale production of cyclotides, it is crucial to further explore their remarkable structural and bioactive properties. This necessitates extensive research focused on enhancing the efficiency of the processes required for their production. This study provides a comprehensive review of the biological synthesis methods of cyclotides, with particular emphasis on various expression systems, namely bacteria, plants, yeast, and cell-free systems. By investigating these expression systems, it becomes possible to design production systems that are adaptable, economically viable, and efficient for generating active and pure cyclotides at an industrial scale. The advantages of biological synthesis over chemical synthesis are thoroughly explored, highlighting the potential of these expression systems in meeting the demands of large-scale cyclotide production.
Collapse
Affiliation(s)
| | - Ali Niazi
- Institute of Biotechnology, Shiraz University, Shiraz, Iran
| | - Armin Mirzapour-Kouhdasht
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
- Department of Food Science, Purdue University, West Lafayette, IN, USA
| | - Eric C Pereira
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
| | - Marco Garcia-Vaquero
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
| |
Collapse
|
2
|
He J, Ghosh P, Nitsche C. Biocompatible strategies for peptide macrocyclisation. Chem Sci 2024; 15:2300-2322. [PMID: 38362412 PMCID: PMC10866349 DOI: 10.1039/d3sc05738k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/04/2024] [Indexed: 02/17/2024] Open
Abstract
Peptides are increasingly important drug candidates, offering numerous advantages over conventional small molecules. However, they face significant challenges related to stability, cellular uptake and overall bioavailability. While individual modifications may not address all these challenges, macrocyclisation stands out as a single modification capable of enhancing affinity, selectivity, proteolytic stability and membrane permeability. The recent successes of in situ peptide modifications during screening in combination with genetically encoded peptide libraries have increased the demand for peptide macrocyclisation reactions that can occur under biocompatible conditions. In this perspective, we aim to distinguish biocompatible conditions from those well-known examples that are fully bioorthogonal. We introduce key strategies for biocompatible peptide macrocyclisation and contextualise them within contemporary screening methods, providing an overview of available transformations.
Collapse
Affiliation(s)
- Junming He
- Research School of Chemistry, Australian National University Canberra ACT Australia
| | - Pritha Ghosh
- Research School of Chemistry, Australian National University Canberra ACT Australia
| | - Christoph Nitsche
- Research School of Chemistry, Australian National University Canberra ACT Australia
| |
Collapse
|
3
|
Tyler TJ, Durek T, Craik DJ. Native and Engineered Cyclic Disulfide-Rich Peptides as Drug Leads. Molecules 2023; 28:molecules28073189. [PMID: 37049950 PMCID: PMC10096437 DOI: 10.3390/molecules28073189] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/07/2023] Open
Abstract
Bioactive peptides are a highly abundant and diverse group of molecules that exhibit a wide range of structural and functional variation. Despite their immense therapeutic potential, bioactive peptides have been traditionally perceived as poor drug candidates, largely due to intrinsic shortcomings that reflect their endogenous heritage, i.e., short biological half-lives and poor cell permeability. In this review, we examine the utility of molecular engineering to insert bioactive sequences into constrained scaffolds with desired pharmaceutical properties. Applying lessons learnt from nature, we focus on molecular grafting of cyclic disulfide-rich scaffolds (naturally derived or engineered), shown to be intrinsically stable and amenable to sequence modifications, and their utility as privileged frameworks in drug design.
Collapse
Affiliation(s)
- Tristan J. Tyler
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Thomas Durek
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia
| | - David J. Craik
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
4
|
Muhammad T, Houssen WE, Thomas L, Alexandru-Crivac CN, Gunasekera S, Jaspars M, Göransson U. Exploring the Limits of Cyanobactin Macrocyclase PatGmac: Cyclization of PawS-Derived Peptide Sunflower Trypsin Inhibitor-1 and Cyclotide Kalata B1. JOURNAL OF NATURAL PRODUCTS 2023; 86:566-573. [PMID: 36917740 PMCID: PMC10043927 DOI: 10.1021/acs.jnatprod.2c01158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Indexed: 06/18/2023]
Abstract
The subtilisin-like macrocyclase PatGmac is produced by the marine cyanobacterium Prochloron didemni. This enzyme is involved in the last step of the biosynthesis of patellamides, a cyanobactin type of ribosomally expressed and post-translationally modified cyclic peptides. PatGmac recognizes, cleaves, and cyclizes precursor peptides after a specific recognition motif comprised of a C-terminal tail with the sequence motif -AYDG. The result is the native macrocyclic patellamide, which has eight amino acid residues. Macrocyclase activity can be exploited by incorporating that motif in other short linear peptide precursors, which then are formed into head-to-tail cyclized peptides. Here, we explore the possibility of using PatGmac in the cyclization of peptides larger than the patellamides, namely, the PawS-derived peptide sunflower trypsin inhibitor-1 (SFTI-1) and the cyclotide kalata B1. These peptides fall under two distinct families of disulfide constrained macrocyclic plant peptides. They are both implicated as scaffolds for drug design due to their structures and unusual stability. We show that PatGmac can be used to efficiently cyclize the 14 amino acid residue long SFTI-1, but less so the 29 amino acid residue long kalata B1.
Collapse
Affiliation(s)
- Taj Muhammad
- Pharmacognosy,
Department of Pharmaceutical Biosciences, Uppsala University, Biomedical Centre, Box 591, SE-75124 Uppsala, Sweden
| | - Wael E Houssen
- Department
of Chemistry, Marine Biodiscovery Centre, University of Aberdeen, Aberdeen AB24 3UE, Scotland, U.K.
- Institute
of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, Scotland, U.K.
| | - Louise Thomas
- Department
of Chemistry, Marine Biodiscovery Centre, University of Aberdeen, Aberdeen AB24 3UE, Scotland, U.K.
