1
|
Martins A, Judák F, Farkas Z, Szili P, Grézal G, Csörgő B, Czikkely MS, Maharramov E, Daruka L, Spohn R, Balogh D, Daraba A, Juhász S, Vágvölgyi M, Hunyadi A, Cao Y, Sun Z, Li X, Papp B, Pál C. Antibiotic candidates for Gram-positive bacterial infections induce multidrug resistance. Sci Transl Med 2025; 17:eadl2103. [PMID: 39772773 DOI: 10.1126/scitranslmed.adl2103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 06/17/2024] [Accepted: 11/18/2024] [Indexed: 01/11/2025]
Abstract
Several antibiotic candidates are in development against Gram-positive bacterial pathogens, but their long-term utility is unclear. To investigate this issue, we studied the laboratory evolution of resistance to antibiotics that have not yet reached the market. We found that, with the exception of compound SCH79797, antibiotic resistance generally readily evolves in Staphylococcus aureus. Cross-resistance was detected between such candidates and antibiotics currently in clinical use, including vancomycin, daptomycin, and the promising antibiotic candidate teixobactin. These patterns were driven by overlapping molecular mechanisms through mutations in regulatory systems. In particular, teixobactin-resistant bacteria displayed clinically relevant multidrug resistance and retained their virulence in an invertebrate infection model, raising concerns. More generally, we demonstrate that putative resistance mutations against candidate antibiotics are already present in natural bacterial populations. Therefore, antibiotic resistance in nature may evolve readily from the selection of preexisting genetic variants. Our work highlights the importance of predicting future evolution of resistance to antibiotic candidates at an early stage of drug development.
Collapse
Affiliation(s)
- Ana Martins
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre Szeged, Szeged HU-6726, Hungary
- Institute of Pharmacognosy, Faculty of Pharmacy, University of Szeged, Szeged HU-6720, Hungary
| | - Fanni Judák
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre Szeged, Szeged HU-6726, Hungary
- Doctoral School of Pharmaceutical Sciences, University of Szeged, Szeged HU-6720, Hungary
| | - Zoltán Farkas
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre Szeged, Szeged HU-6726, Hungary
| | - Petra Szili
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre Szeged, Szeged HU-6726, Hungary
| | - Gábor Grézal
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre Szeged, Szeged HU-6726, Hungary
- HCEMM-BRC Metabolic Systems Biology Lab, Szeged HU-6726, Hungary
| | - Bálint Csörgő
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre Szeged, Szeged HU-6726, Hungary
| | - Márton Simon Czikkely
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre Szeged, Szeged HU-6726, Hungary
- Doctoral School of Multidisciplinary Medical Sciences, University of Szeged, Szeged HU-6722, Hungary
- Department of Forensic Medicine, Albert-Szent-Györgyi Medical School, University of Szeged, Szeged HU-6722, Hungary
| | - Elvin Maharramov
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre Szeged, Szeged HU-6726, Hungary
- Doctoral School of Biology, University of Szeged, Szeged HU-6726, Hungary
| | - Lejla Daruka
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre Szeged, Szeged HU-6726, Hungary
| | - Réka Spohn
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre Szeged, Szeged HU-6726, Hungary
| | - Dávid Balogh
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre Szeged, Szeged HU-6726, Hungary
| | - Andreea Daraba
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre Szeged, Szeged HU-6726, Hungary
| | - Szilvia Juhász
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre Szeged, Szeged HU-6726, Hungary
- Cancer Microbiome Core Group, Hungarian Centre of Excellence for Molecular Medicine (HCEMM), Szeged HU-6728, Hungary
| | - Máté Vágvölgyi
- Institute of Pharmacognosy, Faculty of Pharmacy, University of Szeged, Szeged HU-6720, Hungary
| | - Attila Hunyadi
- Institute of Pharmacognosy, Faculty of Pharmacy, University of Szeged, Szeged HU-6720, Hungary
- HUN-REN-SZTE Biologically Active Natural Products Research Group, Szeged HU-6720, Hungary
| | - Yihui Cao
- Department of Chemistry, State Key Lab of Synthetic Chemistry, University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Zhenquan Sun
- Department of Chemistry, State Key Lab of Synthetic Chemistry, University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Xuechen Li
- Department of Chemistry, State Key Lab of Synthetic Chemistry, University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Balázs Papp
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre Szeged, Szeged HU-6726, Hungary
- HCEMM-BRC Metabolic Systems Biology Lab, Szeged HU-6726, Hungary
| | - Csaba Pál
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre Szeged, Szeged HU-6726, Hungary
| |
Collapse
|
2
|
Amer AM, Charnock C, Nguyen S. Novel Teixobactin Analogues Show Promising In Vitro Activity on Biofilm Formation by Staphylococcus aureus and Enterococcus faecalis. Curr Microbiol 2024; 81:349. [PMID: 39254872 PMCID: PMC11387452 DOI: 10.1007/s00284-024-03857-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 08/19/2024] [Indexed: 09/11/2024]
Abstract
The treatment of infections caused by biofilm-forming organisms is challenging. The newly discovered antibiotic teixobactin shows activity against a wide range of biofilm-forming bacteria. However, the laborious and low-yield chemical synthesis of teixobactin complicates its further development for clinical application. The use of more easily synthesized teixobactin analogues may offer promise in this regard. In this article, three newly developed analogues were tested for efficacy against Staphylococcus aureus and Enterococcus faecalis. Minimum inhibitory and -bactericidal concentrations were investigated. MIC values for S. aureus and E. faecalis ranged from 0.5-2 and 2-4 μg/mL, respectively. Moreover, the ability of the analogues to prevent biofilm formation and to inactivate bacterial cells in already established S. aureus biofilm on medical grade materials (PVC and PTFE) used in the production of infusion tubing and catheters were also tested. The analogues showed an ability to prevent biofilm formation and inactivate bacterial cells in established biofilms at concentrations as low as 1-2 μg/mL. Confocal laser scanning microscopy showed that the most promising analogue (TB3) inactivated S. aureus cells in a preformed biofilm and gave a reduction in biovolume. The relative ease of synthesis of the analogues and their in vitro efficacy, makes them promising candidates for pharmaceutical development.
