1
|
Agarwal A, Dadge S, Garg R, Sharma RK, Chauhan D, Katekar R, Rathaur S, Mitra K, Gayen JR. Bioavailability enhancement of formononetin by incorporation of natural bioenhancer in phospholipid complex. Pharm Dev Technol 2024; 29:1148-1161. [PMID: 39531009 DOI: 10.1080/10837450.2024.2427838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 10/28/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Formononetin (FNT) has limited application due to poor water solubility and substantial phase II metabolism. In the present study, we used phospholipid complex (PC) containing FNT and UDP-glucuronosyltransferase (UGT1A1) inhibitor piperine (PIP) to overcome FNT limitations. We characterized and compared both FNT-PC and FNT-PIP-PC complexes. Our data showed both groups improved FNT water solubility and oil-water partition coefficient. NMR, DSC, and SEM were performed to identify the interaction and the geometrical nature of complex. When compared, FNT-PIP-PC released more FNT in in vitro release and permeation through Caco-2 monolayer than FNT-PC and pure FNT. In vitro data was consistent with the in vivo pharmacokinetic profile that showed increased, Cmax and AUC(0-24) by 7.16 and 23.33-fold and 29.65 and 23.33-fold at 5 and 10 mg/kg in FNT-PIP-PC, compared to pure FNT. Additionally, co-treatment of PIP and FNT improved in vitro pharmacological action in dexamethasone-induced osteoporosis. Thus, our study showed addition of PIP in FNT-PC further increases FNT water solubility and protects it from phase II metabolism, leading to enhanced bioavailability with improved pharmacological activity.
Collapse
Affiliation(s)
- Arun Agarwal
- Pharmaceutics and Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Shailesh Dadge
- Pharmaceutics and Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Richa Garg
- Pharmaceutics and Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Rakesh Kumar Sharma
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Electron Microscopy Unit, CSIR-Central Drug Research Institute, Lucknow, India
| | - Divya Chauhan
- Pharmaceutics and Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Roshan Katekar
- Pharmaceutics and Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Shivam Rathaur
- Pharmaceutics and Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Kalyan Mitra
- Electron Microscopy Unit, CSIR-Central Drug Research Institute, Lucknow, India
| | - Jiaur R Gayen
- Pharmaceutics and Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, India
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
2
|
Catalyst-free, one-pot expeditious synthesis of polyhydroquinolines and 2-amino-4H-chromenes. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04763-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
3
|
Tripathi AK, Rai D, Kothari P, Kushwaha P, Sashidhara KV, Trivedi R. Benzofuran pyran hybrid prevents glucocorticoid induced osteoporosis in mice via modulation of canonical Wnt/β-catenin signaling. Apoptosis 2022; 27:90-111. [PMID: 35107658 PMCID: PMC8808472 DOI: 10.1007/s10495-021-01702-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2021] [Indexed: 11/26/2022]
Abstract
Glucocorticoid induced osteoporosis (GIOP) is the second most leading cause of osteoporosis. We have identified a compound, a benzofuran pyran hybrid compound 4e that has osteogenic potential and we wanted to assess its efficacy in GIOP in male mice. We assessed the effect of dexamethasone and compound 4e on primary osteoblasts using various cell based and immunofluorescence assays. For in vivo studies we administered methylprednisolone and compound 4e as a prophylactic measure in male Balb/c mice for 28 days and then evaluated the effect on bone microarchitecture by microCT, bone formation by histology along with clinically relevant bone markers. Compound 4e preserved osteoblast differentiation as evident by higher ALP positive cells and mineralization in compound treated groups. Compound 4e also increased the expression of osteogenic genes. This compound guarded β-catenin expression both in vitro and in vivo as confirmed by western blot and immunofluorescence assays. This led to the preservation of bone microarchitecture and cortical thickness at 2.5 mg kg−1 and 5 mg kg−1 doses. Further compound 4e enhanced bone formation rate and regulated osteocyte death. The osteogenic potential of compound 4e was reflected by an increased level of serum marker osteocalcin and decreased levels of SOST and CTX-I. Overall, Compound 4e is able to overcome the catabolic effect of dexamethasone on bone by targeting the canonical WNT/β-catenin signaling as evidenced by both in vitro and in vivo studies.