- Institute
of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, Scotland, U.K.
| | - Cristina-Nicoleta Alexandru-Crivac
- Department
of Chemistry, Marine Biodiscovery Centre, University of Aberdeen, Aberdeen AB24 3UE, Scotland, U.K.
- Institute
of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, Scotland, U.K.
| | - Sunithi Gunasekera
- Pharmacognosy,
Department of Pharmaceutical Biosciences, Uppsala University, Biomedical Centre, Box 591, SE-75124 Uppsala, Sweden
| | - Marcel Jaspars
- Department
of Chemistry, Marine Biodiscovery Centre, University of Aberdeen, Aberdeen AB24 3UE, Scotland, U.K.
| | - Ulf Göransson
- Pharmacognosy,
Department of Pharmaceutical Biosciences, Uppsala University, Biomedical Centre, Box 591, SE-75124 Uppsala, Sweden
| |
Collapse
|
5
|
Abstract
Background Ribosomally-synthesized cyclic peptides are widely found in plants and exhibit useful bioactivities for humans. The identification of cyclic peptide sequences and their precursor proteins is facilitated by the growing number of sequenced genomes. While previous research largely focused on the chemical diversity of these peptides across various species, there is little attention to a broader range of potential peptides that are not chemically identified. Results A pioneering study was initiated to explore the genetic diversity of linusorbs, a group of cyclic peptides uniquely occurring in cultivated flax (Linum usitatissimum). Phylogenetic analysis clustered the 5 known linusorb precursor proteins into two clades and one singleton. Preliminary tBLASTn search of the published flax genome using the whole protein sequence as query could only retrieve its homologues within the same clade. This limitation was overcome using a profile-based mining strategy. After genome reannotation, a hidden Markov Model (HMM)-based approach identified 58 repeats homologous to the linusorb-embedded repeats in 8 novel proteins, implying that they share common ancestry with the linusorb-embedded repeats. Subsequently, we developed a customized profile composed of a random linusorb-like domain (LLD) flanked by 5 conserved sites and used it for string search of the proteome, which extracted 281 LLD-containing repeats (LLDRs) in 25 proteins. Comparative analysis of different repeat categories suggested that the 5 conserved flanking sites among the non-homologous repeats have undergone convergent evolution driven by functional selection. Conclusions The profile-based mining approach is suitable for analyzing repetitive sequences. The 25 LLDR proteins identified herein represent the potential diversity of cyclic peptides within the flax genome and lay a foundation for further studies on the functions and evolution of these protein tandem repeats. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08735-x.
Collapse
|
6
|
Fernández-Bobey A, Pinto MEF, de Almeida LC, de Souza BM, Dias NB, de Paula-Souza J, Cilli EM, Lopes NP, Costa-Lotufo LV, Palma MS, da Silva Bolzani V. Cytotoxic Cyclotides from Anchietea pyrifolia, a South American Plant Species. JOURNAL OF NATURAL PRODUCTS 2022; 85:2127-2134. [PMID: 36044031 DOI: 10.1021/acs.jnatprod.1c01129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Cyclotides are mini-proteins with potent bioactivities and outstanding potential for agricultural and pharmaceutical applications. More than 450 different plant cyclotides have been isolated from six angiosperm families. In Brazil, studies involving this class of natural products are still scarce, despite its rich floristic diversity. Herein were investigated the cyclotides from Anchietea pyrifolia roots, a South American medicinal plant from the family Violaceae. Fourteen putative cyclotides were annotated by LC-MS. Among these, three new bracelet cyclotides, anpy A-C, and the known cycloviolacins O4 (cyO4) and O17 (cyO17) were sequenced through a combination of chemical and enzymatic reactions followed by MALDI-MS/MS analysis. Their cytotoxic activity was evaluated by a cytotoxicity assay against three human cancer cell lines (colorectal carcinoma cells: HCT 116 and HCT 116 TP53-/- and breast adenocarcinoma, MCF 7). For all assays, the IC50 values of isolated compounds ranged between 0.8 and 7.3 μM. CyO17 was the most potent cyclotide for the colorectal cancer cell lines (IC50, 0.8 and 1.2 μM). Furthermore, the hemolytic activity of anpy A and B, cyO4, and cyO17 was assessed, and the cycloviolacins were the least hemolytic (HD50 > 156 μM). This work sheds light on the cytotoxic effects of the anpy cyclotides against cancer cells. Moreover, this study expands the number of cyclotides obtained to date from Brazilian plant biodiversity and adds one more genus containing these molecules to the list of the Violaceae family.