Collapse
Affiliation(s)
- Ahmed M Amer
- Department of Life Sciences and Health, Oslo Metropolitan University (OsloMet), Pilestredet 50, 0167, Oslo, Norway.
| | - Colin Charnock
- Department of Life Sciences and Health, Oslo Metropolitan University (OsloMet), Pilestredet 50, 0167, Oslo, Norway
| | - Sanko Nguyen
- Department of Life Sciences and Health, Oslo Metropolitan University (OsloMet), Pilestredet 50, 0167, Oslo, Norway
| |
Collapse
|
3
|
Jones C, Lai GH, Padilla MST, Nowick JS. Investigation of Isobactin Analogues of Teixobactin. ACS Med Chem Lett 2024; 15:1136-1142. [PMID: 39015269 PMCID: PMC11247654 DOI: 10.1021/acsmedchemlett.4c00215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/04/2024] [Accepted: 06/10/2024] [Indexed: 07/18/2024] Open
Abstract
Although teixobactin is a promising antibiotic drug candidate against Gram-positive bacteria, it aggregates to form gels that may limit intravenous administration. We previously reported O-acyl isopeptide prodrugs of teixobactin analogues that address the problem of gel formation while retaining antibiotic activity. We termed these compounds isobactins. In the current Letter, we present nine new isobactin analogues that exhibit a reduced propensity to form gels in aqueous conditions while maintaining potent antibiotic activity against MRSA, VRE, and other Gram-positive bacteria. These isobactin analogues contain commercially available amino acid residues at position 10, replacing the synthetically challenging l-allo-enduracididine residue that is present in teixobactin. The isobactins undergo clean conversion to their corresponding teixobactin analogues at physiological pH and exhibit little to no hemolytic activity or cytotoxicity. Because isobactin analogues exhibit enhanced solubility, delayed gel formation, and are more synthetically accessible, it is anticipated that isobactin prodrug analogues may be superior drug candidates to teixobactin.
Collapse
Affiliation(s)
- Chelsea
R. Jones
- Department
of Chemistry, University of California,
Irvine, Irvine, California 92697, United States
| | - Grant H. Lai
- Department
of Chemistry, University of California,
Irvine, Irvine, California 92697, United States
| | | | - James S. Nowick
- Department
of Chemistry, University of California,
Irvine, Irvine, California 92697, United States
- Department
of Pharmaceutical Sciences, University of
California, Irvine, Irvine, California 92697, United States
| |
Collapse
|
4
|
Parmar A, Lakshminarayanan R, Iyer A, Goh ETL, To TY, Yam JKH, Yang L, Newire E, Robertson MC, Prior SH, Breukink E, Madder A, Singh I. Development of teixobactin analogues containing hydrophobic, non-proteogenic amino acids that are highly potent against multidrug-resistant bacteria and biofilms. Eur J Med Chem 2023; 261:115853. [PMID: 37857144 DOI: 10.1016/j.ejmech.2023.115853] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/24/2023] [Accepted: 10/01/2023] [Indexed: 10/21/2023]
Abstract
Teixobactin is a cyclic undecadepsipeptide that has shown excellent potency against multidrug-resistant pathogens, such as methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococci (VRE). In this article, we present the design, synthesis, and antibacterial evaluations of 16 different teixobactin analogues. These simplified analogues contain commercially available hydrophobic, non-proteogenic amino acid residues instead of synthetically challenging expensive L-allo-enduracididine amino acid residue at position 10 together with different combinations of arginines at positions 3, 4 and 9. The new teixobactin analogues showed potent antibacterial activity against a broad panel of Gram-positive bacteria, including MRSA and VRE strains. Our work also presents the first demonstration of the potent antibiofilm activity of teixobactin analogoues against Staphylococcus species associated with serious chronic infections. Our results suggest that the use of hydrophobic, non-proteogenic amino acids at position 10 in combination with arginine at positions 3, 4 and 9 holds the key to synthesising a new generation of highly potent teixobactin analogues to tackle resistant bacterial infections and biofilms.
Collapse
Affiliation(s)
- Anish Parmar
- Antimicrobial Pharmacodynamics and Therapeutics, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular & Integrative Biology, University of Liverpool, William Henry Duncan Building, 6 West Derby St, Liverpool, L7 8TX, UK; Antimicrobial Drug Discovery and Development, Department of Chemistry, The Robert Robinson Laboratories, University of Liverpool, L69 3BX, Liverpool, UK
| | - Rajamani Lakshminarayanan
- Singapore Eye Research Institute, The Academia, Discovery Tower Level 6, 20 College Road, 169857, Singapore
| | - Abhishek Iyer
- Organic and Biomimetic Chemistry Research Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 (S4), B-9000, Ghent, Belgium
| | - Eunice Tze Leng Goh
- Singapore Eye Research Institute, The Academia, Discovery Tower Level 6, 20 College Road, 169857, Singapore
| | - Tsz Ying To
- Antimicrobial Pharmacodynamics and Therapeutics, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular & Integrative Biology, University of Liverpool, William Henry Duncan Building, 6 West Derby St, Liverpool, L7 8TX, UK; Antimicrobial Drug Discovery and Development, Department of Chemistry, The Robert Robinson Laboratories, University of Liverpool, L69 3BX, Liverpool, UK
| | - Joey Kuok Hoong Yam
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, 637551, Singapore
| | - Liang Yang
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, 637551, Singapore; School of Biological Sciences, Division of Structural Biology and Biochemistry, Nanyang Technological University, 639798, Singapore
| | - Enas Newire
- Antimicrobial Pharmacodynamics and Therapeutics, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular & Integrative Biology, University of Liverpool, William Henry Duncan Building, 6 West Derby St, Liverpool, L7 8TX, UK; Antimicrobial Drug Discovery and Development, Department of Chemistry, The Robert Robinson Laboratories, University of Liverpool, L69 3BX, Liverpool, UK
| | - Maria C Robertson
- Antimicrobial Pharmacodynamics and Therapeutics, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular & Integrative Biology, University of Liverpool, William Henry Duncan Building, 6 West Derby St, Liverpool, L7 8TX, UK; Antimicrobial Drug Discovery and Development, Department of Chemistry, The Robert Robinson Laboratories, University of Liverpool, L69 3BX, Liverpool, UK
| | - Stephen H Prior
- School of Chemistry, Joseph Banks Laboratories, University of Lincoln, Green Lane, Lincoln, LN6 7DL, United Kingdom
| | - Eefjan Breukink
- Department of Membrane Biochemistry and Biophysics, Institute of Biomembranes, Utrecht University, Padualaan 8, 3584, CH, Utrecht, the Netherlands
| | - Annemieke Madder
- Organic and Biomimetic Chemistry Research Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 (S4), B-9000, Ghent, Belgium
| | - Ishwar Singh
- Antimicrobial Pharmacodynamics and Therapeutics, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular & Integrative Biology, University of Liverpool, William Henry Duncan Building, 6 West Derby St, Liverpool, L7 8TX, UK; Antimicrobial Drug Discovery and Development, Department of Chemistry, The Robert Robinson Laboratories, University of Liverpool, L69 3BX, Liverpool, UK.