Collapse
Affiliation(s)
- Ashish Kumar Tripathi
- Endocrinology Division, CSIR-Central Drug Research Institute, 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, Uttar Pradesh, 226031, India
| | - Divya Rai
- Endocrinology Division, CSIR-Central Drug Research Institute, 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, Uttar Pradesh, 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Priyanka Kothari
- Endocrinology Division, CSIR-Central Drug Research Institute, 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, Uttar Pradesh, 226031, India
| | - Pragati Kushwaha
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Koneni V Sashidhara
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Ritu Trivedi
- Endocrinology Division, CSIR-Central Drug Research Institute, 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, Uttar Pradesh, 226031, India.
| |
Collapse
|
4
|
Raj Pandey A, Rai D, Singh SP, Tripathi AK, Sardar A, Ansari A, Mishra A, Bhagwati S, Bhatta RS, Siddiqi MI, Chattopadhyay N, Trivedi R, Sashidhara KV. Synthesis and Evaluation of Galloyl Conjugates of Flavanones as BMP-2 Upregulators with Promising Bone Anabolic and Fracture Healing Properties. J Med Chem 2021; 64:12487-12505. [PMID: 34410127 DOI: 10.1021/acs.jmedchem.1c00112] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The molecular hybridization concept led us to design a series of galloyl conjugates of flavanones that have potent osteoblast differentiation ability in vitro and promote bone formation in vivo. An array of in vitro studies, especially gene expression of osteogenic markers, evinced compound 5e as the most potent bone anabolic agent, found to be active at 1 pM, which was then further assessed for its osteogenic potential in vivo. From in vivo studies on rat calvaria and a fracture defect model, we inferred that compound 5e, at an oral dose of 5 mg/(kg day), increased the expression of osteogenic genes (RUNX2, BMP-2, Col1, and OCN) and the bone formation rate and significantly promoted bone regeneration at the fracture site, as evidenced by the increased bone volume/tissue fraction compared with vehicle-treated rats. Furthermore, structure-activity relationship studies and pharmacokinetic studies suggest 5e as a potential bone anabolic lead for future osteoporosis drug development.
Collapse
Affiliation(s)
- Alka Raj Pandey
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, U.P., India
| | - Divya Rai
- Division of Endocrinology and Centre for Research on ASTHI, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, U.P., India
| | - Suriya Pratap Singh
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Ashish Kumar Tripathi
- Division of Endocrinology and Centre for Research on ASTHI, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Anirban Sardar
- Division of Endocrinology and Centre for Research on ASTHI, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, U.P., India
| | - Alisha Ansari
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, U.P., India
| | - Anjali Mishra
- Pharmacokinetics and Metabolism Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, U.P., India
| | - Sudha Bhagwati
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Rabi Sankar Bhatta
- Pharmacokinetics and Metabolism Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Mohammad Imran Siddiqi
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Naibedya Chattopadhyay
- Division of Endocrinology and Centre for Research on ASTHI, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, U.P., India
| | - Ritu Trivedi
- Division of Endocrinology and Centre for Research on ASTHI, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, U.P., India
| | - Koneni V Sashidhara
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India.,Sophisticated Analytical Instrument Facility & Research, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, U.P., India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, U.P., India
| |
Collapse
|
5
|
Cong NT, Trang HTX, Dung PD, Phuong TH, Trung VQ, Dat ND, Anh DTT, Tuyen NV, Van Meervelt L. Synthesis, structure and in vitro cytotoxicity testing of some 2-aroylbenzofuran-3-ols. ACTA CRYSTALLOGRAPHICA SECTION C-STRUCTURAL CHEMISTRY 2020; 76:874-882. [PMID: 32887858 DOI: 10.1107/s2053229620011018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 08/11/2020] [Indexed: 11/10/2022]
Abstract
Five 2-aroyl-5-bromobenzo[b]furan-3-ol compounds (two of which are new) and four new 2-aroyl-5-iodobenzo[b]furan-3-ol compounds were synthesized starting from salicylic acid. The compounds were characterized by mass spectrometry and 1H NMR and 13C NMR spectroscopy. Single-crystal X-ray diffraction studies of four compounds, namely, (5-bromo-3-hydroxybenzofuran-2-yl)(4-fluorophenyl)methanone, C15H8BrFO3, (5-bromo-3-hydroxybenzofuran-2-yl)(4-chlorophenyl)methanone, C15H8BrClO3, (5-bromo-3-hydroxybenzofuran-2-yl)(4-bromophenyl)methanone, C15H8Br2O3, and (4-bromophenyl)(3-hydroxy-5-iodobenzofuran-2-yl)methanone, C15H8BrIO3, were also carried out. The compounds were tested for their in vitro cytotoxicity on the four human cancer cell lines KB, Hep-G2, Lu-1 and MCF7. Six compounds show good inhibiting abilities on Hep-G2 cells, with IC50 values of 1.39-8.03 µM.
