1
|
Singh YP, Kumar H. Recent Advances in Medicinal Chemistry of Memantine Against Alzheimer's Disease. Chem Biol Drug Des 2024; 104:e14638. [PMID: 39370170 DOI: 10.1111/cbdd.14638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/16/2024] [Accepted: 09/19/2024] [Indexed: 10/08/2024]
Abstract
Alzheimer's disease (AD) is a chronic progressive, age-related neurodegenerative brain disorder characterized by the irreversible decline of memory and other cognitive functions. It is one of the major health threat of the 21st century, which affects around 60% of the population over the age of 60 years. The problem of this disease is even more major because the existing pharmacotherapies only provide symptomatic relief without addressing the basic factors of the disease. It is characterized by the extracellular deposition of amyloid β (Aβ) to form senile plaques, and the intracellular hyperphosphorylation of tau to form neurofibrillary tangles (NFTs). Due to the complex pathophysiology of this disease, various hypotheses have been proposed, including the cholinergic, Aβ, tau, oxidative stress, and the metal-ion hypothesis. Among these, the cholinergic and Aβ hypotheses are the primary targets for addressing AD. Therefore, continuous advances have been made in developing potential cholinesterase inhibitors and N-methyl-D-aspartate (NMDA) receptor antagonists to delay disease progression and restore cholinergic neurotransmission. In this review article, we tried to comprehensively summarize the recent advancement in NMDA receptor antagonist (memantine) and their hybrid analogs as potential disease-modifying agents for the treatment of AD. Furthermore, we also depicted the design, rationale, and SAR analysis of the memantine-based hybrids used in the last decade for the treatment of AD.
Collapse
Affiliation(s)
- Yash Pal Singh
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, Virginia, USA
- Himachal Pradesh Technical University, Hamirpur, India
| | - Harish Kumar
- Himachal Pradesh Technical University, Hamirpur, India
- Government College of Pharmacy, Shimla, India
| |
Collapse
|
2
|
Basagni F, Marotta G, Rosini M, Minarini A. Polyamine-Drug Conjugates: Do They Boost Drug Activity? Molecules 2023; 28:molecules28114518. [PMID: 37298993 DOI: 10.3390/molecules28114518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
Over the past two decades, the strategy of conjugating polyamine tails with bioactive molecules such as anticancer and antimicrobial agents, as well as antioxidant and neuroprotective scaffolds, has been widely exploited to enhance their pharmacological profile. Polyamine transport is elevated in many pathological conditions, suggesting that the polyamine portion could improve cellular and subcellular uptake of the conjugate via the polyamine transporter system. In this review, we have presented a glimpse on the polyamine conjugate scenario, classified by therapeutic area, of the last decade with the aim of highlighting achievements and fostering future developments.
Collapse
Affiliation(s)
- Filippo Basagni
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Giambattista Marotta
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Michela Rosini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Anna Minarini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| |
Collapse
|
3
|
Turcu AL, Companys-Alemany J, Phillips MB, Patel DS, Griñán-Ferré C, Loza MI, Brea JM, Pérez B, Soto D, Sureda FX, Kurnikova MG, Johnson JW, Pallàs M, Vázquez S. Design, synthesis, and in vitro and in vivo characterization of new memantine analogs for Alzheimer's disease. Eur J Med Chem 2022; 236:114354. [PMID: 35453065 PMCID: PMC9106868 DOI: 10.1016/j.ejmech.2022.114354] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 12/28/2022]
Abstract
Currently, of the few accessible symptomatic therapies for Alzheimer's disease (AD), memantine is the only N-methyl-d-aspartate receptor (NMDAR) blocker approved by the FDA. This work further explores a series of memantine analogs featuring a benzohomoadamantane scaffold. Most of the newly synthesized compounds block NMDARs in the micromolar range, but with lower potency than previously reported hit IIc, results that were supported by molecular dynamics simulations. Subsequently, electrophysiological studies with the more potent compounds allowed classification of IIc, a low micromolar, uncompetitive, voltage-dependent, NMDAR blocker, as a memantine-like compound. The excellent in vitro DMPK properties of IIc made it a promising candidate for in vivo studies in Caenorhabditis elegans (C. elegans) and in the 5XFAD mouse model of AD. Administration of IIc or memantine improved locomotion and rescues chemotaxis behavior in C. elegans. Furthermore, both compounds enhanced working memory in 5XFAD mice and modified NMDAR and CREB signaling, which may prevent synaptic dysfunction and modulate neurodegenerative progression.