| |
Collapse
|
5
|
Jadimurthy R, Mayegowda SB, Nayak S, Mohan CD, Rangappa KS. Escaping mechanisms of ESKAPE pathogens from antibiotics and their targeting by natural compounds. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2022; 34:e00728. [PMID: 35686013 PMCID: PMC9171455 DOI: 10.1016/j.btre.2022.e00728] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/10/2022] [Accepted: 03/31/2022] [Indexed: 06/15/2023]
Abstract
The microorganisms that have developed resistance to available therapeutic agents are threatening the globe and multidrug resistance among the bacterial pathogens is becoming a major concern of public health worldwide. Bacteria develop protective mechanisms to counteract the deleterious effects of antibiotics, which may eventually result in loss of growth-inhibitory potential of antibiotics. ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.) pathogens display multidrug resistance and virulence through various mechanisms and it is the need of the hour to discover or design new antibiotics against ESKAPE pathogens. In this article, we have discussed the mechanisms acquired by ESKAPE pathogens to counteract the effect of antibiotics and elaborated on recently discovered secondary metabolites derived from bacteria and plant sources that are endowed with good antibacterial activity towards pathogenic bacteria in general, ESKAPE organisms in particular. Abyssomicin C, allicin, anthracimycin, berberine, biochanin A, caffeic acid, daptomycin, kibdelomycin, piperine, platensimycin, plazomicin, taxifolin, teixobactin, and thymol are the major metabolites whose antibacterial potential have been discussed in this article.
Collapse
Affiliation(s)
- Ragi Jadimurthy
- Department of Studies in Molecular Biology, University of Mysore, Manasagangotri, Mysore 570006, India
| | - Shilpa Borehalli Mayegowda
- Dayananda Sagar University, School of Basic and Applied Sciences, Shavige Malleswara Hills, Kumaraswamy layout, Bengaluru 560111, India
| | - S.Chandra Nayak
- Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysore 570006, India
| | | | | |
Collapse
|
6
|
Qi YK, Tang X, Wei NN, Pang CJ, Du SS, Wang KW. Discovery, synthesis, and optimization of teixobactin, a novel antibiotic without detectable bacterial resistance. J Pept Sci 2022; 28:e3428. [PMID: 35610021 DOI: 10.1002/psc.3428] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 05/07/2022] [Accepted: 05/10/2022] [Indexed: 11/09/2022]
Abstract
Discovering new antibiotics with novel chemical scaffolds and antibacterial mechanisms presents a challenge for medicinal scientists worldwide as the ever-increasing bacterial resistance poses a serious threat to human health. A new cyclic peptide-based antibiotic termed teixobactin was discovered from a screen of uncultured soil bacteria through iChip technology in 2015. Teixobactin exhibits excellent antibacterial activity against all the tested gram-positive pathogens and Mycobacterium tuberculosis, including drug-resistant strains. Given that teixobactin targets the highly conserved lipid II and lipid III, which induces the simultaneous inhibition of both peptidoglycan and teichoic acid synthesis, the emergence of resistance is considered to be rather difficult. The novel structure, potent antibacterial activity, and highly conservative targets make teixobactin a promising lead compound for further antibiotic development. This review provides a comprehensive treatise on the advances of teixobactin in the areas of discovery processes, antibacterial activity, mechanisms of action, chemical synthesis, and structural optimizations. The synthetic methods for the key building block l-allo-End, natural teixobactin, representative teixobactin analogues, as well as the structure-activity relationship studies will be highlighted and discussed in details. Finally, some insights into new trends for the generation of novel teixobactin analogues and tips for future work and directions will be commented.
Collapse
Affiliation(s)
- Yun-Kun Qi
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University, Qingdao, China.,Institute of Innovative Drugs, Qingdao University, Qingdao, China.,State Key Laboratory Base for Eco-Chemical Engineering in College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Xiaowen Tang
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University, Qingdao, China
| | - Ning-Ning Wei
- Institute of Innovative Drugs, Qingdao University, Qingdao, China
| | - Cheng-Jian Pang
- The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shan-Shan Du
- State Key Laboratory Base for Eco-Chemical Engineering in College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Ke Wei Wang
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University, Qingdao, China.,Institute of Innovative Drugs, Qingdao University, Qingdao, China
| |
Collapse
|
7
|
Liu J, Li X. Serine/Threonine Ligation and Cysteine/Penicillamine Ligation. Methods Mol Biol 2022; 2530:33-43. [PMID: 35761040 DOI: 10.1007/978-1-0716-2489-0_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Serine/threonine ligation (STL) and cysteine/penicillamine ligation (CPL) are highly chemo- and regioselective reactions between unprotected peptides with C-terminus salicylaldehyde esters and unprotected peptides with N-terminus serine/threonine or cysteine/penicillamine, which serve as powerful tools for cyclic peptide natural product and chemical protein synthesis. Herein, we introduce the preparation of C-terminal peptide salicylaldehyde esters, serine/threonine ligation, cysteine/penicillamine ligation, and subsequent acidolysis.
Collapse
Affiliation(s)
- Jiamei Liu
- Department of Chemistry, University of Hong Kong, Hong Kong, SAR, China
| | - Xuechen Li
- Department of Chemistry, University of Hong Kong, Hong Kong, SAR, China.
| |
Collapse
|
8
|
Complex cyclic peptide synthesis via serine/threonine ligation chemistry. Bioorg Med Chem Lett 2021; 54:128430. [PMID: 34757215 DOI: 10.1016/j.bmcl.2021.128430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/18/2021] [Accepted: 10/21/2021] [Indexed: 11/21/2022]
Abstract
Non-ribosomal cyclic peptides are abundant in natural sources, exhibiting attractive bioactivities and favorable pharmacological properties. Furthermore, their structural complexity renders them as attractive synthetic targets. A general task for cyclic peptide synthesis is the peptide cyclization. Compared to the traditional dehydration-based peptide macrolactamization, chemoselective peptide ligation provides an alternative, sometimes advantageous, strategy to cyclize peptides. Herein, we provide a series of structurally complex cyclic peptide examples whose total syntheses were achieved via peptide ligation-mediated peptide cyclization. The special features of these strategies for achieving the total synthesis are highlighted.
