1
|
Pacini L, Muthyala M, Aguiar L, Zitterbart R, Rovero P, Papini AM. Optimization of peptide synthesis time and sustainability using novel eco-friendly binary solvent systems with induction heating on an automated peptide synthesizer. J Pept Sci 2024; 30:e3605. [PMID: 38660732 DOI: 10.1002/psc.3605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/18/2024] [Accepted: 04/01/2024] [Indexed: 04/26/2024]
Abstract
On December 12th, 2023, the European Commission took regulatory action to amend Annex XVII of REACH, imposing restrictions on the use of N,N-dimethylformamide (DMF) within the EU market owing to its high toxicity. Historically, DMF has been widely considered the gold standard for solid-phase peptide synthesis (SPPS). Being urgent to propose alternative solvents, we tested the suitability of non-hazardous neat and mixed solvents. Notably, binary solvent mixtures containing dimethyl sulfoxide as one of the solvent partners demonstrated high efficacy in solubilizing reagents while maintaining the desired swelling characteristics of common resins. A series of binary solvent mixtures were tested in automated SPPS, both at room temperature and high temperature, employing the PurePep® Chorus synthesizer, which enabled controlled induction heating between 25 and 90°C with oscillation mixing. The performances were assessed in challenging peptide sequences, i.e., ACP (65-74), and in longer and aggregating sequences like SARS-CoV-2 RBM (436-507) and β-amyloid (1-42). Furthermore, as part of the proposed sustainable approach to minimize the utilization of hazardous solvents, we coupled the novel PurePep EasyClean catch-and-release purification technology. This work, addressing regulatory compliance, emphasizes the crucial role of green chemistry in advancing safer and more environmentally friendly practices in SPPS.
Collapse
Affiliation(s)
- Lorenzo Pacini
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology - Peptlab, MoD&LS Laboratory, University of Florence, Sesto Fiorentino, Italy
- Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Italy
| | | | - Luisa Aguiar
- Gyros Protein Technologies Inc., Tucson, Arizona, USA
| | | | - Paolo Rovero
- Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Italy
- Department of Neurosciences, Psychology, Drug Research and Child Health, Section of Pharmaceutical Sciences and Nutraceutics, University of Florence, Sesto Fiorentino, Italy
| | - Anna Maria Papini
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology - Peptlab, MoD&LS Laboratory, University of Florence, Sesto Fiorentino, Italy
- Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Italy
| |
Collapse
|
2
|
Li P, Wu DR, Yip SH, Sun D, Pawluczyk J, Smith A, Kempson J, Mathur A. Large-scale purification of a deprotected macrocyclic peptide by supercritical fluid chromatography (SFC) integrated with liquid chromatography in discovery chemistry. J Chromatogr A 2024; 1730:465112. [PMID: 38972253 DOI: 10.1016/j.chroma.2024.465112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/09/2024]
Abstract
A macrocyclic peptide A was successfully purified in large quantities (∼30 g) in >95 % purity by an integrated two-step orthogonal purification process combining supercritical fluid chromatography (SFC) with medium-pressure reverse-phase liquid chromatography (MP-RPLC). MP-RPLC was used to fractionate the crude peptide A, remove unwanted trifluoroacetic acid (TFA) originating from the peptide A cleavage off the resin, and convert the peptide A into ammonium acetate salt form, prior to the final purification by SFC. A co-solvent of methanol/acetonitrile containing ammonium acetate and water in CO2 was developed on a Waters BEH 2-Ethylpyridine column. The developed SFC method was readily scaled up onto a 5 cm diameter column to process multi-gram quantities of the MP-RPLC fraction to reach > 95 % purity with a throughput/productivity of 0.96 g/h. The incorporation of SFC with MP-RPLC has been demonstrated to have a broader application in other large-scale polypeptide purifications.