Collapse
Affiliation(s)
- Antonio Fernández-Bobey
- Nucleus of Bioassays, Biosynthesis, and Ecophysiology of Natural Products (NuBBE), Institute of Chemistry, Sao Paulo State University (UNESP), 14800-060, Araraquara, Sao Paulo, Brazil
- Department of Basic and Applied Biology, Laboratory of Structural Biology and Zoochemistry, Institute of Biosciences, Sao Paulo State University (UNESP), 13506-900, Rio Claro, Sao Paulo, Brazil
| | - Meri Emili Ferreira Pinto
- Nucleus of Bioassays, Biosynthesis, and Ecophysiology of Natural Products (NuBBE), Institute of Chemistry, Sao Paulo State University (UNESP), 14800-060, Araraquara, Sao Paulo, Brazil
| | - Larissa Costa de Almeida
- Department of Pharmacology, Institute of Biomedical Science, University of Sao Paulo (USP), 05508-900, Sao Paulo, Brazil
| | - Bibiana Monson de Souza
- Department of Basic and Applied Biology, Laboratory of Structural Biology and Zoochemistry, Institute of Biosciences, Sao Paulo State University (UNESP), 13506-900, Rio Claro, Sao Paulo, Brazil
| | - Nathalia Baptista Dias
- Scientific and Technological Bioresource Nucleus (BIOREN), University of The Frontier (UFRO), 4881-176, Temuco, Chile
| | - Juliana de Paula-Souza
- Department of Botany, Federal University of Santa Catarina (UFSC), 88040-535, Florianopolis, Santa Catarina, Brazil
| | - Eduardo Maffud Cilli
- Nucleus of Bioassays, Biosynthesis, and Ecophysiology of Natural Products (NuBBE), Institute of Chemistry, Sao Paulo State University (UNESP), 14800-060, Araraquara, Sao Paulo, Brazil
| | - Norberto Peporine Lopes
- Nucleus Research in Natural and Synthetic Products (NPPNS), Faculty of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo (USP), 14040-903, Ribeirao Preto, Sao Paulo, Brazil
| | - Leticia Veras Costa-Lotufo
- Department of Pharmacology, Institute of Biomedical Science, University of Sao Paulo (USP), 05508-900, Sao Paulo, Brazil
| | - Mario Sergio Palma
- Department of Basic and Applied Biology, Laboratory of Structural Biology and Zoochemistry, Institute of Biosciences, Sao Paulo State University (UNESP), 13506-900, Rio Claro, Sao Paulo, Brazil
| | - Vanderlan da Silva Bolzani
- Nucleus of Bioassays, Biosynthesis, and Ecophysiology of Natural Products (NuBBE), Institute of Chemistry, Sao Paulo State University (UNESP), 14800-060, Araraquara, Sao Paulo, Brazil
| |
Collapse
|
7
|
Pandey A, Yadav R, Sanyal I. Evaluating the pesticidal impact of plant protease inhibitors: lethal weaponry in the co-evolutionary battle. PEST MANAGEMENT SCIENCE 2022; 78:855-868. [PMID: 34570437 DOI: 10.1002/ps.6659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/23/2021] [Accepted: 09/27/2021] [Indexed: 06/13/2023]
Abstract
In the arsenal of plant defense, protease inhibitors (PIs) are well-designed defensive products to counter field pests. PIs are produced in plant tissues by means of 'stable defense metabolite' and triggered on demand as the perception of the signal and well established as a part of plant active defense. PIs have been utilized for approximately four decades, initially as a gene-alone approach that was later replaced by multiple gene pyramiding/gene stacking due to insect adaptability towards the PI alone. By considering the adaptive responses of the pest to the single insecticidal gene, the concept of gene pyramiding gained continuous appreciation for the development of transgenic crops to deal with co-evolving pests. Gene pyramiding approaches are executed to bypass the insect's adaptive responses against PIs. Stacking PIs with additional insecticidal proteins, plastid engineering, recombinant proteinase inhibitors, RNAi-based methods and CRISPR/Cas9-mediated genome editing are the advanced tools and methods for next-generation pest management. Undoubtedly, the domain associated with the mechanism of PIs in the course of plant-pest interactions will occupy a central role for the advancement of more efficient and sustainable pest control strategies. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ankesh Pandey
- CSIR-National Botanical Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Reena Yadav
- CSIR-National Botanical Research Institute, Lucknow, India
- Department of Biotechnology, Kumaun University, Nainital, India
| | - Indraneel Sanyal
- CSIR-National Botanical Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
8
|
Nadeem‐ul‐Haque M, Bashir A, Karim H, Khan SN, Shah ZA, Jabeen A, Qayyum S, Ganesan A, Choudhary MI, Shaheen F. Synthesis of [1‐8‐NαC]‐zanriorb A1, alanine‐containing analogues, and their cytotoxic and anti‐inflammatory activity. J Pept Sci 2022; 28:e3405. [DOI: 10.1002/psc.3405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 01/11/2022] [Accepted: 01/11/2022] [Indexed: 11/06/2022]
Affiliation(s)
- M. Nadeem‐ul‐Haque
- Third World Center for Science and Technology, H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences University of Karachi Karachi Pakistan
| | - Anila Bashir
- Third World Center for Science and Technology, H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences University of Karachi Karachi Pakistan
| | - Humira Karim
- Third World Center for Science and Technology, H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences University of Karachi Karachi Pakistan
| | - Sadiq Noor Khan
- Third World Center for Science and Technology, H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences University of Karachi Karachi Pakistan
| | - Zafar Ali Shah
- Department of Chemistry University of Swabi Khyber Pakhtunkhwa Pakistan
| | - Almas Jabeen
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences University of Karachi Karachi Pakistan
| | - Shaista Qayyum
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences University of Karachi Karachi Pakistan
| | - A. Ganesan
- School of Pharmacy University of East Anglia Norwich United Kingdom
| | - M. Iqbal Choudhary
- Third World Center for Science and Technology, H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences University of Karachi Karachi Pakistan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences University of Karachi Karachi Pakistan
- Department of Biochemistry, Faculty of Science King Abdulaziz University Jeddah Saudi Arabia
| | - Farzana Shaheen
- Third World Center for Science and Technology, H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences University of Karachi Karachi Pakistan
| |
Collapse
|
9
|
Taghizadeh SF, Azizi M, Asili J, Madarshahi FS, Rakhshandeh H, Fujii Y. Therapeutic peptides of Mucuna pruriens L.: Anti-genotoxic molecules against human hepatocellular carcinoma and hepatitis C virus. Food Sci Nutr 2021; 9:2908-2914. [PMID: 34136158 PMCID: PMC8194742 DOI: 10.1002/fsn3.2248] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 03/03/2021] [Accepted: 03/07/2021] [Indexed: 11/22/2022] Open
Abstract
To assist the development of new therapeutic strategies for several disorders, biologically active peptides/proteins obtained from plant sources can be considered. Current study expected to determine the biological activities of peptide fractions of Mucuna pruriens against hepatocellular carcinoma cell lines (HepG2/ADM, HepG2, SMMC-7721, and QGY-7703), as well as normal cell line to prove their selectivity. Moreover, anti-genotoxicity and antiviral activity against the hepatitis C virus (HCV) were assessed. The methods of this study were to isolate the peptides of M. pruriens and hydrolysate fractionation via fractionated pepsin-pancreatin hydrolysates by ultrafiltration/high-performance ultrafiltration cell, identify anti-hepatoma activity of peptide fractions human liver cancer and normal cells by (3-(4,5-dimethylthiazole-2-yl)-2,5-biphenyl tetrazolium bromide) (MTT) assay, determine anti-HCV, and assess anti-genotoxic effect of peptide fractions against damage that induced via alkylating agent methyl methanesulphonate in human mononuclear cells. The results showed that the fraction 5-10 kDa has been reported to exhibit significant cytotoxic activity against HepG2 and QGY-7703. It was proven that both of 5-10 and >10 kDa fractions are active against HCV. The cytotoxic concentration (CC50) of 5-10 kDa against the cell line was 703.04 ± 5.21 µg/ml. Anti-genotoxic activities of the peptide fractions were evaluated as mean values for the analyzed comet images. In this regard, the highest activity of protecting DNA damages was observed by the peptide fraction of 5-10 kDa. This study revealed the potential ability of peptide fractions of M. pruriens for the treatment of liver cancer, HCV, and high activities of protecting DNA damages.