Collapse
Affiliation(s)
- Nguyen Tien Cong
- Faculty of Chemistry, Ho Chi Minh City University of Education, 280 An Duong Vuong Street, District No. 5, Ho Chi Minh City, Vietnam
| | - Huynh Thi Xuan Trang
- Faculty of Chemistry, Ho Chi Minh City University of Education, 280 An Duong Vuong Street, District No. 5, Ho Chi Minh City, Vietnam
| | - Pham Duc Dung
- Faculty of Chemistry, Ho Chi Minh City University of Education, 280 An Duong Vuong Street, District No. 5, Ho Chi Minh City, Vietnam
| | - Tran Hoang Phuong
- Faculty of Chemistry, University of Sciences, Vietnam National University, 227 Nguyen Van Cu Street, District No. 5, Ho Chi Minh City 721337, Vietnam
| | - Vu Quoc Trung
- Faculty of Chemistry, Hanoi National University of Education, 136 Xuan Thuy, Cau Giay District, Hanoi 100000, Vietnam
| | - Nguyen Dang Dat
- Faculty of Chemistry, Hanoi National University of Education, 136 Xuan Thuy, Cau Giay District, Hanoi 100000, Vietnam
| | - Dang Thi Tuyet Anh
- Institute of Chemistry, Viet Nam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay District, Hanoi 100000, Vietnam
| | - Nguyen Van Tuyen
- Institute of Chemistry, Viet Nam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay District, Hanoi 100000, Vietnam
| | - Luc Van Meervelt
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, PO box 2404, Leuven (Heverlee), B-3001, Belgium
| |
Collapse
|
6
|
Tripathi AK, Rai D, Kothari P, Kushwaha P, Sinha S, Sardar A, Sashidhara KV, Trivedi R. Benzofuran pyran compound rescues rat and human osteoblast from lipotoxic effect of palmitate by inhibiting lipid biosynthesis and promoting stabilization of RUNX2. Toxicol In Vitro 2020; 66:104872. [DOI: 10.1016/j.tiv.2020.104872] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 04/06/2020] [Accepted: 04/20/2020] [Indexed: 02/06/2023]
|
7
|
Bhaskaruni SV, Maddila S, van Zyl WE, Jonnalagadda SB. Four-Component Fusion Protocol with NiO/ZrO 2 as a Robust Recyclable Catalyst for Novel 1,4-Dihydropyridines. ACS OMEGA 2019; 4:21187-21196. [PMID: 31867512 PMCID: PMC6921676 DOI: 10.1021/acsomega.9b02608] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 10/17/2019] [Indexed: 06/10/2023]
Abstract
Nickel oxide loaded on zirconia (NiO/ZrO2) as an expedient catalyst is reported for the synthesis of 18 unsymmetrical 1,4-dihydropyridine derivatives. The Lewis acidic nature of the catalyst proved an excellent choice for the one-pot, four-component fusion reaction with excellent yields of 89-98% and a completion time of 20-45 min. Mechanistic studies show that enamine and imine functionalities are the two possible pathways for the formation of 1,4-dihydropyridines with high selectivity. Crystal structures of two novel compounds (5a, 5c) were reported. The catalyst demonstrated reusability up to six cycles. The reaction at room temperature and ethanol as a solvent make this protocol green and economical.
Collapse
|
8
|
Khumalo MR, Maddila SN, Maddila S, Jonnalagadda SB. Microwave‐Assisted One‐Step Four‐Component Reaction for Synthesis of 1,4‐Dihydropyridines Catalyzed by Triethylamine. ChemistrySelect 2019. [DOI: 10.1002/slct.201903222] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Mandlenkosi Robert Khumalo
- School of Chemistry & PhysicsUniversity of KwaZulu-NatalWestville Campus Private Bag X54001 Durban 4000 South Africa
| | - Surya Narayana Maddila
- School of Chemistry & PhysicsUniversity of KwaZulu-NatalWestville Campus Private Bag X54001 Durban 4000 South Africa
| | - Suresh Maddila
- School of Chemistry & PhysicsUniversity of KwaZulu-NatalWestville Campus Private Bag X54001 Durban 4000 South Africa
| | - Sreekantha B. Jonnalagadda
- School of Chemistry & PhysicsUniversity of KwaZulu-NatalWestville Campus Private Bag X54001 Durban 4000 South Africa
| |
Collapse
|
9
|
Abstract
Introduction: Benzofuran is a fundamental unit in numerous bioactive heterocycles. They have attracted chemists and medical researchers due to their broad range of biological activity, where some of them possess unique anticancer, antitubercular, antidiabetic, anti-Alzheimer and anti-inflammatory properties. The benzofuran nucleus is present in a huge number of bioactive natural and synthetic compounds. Benzofuran derivatives have potent applications in pharmaceuticals, agriculture, and polymers. The recent developments considering the biological activities of benzofuran compounds are reported. They have a vital role as pronounced inhibitors against a number of diseases, viruses, fungus, microbes, and enzymes. Areas covered: This review covers the recent developments of biological activities of benzofurans during the period 2014-2019. The covered areas here comprised antimicrobial, anti-inflammatory, antitumor, antitubercular, antidiabetic, anti-Alzheimer, antioxidant, antiviral, vasorelaxant, anti-osteoporotic and enzyme inhibitory activities. Expert opinion: In addition to the already commercialized 34 benzofurans-based drugs in the market, this chapter outlines several potent benzofuran derivatives that may be useful as potential pro-drugs. It is also focused on providing details of SAR and the effect of certain functional groups on the activity of the benzofuran compounds. The presence of -OH, -OMe, sulfonamide, or halogen contributed greatly to increasing the therapeutic activities comparing with reference drugs.