Collapse
|
9
|
De Novo Resistance to Arg 10-Teixobactin Occurs Slowly and Is Costly. Antimicrob Agents Chemother 2020; 65:AAC.01152-20. [PMID: 33046494 DOI: 10.1128/aac.01152-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 10/02/2020] [Indexed: 02/06/2023] Open
Abstract
Bacterial pathogens are rapidly evolving resistance to all clinically available antibiotics. One part of the solution to this complex issue is to better understand the resistance mechanisms to new and existing antibiotics. Here, we focus on two antibiotics. Teixobactin is a recently discovered promising antibiotic that is claimed to "kill pathogens without detectable resistance" (L. L. Ling, T. Schneider, A. J. Peoples, A. L. Spoering, et al., Nature 517:455-459, 2015, https://doi.org/10.1038/nature14098). Moenomycin A has been extensively used in animal husbandry for over 50 years with no meaningful antibiotic resistance arising. However, the nature, mechanisms, and consequences of the evolution of resistance to these "resistance-proof" compounds have not been investigated. Through a fusion of experimental evolution, whole-genome sequencing, and structural biology, we show that Staphylococcus aureus can develop significant resistance to both antibiotics in clinically meaningful timescales. The magnitude of evolved resistance to Arg10-teixobactin is 300-fold less than to moenomycin A over 45 days, and these are 2,500-fold and 8-fold less than evolved resistance to rifampicin (control), respectively. We have identified a core suite of key mutations, which correlate with the evolution of resistance, that are in genes involved in cell wall modulation, lipid synthesis, and energy metabolism. We show the evolution of resistance to these antimicrobials translates into significant cross-resistance against other clinically relevant antibiotics for moenomycin A but not Arg10-teixobactin. Lastly, we show that resistance is rapidly lost in the absence of antibiotic selection, especially for Arg10-teixobactin. These findings indicate that teixobactin is worth pursuing for clinical applications and provide evidence to inform strategies for future compound development and clinical management.
Collapse
|
10
|
Yim VV, Cameron AJ, Kavianinia I, Harris PWR, Brimble MA. Thiol-ene Enabled Chemical Synthesis of Truncated S-Lipidated Teixobactin Analogs. Front Chem 2020; 8:568. [PMID: 32850619 PMCID: PMC7417771 DOI: 10.3389/fchem.2020.00568] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 06/03/2020] [Indexed: 11/16/2022] Open
Abstract
Herein is described the introduction of lipid moieties onto a simplified teixobactin pharmacophore using a modified Cysteine Lipidation on a Peptide or Amino acid (CLipPA) technique, whereby cysteine was substituted for 3-mercaptopropionic acid (3-MPA). A truncated teixobactin analog was prepared with the requisite thiol handle, thus enabling an array of vinyl esters to be conveniently conjugated onto the simplified teixobactin pharmacophore to yield S-lipidated cyclic lipopeptides.
Collapse
Affiliation(s)
- Victor V Yim
- School of Biological Sciences, University of Auckland, Auckland, New Zealand.,School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Alan J Cameron
- School of Biological Sciences, University of Auckland, Auckland, New Zealand.,School of Chemical Sciences, University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - Iman Kavianinia
- School of Biological Sciences, University of Auckland, Auckland, New Zealand.,School of Chemical Sciences, University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - Paul W R Harris
- School of Biological Sciences, University of Auckland, Auckland, New Zealand.,School of Chemical Sciences, University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - Margaret A Brimble
- School of Biological Sciences, University of Auckland, Auckland, New Zealand.,School of Chemical Sciences, University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| |
Collapse
|
11
|
Chen D, Tian L, Po KHL, Chen S, Li X. Total synthesis and a systematic structure-activity relationship study of WAP-8294A2. Bioorg Med Chem 2020; 28:115677. [PMID: 32828420 DOI: 10.1016/j.bmc.2020.115677] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/21/2020] [Accepted: 07/26/2020] [Indexed: 02/07/2023]
Abstract
WAP-8294A2 is a cyclic peptide antibiotic with novel structure and excellent activity against Gram-positive pathogens. Herein, we report the total synthesis of complex macrocyclic peptide WAP-8294A2 (W1), ent-analogue W2, deoxy analogue W3 and de-methyl analogue W4 using a solid-phase synthetic route followed by a final stage solution-phase cyclization reaction. Exploitation of this process allowed the synthesis of eleven alanine-scanning analogues and eight lysine-scanning analogues. The antimicrobial activity of these analogues was evaluated in vitro against Gram-positive bacteria. Based on the MIC results, a primary systematic structure-activity relationship has been established.
Collapse
Affiliation(s)
- Delin Chen
- Department of Chemistry, The University of Hong Kong, Hong Kong, China
| | - Liwen Tian
- Department of Chemistry, The University of Hong Kong, Hong Kong, China
| | - Kathy Hiu Laam Po
- Department of Infectious Diseases and Public Health, The City University of Hong Kong, PR China
| | - Sheng Chen
- Department of Infectious Diseases and Public Health, The City University of Hong Kong, PR China
| | - Xuechen Li
- Department of Chemistry, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
12
|
Gunjal VB, Thakare R, Chopra S, Reddy DS. Teixobactin: A Paving Stone toward a New Class of Antibiotics? J Med Chem 2020; 63:12171-12195. [PMID: 32520557 DOI: 10.1021/acs.jmedchem.0c00173] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Antimicrobial resistance is a serious threat to human health worldwide, prompting research efforts on a massive scale in search of novel antibiotics to fill an urgent need for a remedy. Teixobactin, a macrocyclic depsipeptide natural product, isolated from uncultured bacteria (Eleftheria terrae), displayed potent activity against several Gram-positive pathogenic bacteria. The distinct pharmacological profile and interesting structural features of teixobactin with nonstandard amino acid (three d-amino acids and l-allo-enduracididine) residues attracted several research groups to work on this target molecule in search of novel antibiotics with new mechanism. Herein, we present a comprehensive and critical perspective on immense possibilities offered by teixobactin in the domain of drug discovery. Efforts made by various research groups since its isolation are discussed, highlighting the molecule's considerable potential with special emphasis on replacement of amino acids. Critical analysis of synthetic efforts, SAR studies, and the way forward are provided hereunder.