Collapse
Affiliation(s)
- Peng Li
- Department of Discovery Synthesis, Research and Development, Bristol-Myers Squibb, Route 206 & Province Line Rd, Princeton, NJ 08543-4000, USA
| | - Dauh-Rurng Wu
- Department of Discovery Synthesis, Research and Development, Bristol-Myers Squibb, Route 206 & Province Line Rd, Princeton, NJ 08543-4000, USA
| | - Shiuhang Henry Yip
- Department of Discovery Synthesis, Research and Development, Bristol-Myers Squibb, Route 206 & Province Line Rd, Princeton, NJ 08543-4000, USA.
| | - Dawn Sun
- Department of Discovery Synthesis, Research and Development, Bristol-Myers Squibb, Route 206 & Province Line Rd, Princeton, NJ 08543-4000, USA
| | - Joseph Pawluczyk
- Department of Discovery Synthesis, Research and Development, Bristol-Myers Squibb, Route 206 & Province Line Rd, Princeton, NJ 08543-4000, USA
| | - Aaron Smith
- Spectrix, Route 206 & Province Line Rd, Princeton, NJ 08543-4000, USA
| | - James Kempson
- Department of Discovery Synthesis, Research and Development, Bristol-Myers Squibb, Route 206 & Province Line Rd, Princeton, NJ 08543-4000, USA
| | - Arvind Mathur
- Department of Discovery Synthesis, Research and Development, Bristol-Myers Squibb, Route 206 & Province Line Rd, Princeton, NJ 08543-4000, USA
| |
Collapse
|
3
|
Mthembu SN, Chakraborty A, Schönleber R, Albericio F, de la Torre BG. Morpholine, a strong contender for Fmoc removal in solid-phase peptide synthesis. J Pept Sci 2024; 30:e3538. [PMID: 37609959 DOI: 10.1002/psc.3538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/24/2023]
Abstract
Morpholine, which scores 7.5 in terms of greenness and is not a regulated substance, could be considered a strong contender for Fmoc removal in solid-phase peptide synthesis (SPPS). Morpholine in dimethylformamide (DMF) (50%-60%) efficiently removes Fmoc in SPPS, minimizes the formation of diketopiperazine, and almost avoids the aspartimide formation. As a proof of concept, somatostatin has been synthesized using 50% morpholine in DMF with the same purity as when using 20% piperidine-DMF.
Collapse
Affiliation(s)
- Sinenhlanhla N Mthembu
- Peptide Science Laboratory, School of Chemistry and Physics, University of KwaZulu-Natal, Durban, South Africa
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Amit Chakraborty
- Peptide Science Laboratory, School of Chemistry and Physics, University of KwaZulu-Natal, Durban, South Africa
| | | | - Fernando Albericio
- Peptide Science Laboratory, School of Chemistry and Physics, University of KwaZulu-Natal, Durban, South Africa
- CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine, and Department of Organic Chemistry, University of Barcelona, Barcelona, Spain
| | - Beatriz G de la Torre
- Peptide Science Laboratory, School of Chemistry and Physics, University of KwaZulu-Natal, Durban, South Africa
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
4
|
Nakahara H, Sennari G, Noguchi Y, Hirose T, Sunazuka T. Development of a nitrogen-bound hydrophobic auxiliary: application to solid/hydrophobic-tag relay synthesis of calpinactam. Chem Sci 2023; 14:6882-6889. [PMID: 37389244 PMCID: PMC10306108 DOI: 10.1039/d3sc01432k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 04/28/2023] [Indexed: 07/01/2023] Open
Abstract
In the last couple of decades, technologies and strategies for peptide synthesis have advanced rapidly. Although solid-phase peptide synthesis (SPPS) and liquid-phase peptide synthesis (LPPS) have contributed significantly to the development of the field, there have been remaining challenges for C-terminal modifications of peptide compounds in SPPS and LPPS. Orthogonal to the current standard approach that relies on installation of a carrier molecule at the C-terminus of amino acids, we developed a new hydrophobic-tag carbonate reagent which facilitated robust preparation of nitrogen-tag-supported peptide compounds. This auxiliary was easily installed on a variety of amino acids including oligopeptides that have a broad range of noncanonical residues, allowing simple purification of the products by crystallization and filtration. We demonstrated a de novo solid/hydrophobic-tag relay synthesis (STRS) strategy using the nitrogen-bound auxiliary for total synthesis of calpinactam.