Collapse
Affiliation(s)
- Seyedeh Faezeh Taghizadeh
- Pharmaceutical Research CenterPharmaceutical Technology InstituteMashhad University of Medical SciencesMashhadIran
- Department of Horticultural ScienceFerdowsi University of MashhadMashhadIran
| | - Majid Azizi
- Department of Horticultural ScienceFerdowsi University of MashhadMashhadIran
| | - Javad Asili
- Department of PharmacognosyFaculty of PharmacyMashhad University of Medical sciencesMashhadIran
| | - Fatemeh Sadat Madarshahi
- Department of Horticultural ScienceFaculty of AgricultureIslamic Azad University of ShirvanShirvanIran
| | - Hasan Rakhshandeh
- Pharmacological Research Center of Medicinal PlantsMashhad University of Medical SciencesMashhadIran
| | - Yoshiharu Fujii
- Department of International Environmental and Agricultural SciencesTokyo University of Agriculture and TechnologyFuchuJapan
| |
Collapse
|
10
|
Parthasarathy A, Borrego EJ, Savka MA, Dobson RCJ, Hudson AO. Amino acid-derived defense metabolites from plants: A potential source to facilitate novel antimicrobial development. J Biol Chem 2021; 296:100438. [PMID: 33610552 PMCID: PMC8024917 DOI: 10.1016/j.jbc.2021.100438] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 12/23/2022] Open
Abstract
For millennia, humanity has relied on plants for its medicines, and modern pharmacology continues to reexamine and mine plant metabolites for novel compounds and to guide improvements in biological activity, bioavailability, and chemical stability. The critical problem of antibiotic resistance and increasing exposure to viral and parasitic diseases has spurred renewed interest into drug treatments for infectious diseases. In this context, an urgent revival of natural product discovery is globally underway with special attention directed toward the numerous and chemically diverse plant defensive compounds such as phytoalexins and phytoanticipins that combat herbivores, microbial pathogens, or competing plants. Moreover, advancements in “omics,” chemistry, and heterologous expression systems have facilitated the purification and characterization of plant metabolites and the identification of possible therapeutic targets. In this review, we describe several important amino acid–derived classes of plant defensive compounds, including antimicrobial peptides (e.g., defensins, thionins, and knottins), alkaloids, nonproteogenic amino acids, and phenylpropanoids as potential drug leads, examining their mechanisms of action, therapeutic targets, and structure–function relationships. Given their potent antibacterial, antifungal, antiparasitic, and antiviral properties, which can be superior to existing drugs, phytoalexins and phytoanticipins are an excellent resource to facilitate the rational design and development of antimicrobial drugs.
Collapse
Affiliation(s)
- Anutthaman Parthasarathy
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Eli J Borrego
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Michael A Savka
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Renwick C J Dobson
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand; Bio21 Molecular Science and Biotechnology Institute, Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, Australia
| | - André O Hudson
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA.
| |
Collapse
|
11
|
Zhang J, Yuan J, Li Z, Fu C, Xu M, Yang J, Jiang X, Zhou B, Ye X, Xu C. Exploring and exploiting plant cyclic peptides for drug discovery and development. Med Res Rev 2021; 41:3096-3117. [PMID: 33599316 DOI: 10.1002/med.21792] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 01/10/2021] [Accepted: 01/31/2021] [Indexed: 01/07/2023]
Abstract
Ever since the discovery of insulin, natural peptides have become an important resource for therapeutic development. Decades of research has led to the discovery of a long list of peptide drugs with broad applications in clinics, from antibiotics to hypertension treatment to pain management. Many of these US FDA-approved peptide drugs are derived from microorganisms and animals. By contrast, the great potential of plant cyclic peptides as therapeutics remains largely unexplored. These macrocyclic peptides typically have rigid structures, good bioavailability and membrane permeability, making them appealing candidates for drug development and engineering. In this review, we introduce the three major classes of plant cyclic peptides and summarize their potential medical applications. We discuss how we can leverage the genome information of many different plants to quickly search for new cyclic peptides and how we can take advantage of the insights gained from their biosynthetic pathways to transform the process of production and drug development. These recent developments have provided a new angle for exploring and exploiting plant cyclic peptides, and we believe that many more peptide drugs derived from plants are about to come.