Collapse
Affiliation(s)
- Vidya B Gunjal
- CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ritesh Thakare
- CSIR-Central Drug Research Institute, Sector 10, Janakipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India
| | - Sidharth Chopra
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.,CSIR-Central Drug Research Institute, Sector 10, Janakipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India
| | - D Srinivasa Reddy
- CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
13
|
Sui X, Huang G, Ezzat N, Yuan Y. A concise and scalable synthesis of a novel l-allo-enduracididine derivative. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
The Killing Mechanism of Teixobactin against Methicillin-Resistant Staphylococcus aureus: an Untargeted Metabolomics Study. mSystems 2020; 5:5/3/e00077-20. [PMID: 32457238 PMCID: PMC7253363 DOI: 10.1128/msystems.00077-20] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Antimicrobial resistance is one of the greatest threats to the global health system. It is imperative that new anti-infective therapeutics be developed against problematic “superbugs.” The cyclic depsipeptide teixobactin holds much promise as a new class of antibiotics for highly resistant Gram-positive pathogens (e.g., methicillin-resistant Staphylococcus aureus [MRSA]). Understanding its molecular mechanism(s) of action could lead to the design of new compounds with a broader activity spectrum. Here, we describe the first metabolomics study to investigate the killing mechanism(s) of teixobactin against MRSA. Our findings revealed that teixobactin significantly disorganized the bacterial cell envelope, as reflected by a profound perturbation in the bacterial membrane lipids and cell wall biosynthesis (peptidoglycan and teichoic acid). Importantly, teixobactin significantly suppressed the main intermediate d-alanyl-d-lactate involved in the mechanism of vancomycin resistance in S. aureus. These novel results help explain the unique mechanism of action of teixobactin and its lack of cross-resistance with vancomycin. Antibiotics have served humankind through their use in modern medicine as effective treatments for otherwise fatal bacterial infections. Teixobactin is a first member of newly discovered natural antibiotics that was recently identified from a hitherto-unculturable soil bacterium, Eleftheria terrae, and recognized as a potent antibacterial agent against various Gram-positive bacteria, including methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant enterococci. The most distinctive characteristic of teixobactin as an effective antibiotic is that teixobactin resistance could not be evolved in a laboratory setting. It is purported that teixobactin’s “resistance-resistant” mechanism of action includes binding to the essential bacterial cell wall synthesis building blocks lipid II and lipid III. In the present study, metabolomics was used to investigate the potential metabolic pathways involved in the mechanisms of antibacterial activity of the synthetic teixobactin analogue Leu10-teixobactin against a MRSA strain, S. aureus ATCC 700699. The metabolomes of S. aureus ATCC 700699 cells 1, 3, and 6 h following treatment with Leu10-teixobactin (0.5 μg/ml, i.e., 0.5× MIC) were compared to those of the untreated controls. Leu10-teixobactin significantly perturbed bacterial membrane lipids (glycerophospholipids and fatty acids), peptidoglycan (lipid I and II) metabolism, and cell wall teichoic acid (lipid III) biosynthesis as early as after 1 h of treatment, reflecting an initial activity on the cell envelope. Concordant with its time-dependent antibacterial killing action, Leu10-teixobactin caused more perturbations in the levels of key intermediates in pathways of amino-sugar and nucleotide-sugar metabolism and their downstream peptidoglycan and teichoic acid biosynthesis at 3 and 6 h. Significant perturbations in arginine metabolism and the interrelated tricarboxylic acid cycle, histidine metabolism, pantothenate, and coenzyme A biosynthesis were also observed at 3 and 6 h. To conclude, this is the first study to provide novel metabolomics mechanistic information, which lends support to the development of teixobactin as an antibacterial drug for the treatment of multidrug-resistant Gram-positive infections. IMPORTANCE Antimicrobial resistance is one of the greatest threats to the global health system. It is imperative that new anti-infective therapeutics be developed against problematic “superbugs.” The cyclic depsipeptide teixobactin holds much promise as a new class of antibiotics for highly resistant Gram-positive pathogens (e.g., methicillin-resistant Staphylococcus aureus [MRSA]). Understanding its molecular mechanism(s) of action could lead to the design of new compounds with a broader activity spectrum. Here, we describe the first metabolomics study to investigate the killing mechanism(s) of teixobactin against MRSA. Our findings revealed that teixobactin significantly disorganized the bacterial cell envelope, as reflected by a profound perturbation in the bacterial membrane lipids and cell wall biosynthesis (peptidoglycan and teichoic acid). Importantly, teixobactin significantly suppressed the main intermediate d-alanyl-d-lactate involved in the mechanism of vancomycin resistance in S. aureus. These novel results help explain the unique mechanism of action of teixobactin and its lack of cross-resistance with vancomycin.
Collapse
|
15
|
Mechanism, origin of diastereoselectivity and factors affecting reaction efficiency of serine/threonine ligation: A computational study. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
16
|
Karas JA, Chen F, Schneider-Futschik EK, Kang Z, Hussein M, Swarbrick J, Hoyer D, Giltrap AM, Payne RJ, Li J, Velkov T. Synthesis and structure-activity relationships of teixobactin. Ann N Y Acad Sci 2019; 1459:86-105. [PMID: 31792983 DOI: 10.1111/nyas.14282] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 11/04/2019] [Accepted: 11/10/2019] [Indexed: 12/15/2022]
Abstract
The discovery of antibiotics has led to the effective treatment of bacterial infections that were otherwise fatal and has had a transformative effect on modern medicine. Teixobactin is an unusual depsipeptide natural product that was recently discovered from a previously unculturable soil bacterium and found to possess potent antibacterial activity against several Gram positive pathogens, including methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococci. One of the key features of teixobactin as an antibiotic lead is that resistance could not be generated in a laboratory setting. This is proposed to be a result of a mechanism of action that involves binding to essential cell wall synthesis building blocks, lipid II and lipid III. Since the initial isolation report in 2015, significant efforts have been made to understand its unique mechanism of action, develop efficient synthetic routes for its production, and thus enable the generation of analogues for structure-activity relationship studies and optimization of its pharmacological properties. Our review provides a comprehensive treatise on the progress in understanding teixobactin chemistry, structure-activity relationships, and mechanisms of antibacterial activity. Teixobactin represents an exciting starting point for the development of new antibiotics that can be used to combat multidrug-resistant bacterial ("superbug") infections.
Collapse
Affiliation(s)
- John A Karas
- Department of Pharmacology & Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, the University of Melbourne, Parkville, Victoria, Australia
| | - Fan Chen
- Department of Pharmacology & Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, the University of Melbourne, Parkville, Victoria, Australia
| | - Elena K Schneider-Futschik
- Department of Pharmacology & Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, the University of Melbourne, Parkville, Victoria, Australia.,Lung Health Research Centre, Department of Pharmacology & Therapeutics, the University of Melbourne, Parkville, Victoria, Australia
| | - Zhisen Kang
- Department of Pharmacology & Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, the University of Melbourne, Parkville, Victoria, Australia
| | - Maytham Hussein
- Department of Pharmacology & Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, the University of Melbourne, Parkville, Victoria, Australia
| | - James Swarbrick
- Department of Pharmacology & Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, the University of Melbourne, Parkville, Victoria, Australia
| | - Daniel Hoyer
- Department of Pharmacology & Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, the University of Melbourne, Parkville, Victoria, Australia.,The Florey Institute of Neuroscience and Mental Health, the University of Melbourne, Parkville, Victoria, Australia.,Department of Molecular Medicine, the Scripps Research Institute, La Jolla, California
| | - Andrew M Giltrap
- School of Chemistry, the University of Sydney, Sydney, New South Wales, Australia
| | - Richard J Payne
- School of Chemistry, the University of Sydney, Sydney, New South Wales, Australia
| | - Jian Li
- Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Tony Velkov
- Department of Pharmacology & Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, the University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
17
|
Jing X, Jin K. A gold mine for drug discovery: Strategies to develop cyclic peptides into therapies. Med Res Rev 2019; 40:753-810. [PMID: 31599007 DOI: 10.1002/med.21639] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 09/05/2019] [Accepted: 09/26/2019] [Indexed: 12/19/2022]
Abstract
As a versatile therapeutic modality, peptides attract much attention because of their great binding affinity, low toxicity, and the capability of targeting traditionally "undruggable" protein surfaces. However, the deficiency of cell permeability and metabolic stability always limits the success of in vitro bioactive peptides as drug candidates. Peptide macrocyclization is one of the most established strategies to overcome these limitations. Over the past decades, more than 40 cyclic peptide drugs have been clinically approved, the vast majority of which are derived from natural products. The de novo discovered cyclic peptides on the basis of rational design and in vitro evolution, have also enabled the binding with targets for which nature provides no solutions. The current review summarizes different classes of cyclic peptides with diverse biological activities, and presents an overview of various approaches to develop cyclic peptide-based drug candidates, drawing upon series of examples to illustrate each strategy.