Collapse
Affiliation(s)
- Andreea L Turcu
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Facultat de Farmàcia i Ciències de l'Alimentació i Institut de Biomedicina (IBUB), Universitat de Barcelona, Av. Joan XXIII, 27-31, 08028, Barcelona, Spain; Neurophysiology Laboratory, Department of Biomedicine, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, 08036, Barcelona, Spain
| | - Júlia Companys-Alemany
- Pharmacology Section, Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Institute of Neurosciences (NeuroUB), Universitat de Barcelona, Av. Joan XXIII 27-31, 08028, Barcelona, Spain
| | - Matthew B Phillips
- Department of Neuroscience and Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Dhilon S Patel
- Chemistry Department, Carnegie Mellon University, 4400 Fifth Ave, Pittsburgh, PA, 15213, USA
| | - Christian Griñán-Ferré
- Pharmacology Section, Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Institute of Neurosciences (NeuroUB), Universitat de Barcelona, Av. Joan XXIII 27-31, 08028, Barcelona, Spain
| | - M Isabel Loza
- Innopharma Screening Platform, Biofarma Research Group, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas, Universidad de Santiago de Compostela, Edificio CIMUS, Av. Barcelona, S/N, E, 15706, Santiago de Compostela, Spain
| | - José M Brea
- Innopharma Screening Platform, Biofarma Research Group, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas, Universidad de Santiago de Compostela, Edificio CIMUS, Av. Barcelona, S/N, E, 15706, Santiago de Compostela, Spain
| | - Belén Pérez
- Department of Pharmacology, Therapeutics and Toxicology, Autonomous University of Barcelona, E-08193, Bellaterra, Spain
| | - David Soto
- Neurophysiology Laboratory, Department of Biomedicine, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, 08036, Barcelona, Spain; August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Francesc X Sureda
- Pharmacology Unit, Faculty of Medicine and Health Sciences, Universitat Rovira i Virgili, C./ St. Llorenç 21, 43201, Reus, Tarragona, Spain
| | - Maria G Kurnikova
- Chemistry Department, Carnegie Mellon University, 4400 Fifth Ave, Pittsburgh, PA, 15213, USA
| | - Jon W Johnson
- Department of Neuroscience and Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Mercè Pallàs
- Pharmacology Section, Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Institute of Neurosciences (NeuroUB), Universitat de Barcelona, Av. Joan XXIII 27-31, 08028, Barcelona, Spain
| | - Santiago Vázquez
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Facultat de Farmàcia i Ciències de l'Alimentació i Institut de Biomedicina (IBUB), Universitat de Barcelona, Av. Joan XXIII, 27-31, 08028, Barcelona, Spain.
| |
Collapse
|
5
|
Luo Z, Yu G, Chen X, Liu Y, Zhou Y, Wang G, Shi Y. Integrated phytochemical analysis based on UHPLC-LTQ-Orbitrap and network pharmacology approaches to explore the potential mechanism of Lycium ruthenicum Murr. for ameliorating Alzheimer's disease. Food Funct 2020; 11:1362-1372. [PMID: 31967149 DOI: 10.1039/c9fo02840d] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Based on compelling experimental and clinical evidence, the fruit of Lycium ruthenicum Murr. (LRM), a unique traditional Tibetan medicine, exerts beneficial effects on ameliorating learning and memory deficits of Alzheimer's disease (AD) and other neurodegenerative disorders. However, the potential active constituents and biological mechanism of LRM are still unknown. In this study, the major chemical constituents of LRM were first analyzed by ultra-high-pressure liquid chromatography coupled with linear ion trap-Orbitrap tandem mass spectrometry (UHPLC-LTQ-Orbitrap). A total of 35 constituents were confirmed or tentatively identified. Furthermore, the network-based pharmacological strategy was applied to clarify the molecular mechanism of LRM on AD based on the identified components. Totally, 143 major targets were screened and supposed to be effective players in alleviating AD. Then, the LRM chemicals-major LRM putative targets-major pathways network was constructed, implying potential biological function of LRM on AD. More importantly, 12 core genes which can be modulated by LRM were identified, and they may play a pivotal role in alleviating some major symptoms of AD. This study provided a scientific basis for further investigation and application of LRM, which demonstrated that the network pharmacology approach could be a powerful way for the mechanistic studies of folk medicines.
Collapse
Affiliation(s)
- Zhiqiang Luo
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China. and School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Guohua Yu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Xinjing Chen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Yang Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Yating Zhou
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Guopeng Wang
- Zhongcai Health (Beijing) Biological Technology Development Co., Ltd., Beijing 101500, China
| | - Yuanyuan Shi
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China.
| |
Collapse
|
6
|
Berlinck RGS, Bernardi DI, Fill T, Fernandes AAG, Jurberg ID. The chemistry and biology of guanidine secondary metabolites. Nat Prod Rep 2020; 38:586-667. [PMID: 33021301 DOI: 10.1039/d0np00051e] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Covering: 2017-2019Guanidine natural products isolated from microorganisms, marine invertebrates and terrestrial plants, amphibians and spiders, represented by non-ribosomal peptides, guanidine-bearing polyketides, alkaloids, terpenoids and shikimic acid derived, are the subject of this review. The topics include the discovery of new metabolites, total synthesis of natural guanidine compounds, biological activity and mechanism-of-action, biosynthesis and ecological functions.
Collapse
Affiliation(s)
- Roberto G S Berlinck
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, CEP 13560-970, São Carlos, SP, Brazil.
| | | | | | | | | |
Collapse
|
7
|
Marotta G, Basagni F, Rosini M, Minarini A. Memantine Derivatives as Multitarget Agents in Alzheimer's Disease. Molecules 2020; 25:molecules25174005. [PMID: 32887400 PMCID: PMC7504780 DOI: 10.3390/molecules25174005] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/31/2020] [Accepted: 09/01/2020] [Indexed: 12/24/2022] Open
Abstract
Memantine (3,5-dimethyladamantan-1-amine) is an orally active, noncompetitive N-methyl-D-aspartate receptor (NMDAR) antagonist approved for treatment of moderate-to-severe Alzheimer’s disease (AD), a neurodegenerative condition characterized by a progressive cognitive decline. Unfortunately, memantine as well as the other class of drugs licensed for AD treatment acting as acetylcholinesterase inhibitors (AChEIs), provide only symptomatic relief. Thus, the urgent need in AD drug development is for disease-modifying therapies that may require approaching targets from more than one path at once or multiple targets simultaneously. Indeed, increasing evidence suggests that the modulation of a single neurotransmitter system represents a reductive approach to face the complexity of AD. Memantine is viewed as a privileged NMDAR-directed structure, and therefore, represents the driving motif in the design of a variety of multi-target directed ligands (MTDLs). In this review, we present selected examples of small molecules recently designed as MTDLs to contrast AD, by combining in a single entity the amantadine core of memantine with the pharmacophoric features of known neuroprotectants, such as antioxidant agents, AChEIs and Aβ-aggregation inhibitors.
Collapse
|