Collapse
Affiliation(s)
- Jingjing Zhang
- Department of Geriatric Medicine, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China.,Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, Guangdong, China
| | - Jimin Yuan
- Department of Geriatric Medicine, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Zhijie Li
- Department of Geriatric Medicine, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Chunjin Fu
- Department of Geriatric Medicine, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Menglong Xu
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, USA
| | - Jing Yang
- Department of Geriatric Medicine, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Xin Jiang
- Department of Geriatric Medicine, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Boping Zhou
- Department of Infectious Diseases, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Xiufeng Ye
- Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Chengchao Xu
- Department of Geriatric Medicine, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China.,Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, USA
| |
Collapse
|
12
|
Muratspahić E, Koehbach J, Gruber CW, Craik DJ. Harnessing cyclotides to design and develop novel peptide GPCR ligands. RSC Chem Biol 2020; 1:177-191. [PMID: 34458757 PMCID: PMC8341132 DOI: 10.1039/d0cb00062k] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/10/2020] [Indexed: 12/13/2022] Open
Abstract
Cyclotides are plant-derived cyclic, disulfide-rich peptides with a unique cyclic cystine knot topology that confers them with remarkable structural stability and resistance to proteolytic degradation. Recently, cyclotides have emerged as promising scaffold molecules for designing peptide-based therapeutics. Here, we provide examples of how engineering cyclotides using molecular grafting may lead to the development of novel peptide ligands of G protein-coupled receptors (GPCRs), today's most exploited drug targets. Integrating bioactive epitopes into stable cyclotide scaffolds can lead to improved pharmacokinetics and oral activity as well as selectivity and high enzymatic stability. We also discuss and highlight the importance of engineered cyclotides as novel tools to study GPCR signaling.
Collapse
Affiliation(s)
- Edin Muratspahić
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna Austria
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland Brisbane Queensland 4072 Australia
| | - Johannes Koehbach
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland Brisbane Queensland 4072 Australia
| | - Christian W Gruber
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna Austria
| | - David J Craik
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland Brisbane Queensland 4072 Australia
| |
Collapse
|
13
|
Tombling BJ, Wang CK, Craik DJ. EGF‐artige und andere disulfidreiche Mikrodomänen als therapeutische Molekülgerüste. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201913809] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Benjamin J. Tombling
- Institute for Molecular Bioscience The University of Queensland Brisbane QLD 4072 Australien
| | - Conan K. Wang
- Institute for Molecular Bioscience The University of Queensland Brisbane QLD 4072 Australien
| | - David J. Craik
- Institute for Molecular Bioscience The University of Queensland Brisbane QLD 4072 Australien
| |
Collapse
|
14
|
Tombling BJ, Wang CK, Craik DJ. EGF-like and Other Disulfide-rich Microdomains as Therapeutic Scaffolds. Angew Chem Int Ed Engl 2020; 59:11218-11232. [PMID: 31867866 DOI: 10.1002/anie.201913809] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Indexed: 12/20/2022]
Abstract
Disulfide bonds typically introduce conformational constraints into peptides and proteins, conferring improved biopharmaceutical properties and greater therapeutic potential. In our opinion, disulfide-rich microdomains from proteins are potentially a rich and under-explored source of drug leads. A survey of the UniProt protein database shows that these domains are widely distributed throughout the plant and animal kingdoms, with the EGF-like domain being the most abundant of these domains. EGF-like domains exhibit large diversity in their disulfide bond topologies and calcium binding modes, which we classify in detail here. We found that many EGF-like domains are associated with disease phenotypes, and the interactions they mediate are potential therapeutic targets. Indeed, EGF-based therapeutic leads have been identified, and we further propose that these domains can be optimized to expand their therapeutic potential using chemical design strategies. This Review highlights the potential of disulfide-rich microdomains as future peptide therapeutics.
Collapse
Affiliation(s)
- Benjamin J Tombling
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Conan K Wang
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - David J Craik
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| |
Collapse
|
15
|
Abstract
This Review explores the class of plant-derived macrocyclic peptides called cyclotides. We include an account of their discovery, characterization, and distribution in the plant kingdom as well as a detailed analysis of their sequences and structures, biosynthesis and chemical synthesis, biological functions, and applications. These macrocyclic peptides are around 30 amino acids in size and are characterized by their head-to-tail cyclic backbone and cystine knot motif, which render them to be exceptionally stable, with resistance to thermal or enzymatic degradation. Routes to their chemical synthesis have been developed over the past two decades, and this capability has facilitated a wide range of mutagenesis and structure-activity relationship studies. In turn, these studies have both led to an increased understanding of their mechanisms of action as well as facilitated a range of applications in agriculture and medicine, as ecofriendly crop protection agents, and as drug leads or scaffolds for pharmaceutical design. Our overall objective in this Review is to provide readers with a comprehensive overview of cyclotides that we hope will stimulate further work on this fascinating family of peptides.
Collapse
Affiliation(s)
- Simon J de Veer
- Institute for Molecular Bioscience , The University of Queensland , Brisbane , Queensland 4072 , Australia
| | - Meng-Wei Kan
- Institute for Molecular Bioscience , The University of Queensland , Brisbane , Queensland 4072 , Australia
| | - David J Craik
- Institute for Molecular Bioscience , The University of Queensland , Brisbane , Queensland 4072 , Australia
| |
Collapse
|
16
|
|
17
|
Restriction-Free Construction of a Phage-Presented Very Short Macrocyclic Peptide Library. Methods Mol Biol 2019. [PMID: 31625092 DOI: 10.1007/978-1-4939-9853-1_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Phage display is a commonly used technology for the screening of large clonal libraries of proteins and peptides. The construction of peptide libraries containing very short sequences, however, poses certain problems for conventional restriction-based cloning procedures, which are rooted in the necessity to purify restricted library oligos. Herein, we present an alternative cloning method especially suitable for such very short sequences of about only 21 base pairs resulting in a 60 bp insert. The employed restriction-free hot fusion cloning strategy allows for facile library construction bypassing the need for purification of the small oligo. The library includes one well-defined disulfide bridge rendering the displayed macrocyclic peptide sequences as attractive scaffolds for novel active principles.