Collapse
Affiliation(s)
- Xiaoshu Jing
- Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Kang Jin
- Department of Medicinal Chemistry, School of Pharmacy, Shandong University, Jinan, Shandong, China
| |
Collapse
|
18
|
Velkov T, Swarbrick JD, Hussein MH, Schneider-Futschik EK, Hoyer D, Li J, Karas JA. The impact of backbone N-methylation on the structure-activity relationship of Leu 10 -teixobactin. J Pept Sci 2019; 25:e3206. [PMID: 31389086 DOI: 10.1002/psc.3206] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/29/2019] [Accepted: 07/03/2019] [Indexed: 11/07/2022]
Abstract
Antimicrobial resistance is a serious threat to global human health; therefore, new anti-infective therapeutics are required. The cyclic depsi-peptide teixobactin exhibits potent antimicrobial activity against several Gram-positive pathogens. To study the natural product's mechanism of action and improve its pharmacological properties, efficient chemical methods for preparing teixobactin analogues are required to expedite structure-activity relationship studies. Described herein is a synthetic route that enables rapid access to analogues. Furthermore, our new N-methylated analogues highlight that hydrogen bonding along the N-terminal tail is likely to be important for antimicrobial activity.
Collapse
Affiliation(s)
- Tony Velkov
- Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - James D Swarbrick
- Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Maytham H Hussein
- Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Elena K Schneider-Futschik
- Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia
- Lung Health Research Centre, Department of Pharmacology and Therapeutics, The University of Melbourne, Parkville, Victoria, Australia
| | - Daniel Hoyer
- Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California
| | - Jian Li
- Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - John A Karas
- Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
19
|
Matheson E, Jin K, Li X. Establishing the structure-activity relationship of teixobactin. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2019.07.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
20
|
|
21
|
Liu H, Liu H, Li X. Use of Serine/Threonine Ligation for the Total Chemical Synthesis of HMGA1a Protein with Site‐Specific Lysine Acetylations. Chempluschem 2019; 84:779-785. [DOI: 10.1002/cplu.201900130] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 04/10/2019] [Indexed: 01/21/2023]
Affiliation(s)
- Heng Liu
- Department of Chemistry State Key Laboratory of Synthetic ChemistryThe University of Hong Kong Pokfulam Road Hong Kong SAR P. R. China
| | - Han Liu
- Department of Chemistry State Key Laboratory of Synthetic ChemistryThe University of Hong Kong Pokfulam Road Hong Kong SAR P. R. China
| | - Xuechen Li
- Department of Chemistry State Key Laboratory of Synthetic ChemistryThe University of Hong Kong Pokfulam Road Hong Kong SAR P. R. China
| |
Collapse
|
22
|
Abouelhassan Y, Garrison AT, Yang H, Chávez-Riveros A, Burch GM, Huigens RW. Recent Progress in Natural-Product-Inspired Programs Aimed To Address Antibiotic Resistance and Tolerance. J Med Chem 2019; 62:7618-7642. [PMID: 30951303 DOI: 10.1021/acs.jmedchem.9b00370] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Bacteria utilize multiple mechanisms that enable them to gain or acquire resistance to antibiotic therapies during the treatment of infections. In addition, bacteria form biofilms which are surface-attached communities of enriched populations containing persister cells encased within a protective extracellular matrix of biomolecules, leading to chronic and recurring antibiotic-tolerant infections. Antibiotic resistance and tolerance are major global problems that require innovative therapeutic strategies to address the challenges associated with pathogenic bacteria. Historically, natural products have played a critical role in bringing new therapies to the clinic to treat life-threatening bacterial infections. This Perspective provides an overview of antibiotic resistance and tolerance and highlights recent advances (chemistry, biology, drug discovery, and development) from various research programs involved in the discovery of new antibacterial agents inspired by a diverse series of natural product antibiotics.
Collapse
Affiliation(s)
- Yasmeen Abouelhassan
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), College of Pharmacy , University of Florida , Gainesville , Florida 32610 , United States
| | - Aaron T Garrison
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), College of Pharmacy , University of Florida , Gainesville , Florida 32610 , United States
| | - Hongfen Yang
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), College of Pharmacy , University of Florida , Gainesville , Florida 32610 , United States
| | - Alejandra Chávez-Riveros
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), College of Pharmacy , University of Florida , Gainesville , Florida 32610 , United States
| | - Gena M Burch
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), College of Pharmacy , University of Florida , Gainesville , Florida 32610 , United States
| | - Robert W Huigens
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), College of Pharmacy , University of Florida , Gainesville , Florida 32610 , United States
| |
Collapse
|
23
|
Liu Y, Li W, Chan-Park MB, Mu Y. The Necessity of d-Thr in the New Antibiotic Teixobactin: A Molecular Dynamics Study. J Chem Inf Model 2019; 59:1575-1583. [PMID: 30855952 DOI: 10.1021/acs.jcim.8b00949] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ever since the discovery of the new antibiotic teixobactin, studies of its structure-activity relationships have never ceased. Here we focus on the chirality of the threonine (Thr) residue, which belongs to the ring motif of teixobactin and plays an important role in the binding with its target, lipid II molecule. We study the structural propensity of the open and closed ring motifs with different chiral Thr residues as well as the teixobactin-lipid II complex with the help of molecular dynamics simulations. Our results suggest that different chiralities lead to different NH orientations of Thr with respect to the ring plane. Only in the closed ring motif with d-Thr is a favored binding cavity achievable with all four NH groups facing the same side of the ring plane. This study develops a deeper understanding of the binding mechanism of teixobactin and lipid II and is expected to be beneficial to new teixobactin-based drug design.