Collapse
Affiliation(s)
- Kamal M Dawood
- Department of Chemistry, Faculty of Science, Cairo University , Giza , Egypt
| |
Collapse
|
10
|
Patel N, Prajapati A, Jadeja R, Patel R, Patel S, Gupta V, Tripathi I, Dwivedi N. Model investigations for vanadium-protein interactions: Synthesis, characterization and antidiabetic properties. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2019.04.050] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
11
|
5-Oxo-hexahydroquinoline: an attractive scaffold with diverse biological activities. Mol Divers 2018; 23:471-508. [PMID: 30390186 DOI: 10.1007/s11030-018-9886-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 10/17/2018] [Indexed: 12/31/2022]
Abstract
5-Oxo-hexahydroquinoline (5-oxo-HHQ) represents a biologically attractive fused heterocyclic core. Various synthetic analogs of 5-oxo-HHQ have been synthesized and assessed for different biological activities. Some derivatives have exhibited myorelaxant, analgesic, anticancer, antibacterial, antifungal, antitubercular, antimalarial, antioxidant, anti-inflammatory, multidrug resistance reversal, anti-Alzheimer, neuroprotective, antidiabetic, antidyslipidemic and antiosteoporotic activities. This review provides a comprehensive report regarding the preparation and pharmacological characterization of 5-oxo-HHQ derivatives that have been reported so far. This information will be beneficial for medicinal chemists in the field of drug discovery to design and develop new and potent therapeutical agents bearing the 5-oxo-HHQ nucleus.
Collapse
|
12
|
Kushwaha P, Tripathi AK, Gupta S, Kothari P, Upadhyay A, Ahmad N, Sharma T, Siddiqi MI, Trivedi R, Sashidhara KV. Synthesis and study of benzofuran-pyran analogs as BMP-2 targeted osteogenic agents. Eur J Med Chem 2018; 156:103-117. [PMID: 30006156 DOI: 10.1016/j.ejmech.2018.06.062] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 06/11/2018] [Accepted: 06/26/2018] [Indexed: 12/12/2022]
Abstract
Twenty-four novel benzofuran-pyran derivatives were synthesized and evaluated for their anti-osteoporotic activity in primary cultures of rat calvarial osteoblasts in vitro. Among all the compounds screened for the alkaline phosphatase activity, three compounds 4e, 4j and 4k showed potent activity at picomolar concentrations in osteoblast differentiating stimulation. Additionally, these compounds were found effective in mineralization, assessed by alizarin red-S staining assay. Compounds were again validated through a series of other in vitro experiments. Moreover, molecular dynamics simulations demonstrated that both benzofuran and pyran moieties are requisite to fit into the active site of BMP-2 receptor, a key target of the osteogenic agents. The obtained results strongly convey that compound 4e is a potential bone anabolic agent among synthesized series, which can be further explored as a drug lead for treating osteoporosis.
Collapse
Affiliation(s)
- Pragati Kushwaha
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Ashish Kumar Tripathi
- Division of Endocrinology, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Sampa Gupta
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Priyanka Kothari
- Division of Endocrinology, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Akanksha Upadhyay
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Naseer Ahmad
- Division of Endocrinology, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Tanuj Sharma
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - M I Siddiqi
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Ritu Trivedi
- Division of Endocrinology, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India.
| | - Koneni V Sashidhara
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India.
| |
Collapse
|
13
|
Gupta S, Adhikary S, Modukuri RK, Choudhary D, Trivedi R, Sashidhara KV. Benzofuran-pyran hybrids: A new class of potential bone anabolic agents. Bioorg Med Chem Lett 2018; 28:1719-1724. [DOI: 10.1016/j.bmcl.2018.04.041] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 04/12/2018] [Accepted: 04/15/2018] [Indexed: 02/04/2023]
|