Collapse
|
18
|
Huang YH, Du Q, Craik DJ. Cyclotides: Disulfide-rich peptide toxins in plants. Toxicon 2019; 172:33-44. [DOI: 10.1016/j.toxicon.2019.10.244] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/30/2019] [Accepted: 10/30/2019] [Indexed: 12/27/2022]
|
19
|
Ojeda PG, Cardoso MH, Franco OL. Pharmaceutical applications of cyclotides. Drug Discov Today 2019; 24:2152-2161. [PMID: 31541712 DOI: 10.1016/j.drudis.2019.09.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 09/05/2019] [Accepted: 09/12/2019] [Indexed: 02/06/2023]
Abstract
Cyclotides are cyclic peptides, present in several plant families, that show diverse biological properties. Structurally, cyclotides share a distinctive head-to-tail circular knotted topology of three disulfide bonds. This framework provides cyclotides with extraordinary resistance to thermal and chemical denaturation. There is increasing interest in the therapeutic potential of cyclotides, which combine several promising pharmaceutical properties, including binding affinity, target selectivity, and low toxicity towards healthy mammalian cells. Recently, cyclotides have been reported to be orally bioavailable and have proved to be amenable to modifications. Here, we provide an overview of the structure, properties, and pharmaceutical applications of cyclotides.
Collapse
Affiliation(s)
- Paola G Ojeda
- Escuela de Química y Farmacia, Facultad de Medicina, Universidad Católica del Maule, Av. San Miguel 3605, Talca 3480112, Chile
| | - Marlon H Cardoso
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Centro de Análises Proteômicas e Bioquímicas, Universidade Católica de Brasília, Brasília, Brazil; 3S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil
| | - Octávio L Franco
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Centro de Análises Proteômicas e Bioquímicas, Universidade Católica de Brasília, Brasília, Brazil; 3S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil.
| |
Collapse
|
20
|
Abstract
Approximately 75% of all disease-relevant human proteins, including those involved in intracellular protein-protein interactions (PPIs), are undruggable with the current drug modalities (i.e., small molecules and biologics). Macrocyclic peptides provide a potential solution to these undruggable targets because their larger sizes (relative to conventional small molecules) endow them the capability of binding to flat PPI interfaces with antibody-like affinity and specificity. Powerful combinatorial library technologies have been developed to routinely identify cyclic peptides as potent, specific inhibitors against proteins including PPI targets. However, with the exception of a very small set of sequences, the vast majority of cyclic peptides are impermeable to the cell membrane, preventing their application against intracellular targets. This Review examines common structural features that render most cyclic peptides membrane impermeable, as well as the unique features that allow the minority of sequences to enter the cell interior by passive diffusion, endocytosis/endosomal escape, or other mechanisms. We also present the current state of knowledge about the molecular mechanisms of cell penetration, the various strategies for designing cell-permeable, biologically active cyclic peptides against intracellular targets, and the assay methods available to quantify their cell-permeability.
Collapse
Affiliation(s)
- Patrick G. Dougherty
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12 Avenue, Columbus, Ohio 43210, United States
| | - Ashweta Sahni
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12 Avenue, Columbus, Ohio 43210, United States
| | - Dehua Pei
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12 Avenue, Columbus, Ohio 43210, United States
| |
Collapse
|
21
|
Hellinger R, Gruber CW. Peptide-based protease inhibitors from plants. Drug Discov Today 2019; 24:1877-1889. [PMID: 31170506 PMCID: PMC6753016 DOI: 10.1016/j.drudis.2019.05.026] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 05/03/2019] [Accepted: 05/29/2019] [Indexed: 02/08/2023]
Abstract
Proteases have an important role in homeostasis, and dysregulation of protease function can lead to pathogenesis. Therefore, proteases are promising drug targets in cancer, inflammation, and neurodegenerative disease research. Although there are well-established pharmaceuticals on the market, drug development for proteases is challenging. This is often caused by the limited selectivity of currently available lead compounds. Proteinaceous plant protease inhibitors are a diverse family of (poly)peptides that are important to maintain physiological homeostasis and to serve the innate defense machinery of the plant. In this review, we provide an overview of the diversity of plant peptide- and protein-based protease inhibitors (PIs), provide examples of such compounds that target human proteases, and discuss opportunities for these molecules in protease drug discovery and development.
Collapse
Affiliation(s)
- Roland Hellinger
- Center for Pharmacology and Physiology, Medical University of Vienna, Schwarzspanierstr. 17, 1090 Vienna, Austria
| | - Christian W Gruber
- Center for Pharmacology and Physiology, Medical University of Vienna, Schwarzspanierstr. 17, 1090 Vienna, Austria.