Collapse
Affiliation(s)
- Yang Liu
- School of Physics , Shandong University , 27 Shandanan Road , Jinan , Shandong 250100 , China.,School of Biological Sciences , Nanyang Technological University (NTU) , 60 Nanyang Drive , Singapore 637551
| | - Weifeng Li
- School of Physics , Shandong University , 27 Shandanan Road , Jinan , Shandong 250100 , China
| | - Mary B Chan-Park
- School of Chemical and Biomedical Engineering , Nanyang Technological University (NTU) , 62 Nanyang Drive , Singapore 637459.,Centre for Antimicrobial Bioengineering , Nanyang Technological University (NTU) , 60 Nanyang Drive , Singapore 637551
| | - Yuguang Mu
- School of Biological Sciences , Nanyang Technological University (NTU) , 60 Nanyang Drive , Singapore 637551
| |
Collapse
|
24
|
Li FF, Brimble MA. Using chemical synthesis to optimise antimicrobial peptides in the fight against antimicrobial resistance. PURE APPL CHEM 2019. [DOI: 10.1515/pac-2018-0704] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The emergence of multidrug-resistant bacteria has necessitated the urgent need for novel antibacterial agents. Antimicrobial peptides (AMPs), the host-defence molecules of most living organisms, have shown great promise as potential antibiotic candidates due to their multiple mechanisms of action which result in very low or negligible induction of resistance. However, the development of AMPs for clinical use has been limited by their potential toxicity to animal cells, low metabolic stability and high manufacturing cost. Extensive efforts have therefore been directed towards the development of enhanced variants of natural AMPs to overcome these aforementioned limitations. In this review, we present our efforts focused on development of efficient strategies to prepare several recently discovered AMPs including antitubercular peptides. The design and synthesis of more potent and stable AMP analogues with synthetic modifications made to the natural peptides containing glycosylated residues or disulfide bridges are described.
Collapse
Affiliation(s)
- Freda F. Li
- School of Chemical Sciences, The University of Auckland , 23 Symonds Street , Auckland 1010 , New Zealand
| | - Margaret A. Brimble
- School of Chemical Sciences, The University of Auckland , 23 Symonds Street , Auckland 1010 , New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery , 3 Symonds Street , Auckland 1010 , New Zealand
| |
Collapse
|
25
|
Zuo C, Zhang B, Yan B, Zheng JS. One-pot multi-segment condensation strategies for chemical protein synthesis. Org Biomol Chem 2019; 17:727-744. [DOI: 10.1039/c8ob02610f] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This paper describes recent advances of one-pot multi-segment condensation strategies based on kinetically controlled strategies and/or protecting group-removal strategies in chemical protein synthesis.
Collapse
Affiliation(s)
- Chong Zuo
- School of Life Sciences
- University of Science and Technology of China
- Hefei 230027
- China
- Department of Chemistry
| | - Baochang Zhang
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- China
| | - Bingjia Yan
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- China
| | - Ji-Shen Zheng
- School of Life Sciences
- University of Science and Technology of China
- Hefei 230027
- China
| |
Collapse
|
26
|
Lakemeyer M, Zhao W, Mandl FA, Hammann P, Sieber SA. Thinking Outside the Box-Novel Antibacterials To Tackle the Resistance Crisis. Angew Chem Int Ed Engl 2018; 57:14440-14475. [PMID: 29939462 DOI: 10.1002/anie.201804971] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Indexed: 12/13/2022]
Abstract
The public view on antibiotics as reliable medicines changed when reports about "resistant superbugs" appeared in the news. While reasons for this resistance development are easily spotted, solutions for re-establishing effective antibiotics are still in their infancy. This Review encompasses several aspects of the antibiotic development pipeline from very early strategies to mature drugs. An interdisciplinary overview is given of methods suitable for mining novel antibiotics and strategies discussed to unravel their modes of action. Select examples of antibiotics recently identified by using these platforms not only illustrate the efficiency of these measures, but also highlight promising clinical candidates with therapeutic potential. Furthermore, the concept of molecules that disarm pathogens by addressing gatekeepers of virulence will be covered. The Review concludes with an evaluation of antibacterials currently in clinical development. Overall, this Review aims to connect select innovative antimicrobial approaches to stimulate interdisciplinary partnerships between chemists from academia and industry.
Collapse
Affiliation(s)
- Markus Lakemeyer
- Department of Chemistry, Chair of Organic Chemistry II, Center for Integrated Protein Science (CIPSM), Technische Universität München, Lichtenbergstrasse 4, 85747, Garching, Germany
| | - Weining Zhao
- Department of Chemistry, Chair of Organic Chemistry II, Center for Integrated Protein Science (CIPSM), Technische Universität München, Lichtenbergstrasse 4, 85747, Garching, Germany
| | - Franziska A Mandl
- Department of Chemistry, Chair of Organic Chemistry II, Center for Integrated Protein Science (CIPSM), Technische Universität München, Lichtenbergstrasse 4, 85747, Garching, Germany
| | - Peter Hammann
- R&D Therapeutic Area Infectious Diseases, Sanofi-Aventis (Deutschland) GmbH, Industriepark Höchst, 65926, Frankfurt am Main, Germany
| | - Stephan A Sieber
- Department of Chemistry, Chair of Organic Chemistry II, Center for Integrated Protein Science (CIPSM), Technische Universität München, Lichtenbergstrasse 4, 85747, Garching, Germany
| |
Collapse
|
27
|
Lakemeyer M, Zhao W, Mandl FA, Hammann P, Sieber SA. Über bisherige Denkweisen hinaus - neue Wirkstoffe zur Überwindung der Antibiotika-Krise. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201804971] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Markus Lakemeyer
- Fakultät für Chemie; Lehrstuhl für Organische Chemie II, Center for Integrated Protein Science (CIPSM); Technische Universität München; Lichtenbergstraße 4 85747 Garching Deutschland
| | - Weining Zhao
- Fakultät für Chemie; Lehrstuhl für Organische Chemie II, Center for Integrated Protein Science (CIPSM); Technische Universität München; Lichtenbergstraße 4 85747 Garching Deutschland
| | - Franziska A. Mandl
- Fakultät für Chemie; Lehrstuhl für Organische Chemie II, Center for Integrated Protein Science (CIPSM); Technische Universität München; Lichtenbergstraße 4 85747 Garching Deutschland
| | - Peter Hammann
- R&D Therapeutic Area Infectious Diseases; Sanofi-Aventis (Deutschland) GmbH; Industriepark Höchst 65926 Frankfurt am Main Deutschland
| | - Stephan A. Sieber
- Fakultät für Chemie; Lehrstuhl für Organische Chemie II, Center for Integrated Protein Science (CIPSM); Technische Universität München; Lichtenbergstraße 4 85747 Garching Deutschland
| |
Collapse
|
28
|
Jin K, Li X. Advances in Native Chemical Ligation-Desulfurization: A Powerful Strategy for Peptide and Protein Synthesis. Chemistry 2018; 24:17397-17404. [DOI: 10.1002/chem.201802067] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Indexed: 11/12/2022]
Affiliation(s)
- Kang Jin
- Department of Chemistry; State Key Laboratory of Synthetic Chemistry; The University of Hong Kong; Hong Kong P. R. China
| | - Xuechen Li
- Department of Chemistry; State Key Laboratory of Synthetic Chemistry; The University of Hong Kong; Hong Kong P. R. China
| |
Collapse
|
29
|
Wen PC, Vanegas JM, Rempe SB, Tajkhorshid E. Probing key elements of teixobactin-lipid II interactions in membranes. Chem Sci 2018; 9:6997-7008. [PMID: 30210775 PMCID: PMC6124899 DOI: 10.1039/c8sc02616e] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 07/19/2018] [Indexed: 12/18/2022] Open
Abstract
Two binding poses of the teixobactin–lipid II complex were captured with MD simulations at the membrane surface.