| |
Collapse
|
22
|
Ayikpoe RS, Latham JA. MftD Catalyzes the Formation of a Biologically Active Redox Center in the Biosynthesis of the Ribosomally Synthesized and Post-translationally Modified Redox Cofactor Mycofactocin. J Am Chem Soc 2019; 141:13582-13591. [PMID: 31381312 DOI: 10.1021/jacs.9b06102] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mycofactocin (MFT) is a putative ribosomally synthesized and post-translationally modified (RiPP) redox cofactor. The biosynthesis of MFT is encoded by the gene cluster mftABCDEF. While processing of the precursor peptide by MftB, MftC, and MftE has been shown to result in the formation of the small molecule 3-amino-5-[(p-hydroxyphenyl)methyl]-4,4-dimethyl-2-pyrrolidinone (AHDP), no activity has been shown for the putative dehydrogenase MftD and the putative glycosyltransferase MftF. In addition, evidence demonstrating that MFT is a redox cofactor has only been limited to the requirement of mft genes for ethanol assimilation in Mycobacterium smegmatis mc2155. Here, we demonstrate that MftD catalyzes the oxidative deamination of AHDP, forming an α-keto moiety on the resulting molecule, which we call pre-mycofactocin (PMFT). We characterize PMFT by 1D and 2D NMR spectroscopy techniques and by high-resolution mass spectrometry data to solve its structure. We further characterized PMFT by cyclic voltammetry and found its midpoint potential to be ∼255 mV. Lastly, we demonstrate that PMFT is a biologically active redox cofactor that oxidizes NADH bound by M. smegmatis carveol dehydrogenase (MsCDH) and can be used by MsCDH in the oxidation of carveol. These data demonstrate for the first time that PMFT functions as a biologically active redox mediator and provides the most direct evidence to date that MFT is a RiPP-derived redox cofactor.
Collapse
Affiliation(s)
- Richard S Ayikpoe
- Department of Chemistry and Biochemistry , University of Denver , Denver , Colorado 80210 , United States
| | - John A Latham
- Department of Chemistry and Biochemistry , University of Denver , Denver , Colorado 80210 , United States
| |
Collapse
|
23
|
Saikhedkar NS, Joshi RS, Yadav AK, Seal S, Fernandes M, Giri AP. Phyto-inspired cyclic peptides derived from plant Pin-II type protease inhibitor reactive center loops for crop protection from insect pests. Biochim Biophys Acta Gen Subj 2019; 1863:1254-1262. [DOI: 10.1016/j.bbagen.2019.05.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 04/25/2019] [Accepted: 05/06/2019] [Indexed: 01/10/2023]
|
24
|
Malde AK, Hill TA, Iyer A, Fairlie DP. Crystal Structures of Protein-Bound Cyclic Peptides. Chem Rev 2019; 119:9861-9914. [DOI: 10.1021/acs.chemrev.8b00807] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Alpeshkumar K. Malde
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Timothy A. Hill
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Abishek Iyer
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - David P. Fairlie
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
25
|
Camarero JA, Campbell MJ. The Potential of the Cyclotide Scaffold for Drug Development. Biomedicines 2019; 7:biomedicines7020031. [PMID: 31010257 PMCID: PMC6631875 DOI: 10.3390/biomedicines7020031] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 04/13/2019] [Accepted: 04/15/2019] [Indexed: 12/11/2022] Open
Abstract
Cyclotides are a novel class of micro-proteins (≈30-40 residues long) with a unique topology containing a head-to-tail cyclized backbone structure further stabilized by three disulfide bonds that form a cystine knot. This unique molecular framework makes them exceptionally stable to physical, chemical, and biological degradation compared to linear peptides of similar size. The cyclotides are also highly tolerant to sequence variability, aside from the conserved residues forming the cystine knot, and are orally bioavailable and able to cross cellular membranes to modulate intracellular protein-protein interactions (PPIs), both in vitro and in vivo. These unique properties make them ideal scaffolds for many biotechnological applications, including drug discovery. This review provides an overview of the properties of cyclotides and their potential for the development of novel peptide-based therapeutics. The selective disruption of PPIs still remains a very challenging task, as the interacting surfaces are relatively large and flat. The use of the cell-permeable highly constrained polypeptide molecular frameworks, such as the cyclotide scaffold, has shown great promise, as it provides unique pharmacological properties. The use of molecular techniques, such as epitope grafting, and molecular evolution have shown to be highly effective for the selection of bioactive cyclotides. However, despite successes in employing cyclotides to target PPIs, some of the challenges to move them into the clinic still remain.
Collapse
Affiliation(s)
- Julio A Camarero
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 9033, USA.
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, Los Angeles, CA 9033, USA.
| | - Maria Jose Campbell
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 9033, USA.
| |
Collapse
|
26
|
Muratspahić E, Freissmuth M, Gruber CW. Nature-Derived Peptides: A Growing Niche for GPCR Ligand Discovery. Trends Pharmacol Sci 2019; 40:309-326. [PMID: 30955896 DOI: 10.1016/j.tips.2019.03.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 02/26/2019] [Accepted: 03/06/2019] [Indexed: 12/11/2022]
Abstract
G protein-coupled receptors (GPCRs) represent important drug targets, as they regulate pivotal physiological processes and they have proved to be readily druggable. Natural products have been and continue to be amongst the most valuable sources for drug discovery and development. Here, we surveyed small molecules and (poly-)peptides derived from plants, animals, fungi, and bacteria, which modulate GPCR signaling. Among naturally occurring compounds, peptides from plants, cone-snails, snakes, spiders, scorpions, fungi, and bacteria are of particular interest as lead compounds for the development of GPCR ligands, since they cover a chemical space, which differs from that of synthetic small molecules. Peptides, however, face challenges, some of which can be overcome by studying plant-derived compounds. We argue here that the opportunities outweigh the challenges.