Teixobactin (Txb) is a recently discovered antibiotic against Gram-positive bacteria that induces no detectable resistance. The bactericidal mechanism is believed to be the inhibition of cell wall biosynthesis by Txb binding to lipid II and lipid III. Txb binding specificity likely arises from targeting of the shared lipid component, the pyrophosphate moiety. Despite synthesis and functional assessment of numerous chemical analogs of Txb, and consequent identification of the Txb pharmacophore, the detailed structural information of Txb–substrate binding is still lacking. Here, we use molecular modeling and microsecond-scale molecular dynamics simulations to capture the formation of Txb–lipid II complexes at a membrane surface. Two dominant binding conformations were observed, both showing characteristic lipid II phosphate binding by the Txb backbone amides near the C-terminal cyclodepsipeptide (d-Thr8–Ile11) ring. Additionally, binding by Txb also involved the side chain hydroxyl group of Ser7, as well as a secondary phosphate binding provided by the side chain of l-allo-enduracididine. Interestingly, those conformations differ by swapping two groups of hydrogen bond donors that coordinate the two phosphate moieties of lipid II, resulting in opposite orientations of lipid II binding. In addition, residues d-allo-Ile5 and Ile6 serve as the membrane anchors in both Txb conformations, regardless of the detailed phosphate binding interactions near the cyclodepsipeptide ring. The role of hydrophobic residues in Txb activity is primarily for its membrane insertion, and subsidiarily to provide non-polar interactions with the lipid II tail. Based on the Txb–lipid II interactions captured in their complexes, as well as their partitioning depths into the membrane, we propose that the bactericidal mechanism of Txb is to arrest cell wall synthesis by selectively inhibiting the transglycosylation of peptidoglycan, while possibly leaving the transpeptidation step unaffected. The observed “pyrophosphate caging” mechanism of lipid II inhibition appears to be similar to some lantibiotics, but different from that of vancomycin or bacitracin.
Collapse
Affiliation(s)
- Po-Chao Wen
- Department of Biochemistry , Center for Biophysics and Quantitative Biology , Beckman Institute for Advanced Science and Technology , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , USA . ;
| | - Juan M Vanegas
- Department of Nanobiology , Center for Biological and Engineering Sciences , Sandia National Laboratories , Albuquerque , NM 87185 , USA .
| | - Susan B Rempe
- Department of Nanobiology , Center for Biological and Engineering Sciences , Sandia National Laboratories , Albuquerque , NM 87185 , USA .
| | - Emad Tajkhorshid
- Department of Biochemistry , Center for Biophysics and Quantitative Biology , Beckman Institute for Advanced Science and Technology , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , USA . ;
| |
Collapse
|
30
|
Abstract
Synthetic proteins are expected to go beyond the boundary of recombinant DNA expression systems by being flexibly installed with site-specific natural or unnatural modification structures during synthesis. To enable protein chemical synthesis, peptide ligations provide effective strategies to assemble short peptide fragments obtained from solid-phase peptide synthesis (SPPS) into long peptides and proteins. In this regard, chemoselective peptide ligation represents a simple but powerful transformation realizing selective amide formation between the C-terminus and N-terminus of two side-chain-unprotected peptide fragments. These reactions are highly chemo- and regioselective to tolerate the side-chain functionalities present on the unprotected peptides, highly reactive to work with millmolar or submillimolar concentrations of the substrates, and operationally simple with mild conditions and accessible building blocks. This Account focuses on our work in the development of serine/threonine ligation (STL), which originates from a chemoselective reaction between an unprotected peptide with a C-terminal salicylaldehyde (SAL) ester and another unprotected peptide with an N-terminal serine or threonine residue. Mechanistically, STL involves imine capture, 5- endo-trig ring-chain tautomerization, O-to- N [1,5] acyl transfer to afford the N, O-benzylidene acetal-linked peptide, and acidolysis to regenerate the Xaa-Ser/Thr linkage (where Xaa is the amino acid) at the ligation site. The high abundance of serine and threonine residues (12.7%) in naturally occurring proteins and the good compatibility of STL with various C-terminal residues provide multiple choices for ligation sites. The requisite peptide C-terminal SAL esters can be prepared from the peptide fragments obtained from both Fmoc-SPPS and Boc-SPPS through four available methods (a safety-catch strategy based on phenolysis, direct coupling, ozonolysis, and the n + 1 strategy). In the synthesis of proteins (e.g., ACYP enzyme, MUC1 glycopeptide 40-mer to 80-mer, interleukin 25, and HMGA1a with variable post-translational modification patterns), both C-to- N and N-to- C sequential STL strategies have been developed through selection of temporal N-terminal protecting groups and proper design of the switch-on/off C-terminal SAL ester surrogate, respectively. In the synthesis of cyclic peptide natural products (e.g., daptomycin, teixobactin, cyclomontanin B, yunnanin C) and their analogues, intramolecular head-to-tail STL has been implemented on linear peptide SAL ester precursors containing four to 10 amino acid residues with good efficiency and minimized oligomerization. As a thiol-independent chemoselective ligation complementary to native chemical ligation, STL provides an alternative tool for the chemical synthesis of homogeneous proteins with site-specific and structure-defined modifications and cyclic peptide natural products, which lays foundation for chemical biology and medicinal studies of those molecules with biological importance and therapeutic potential.
Collapse
Affiliation(s)
- Han Liu
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, P. R. China
| | - Xuechen Li
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, P. R. China
| |
Collapse
|
31
|
Ng V, Kuehne SA, Chan WC. Rational Design and Synthesis of Modified Teixobactin Analogues: In Vitro Antibacterial Activity against Staphylococcus aureus
, Propionibacterium acnes
and Pseudomonas aeruginosa. Chemistry 2018; 24:9136-9147. [DOI: 10.1002/chem.201801423] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Vivian Ng
- School of Pharmacy; Centre for Biomolecular Sciences; University of Nottingham; University Park Nottingham NG7 2RD United Kingdom
| | - Sarah A. Kuehne
- School of Dentistry; Institute for Microbiology and Infection; University of Birmingham; Birmingham B5 7EG United Kingdom
| | - Weng C. Chan
- School of Pharmacy; Centre for Biomolecular Sciences; University of Nottingham; University Park Nottingham NG7 2RD United Kingdom
| |
Collapse
|