Collapse
Affiliation(s)
- Edin Muratspahić
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Austria
| | - Michael Freissmuth
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Austria; Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center for Physiology and Pharmacology, Medical University of Vienna, Austria
| | - Christian W Gruber
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Austria.
| |
Collapse
|
27
|
Papain-like cysteine proteases prepare plant cyclic peptide precursors for cyclization. Proc Natl Acad Sci U S A 2019; 116:7831-7836. [PMID: 30944220 DOI: 10.1073/pnas.1901807116] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Cyclotides are plant defense peptides that have been extensively investigated for pharmaceutical and agricultural applications, but key details of their posttranslational biosynthesis have remained elusive. Asparaginyl endopeptidases are crucial in the final stage of the head-to-tail cyclization reaction, but the enzyme(s) involved in the prerequisite steps of N-terminal proteolytic release were unknown until now. Here we use activity-guided fractionation to identify specific members of papain-like cysteine proteases involved in the N-terminal cleavage of cyclotide precursors. Through both characterization of recombinantly produced enzymes and in planta peptide cyclization assays, we define the molecular basis of the substrate requirements of these enzymes, including the prototypic member, here termed kalatase A. The findings reported here will pave the way for improving the efficiency of plant biofactory approaches for heterologous production of cyclotide analogs of therapeutic or agricultural value.
Collapse
|
28
|
Occurrence, function, and biosynthesis of mycofactocin. Appl Microbiol Biotechnol 2019; 103:2903-2912. [PMID: 30778644 DOI: 10.1007/s00253-019-09684-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 02/04/2019] [Accepted: 02/05/2019] [Indexed: 10/27/2022]
Abstract
Mycofactocin is a member of the rapidly growing class of ribosomally synthesized and post-translationally modified peptide (RiPP) natural products. Although the mycofactocin biosynthetic pathway is widely distributed among Mycobacterial species, the structure, function, and biosynthesis of the pathway product remain unknown. This mini-review will discuss the current state of knowledge regarding the mycofactocin biosynthetic pathway. In particular, we focus on the architecture and distribution of the mycofactocin biosynthetic cluster, mftABCDEF, among the Actinobacteria phylum. We discuss the potential molecular and physiological role of mycofactocin. We review known biosynthetic steps involving MftA, MftB, MftC, and MftE and relate them to pyrroloquinoline quinone biosynthesis. Lastly, we propose the function of the remaining putative biosynthetic enzymes, MftD and MftF.
Collapse
|
29
|
Gene-guided discovery and engineering of branched cyclic peptides in plants. Proc Natl Acad Sci U S A 2018; 115:E10961-E10969. [PMID: 30373830 DOI: 10.1073/pnas.1813993115] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The plant kingdom contains vastly untapped natural product chemistry, which has been traditionally explored through the activity-guided approach. Here, we describe a gene-guided approach to discover and engineer a class of plant ribosomal peptides, the branched cyclic lyciumins. Initially isolated from the Chinese wolfberry Lycium barbarum, lyciumins are protease-inhibiting peptides featuring an N-terminal pyroglutamate and a macrocyclic bond between a tryptophan-indole nitrogen and a glycine α-carbon. We report the identification of a lyciumin precursor gene from L. barbarum, which encodes a BURP domain and repetitive lyciumin precursor peptide motifs. Genome mining enabled by this initial finding revealed rich lyciumin genotypes and chemotypes widespread in flowering plants. We establish a biosynthetic framework of lyciumins and demonstrate the feasibility of producing diverse natural and unnatural lyciumins in transgenic tobacco. With rapidly expanding plant genome resources, our approach will complement bioactivity-guided approaches to unlock and engineer hidden plant peptide chemistry for pharmaceutical and agrochemical applications.
Collapse
|
30
|
Parsley NC, Kirkpatrick CL, Crittenden CM, Rad JG, Hoskin DW, Brodbelt JS, Hicks LM. PepSAVI-MS reveals anticancer and antifungal cycloviolacins in Viola odorata. PHYTOCHEMISTRY 2018; 152:61-70. [PMID: 29734037 PMCID: PMC6003877 DOI: 10.1016/j.phytochem.2018.04.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 04/12/2018] [Accepted: 04/24/2018] [Indexed: 05/07/2023]
Abstract
Widespread resistance to antimicrobial and cancer therapeutics is evolving in every country worldwide and has a direct impact on global health, agriculture and the economy. The specificity and selectivity of bioactive peptide natural products present a possible stopgap measure to address the ongoing deficit of new therapeutic compounds. PepSAVI-MS (Statistically-guided bioActive Peptides prioritized VIa Mass Spectrometry) is an adaptable method for the analysis of natural product libraries to rapidly identify bioactive peptides. This pipeline was validated via screening of the cyclotide-rich botanical species Viola odorata and identification of the known antimicrobial and anticancer cyclotide cycloviolacin O2. Herein we present and validate novel bioactivities of the anthelmintic V. odorata cyclotide, cycloviolacin O8 (cyO8), including micromolar anticancer activity against PC-3 prostate, MDA-MB-231 breast, and OVCAR-3 ovarian cancer cell lines and antifungal activity against the agricultural pathogen Fusarium graminearum. A reduction/alkylation strategy in tandem with PepSAVI-MS analysis also revealed several previously uncharacterized putatively bioactive cyclotides. Downstream implementation of ultraviolet photodissociation (UVPD) tandem mass spectrometry is demonstrated for cyO8 as a method to address traditionally difficult-to-sequence cyclotide species. This work emphasizes the therapeutic and agricultural potential of natural product bioactive peptides and the necessity of developing robust analytical tools to deconvolute nature's complexity.
Collapse
Affiliation(s)
- Nicole C Parsley
- Department of Chemistry, University of North Carolina at Chapel Hill, NC, USA
| | | | | | | | - David W Hoskin
- Department of Pathology, Dalhousie University, Nova Scotia, Canada; Department of Microbiology and Immunology, Dalhousie University, Nova Scotia, Canada; Department of Surgery, Dalhousie University, Nova Scotia, Canada
| | | | - Leslie M Hicks
- Department of Chemistry, University of North Carolina at Chapel Hill, NC, USA.
| |
Collapse
|