Collapse
Affiliation(s)
- Hiroki Nakahara
- Ōmura Satoshi Memorial Institute and Graduate School of Infection Control Sciences, Kitasato University 5-9-1 Shirokane, Minato-ku Tokyo 108-8641 Japan
| | - Goh Sennari
- Ōmura Satoshi Memorial Institute and Graduate School of Infection Control Sciences, Kitasato University 5-9-1 Shirokane, Minato-ku Tokyo 108-8641 Japan
| | - Yoshihiko Noguchi
- Ōmura Satoshi Memorial Institute and Graduate School of Infection Control Sciences, Kitasato University 5-9-1 Shirokane, Minato-ku Tokyo 108-8641 Japan
| | - Tomoyasu Hirose
- Ōmura Satoshi Memorial Institute and Graduate School of Infection Control Sciences, Kitasato University 5-9-1 Shirokane, Minato-ku Tokyo 108-8641 Japan
| | - Toshiaki Sunazuka
- Ōmura Satoshi Memorial Institute and Graduate School of Infection Control Sciences, Kitasato University 5-9-1 Shirokane, Minato-ku Tokyo 108-8641 Japan
| |
Collapse
|
5
|
Vakhrusheva TV, Sokolov AV, Moroz GD, Kostevich VA, Gorbunov NP, Smirnov IP, Grafskaia EN, Latsis IA, Panasenko OM, Lazarev VN. Effects of Synthetic Short Cationic Antimicrobial Peptides on the Catalytic Activity of Myeloperoxidase, Reducing Its Oxidative Capacity. Antioxidants (Basel) 2022; 11:antiox11122419. [PMID: 36552626 PMCID: PMC9774438 DOI: 10.3390/antiox11122419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/03/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
Cationic antimicrobial peptides (CAMPs) have gained attention as promising antimicrobial therapeutics causing lower or no bacterial resistance. Considerable achievements have been made in designing new CAMPs that are highly active as antimicrobials. However, there is a lack of research on their interaction with biologically important proteins. This study focused on CAMPs' effects on myeloperoxidase (MPO), an enzyme which is microbicidal and concomitantly damaging to host biomolecules and cells due to its ability to produce reactive oxygen and halogen species (ROS/RHS). Four CAMPs designed by us were employed. MPO catalytic activity was assessed by an absorbance spectra analysis and by measuring enzymatic activity using Amplex Red- and Celestine Blue B-based assays. The peptide Hm-AMP2 accelerated MPO turnover. Pept_1545 and Hm-AMP8 inhibited both the MPO chlorinating and peroxidase activities, with components of different inhibition types. Hm-AMP8 was a stronger inhibitor. Its Ki towards H2O2 and Cl- was 0.3-0.4 μM vs. 11-20 μM for pept_1545. Peptide tyrosine and cysteine residues were involved in the mechanisms of the observed effects. The results propose a possible dual role of CAMPs as both antimicrobial agents and agents that downregulate MPO activation, and suggest CAMPs as prototypes for the development of antioxidant compounds to prevent MPO-mediated ROS/RHS overproduction.
Collapse
Affiliation(s)
- Tatyana V. Vakhrusheva
- Department of Biophysics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
- Correspondence:
| | - Alexey V. Sokolov
- Department of Biophysics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
- Department of Molecular Genetics, Institute of Experimental Medicine, 197376 St. Petersburg, Russia
| | - Grigoriy D. Moroz
- Department of Biophysics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
- Department of Biological and Medical Physics, Moscow Institute of Physics and Technology (State University), Moscow Region, 141701 Dolgoprudny, Russia
| | - Valeria A. Kostevich
- Department of Biophysics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
- Department of Molecular Genetics, Institute of Experimental Medicine, 197376 St. Petersburg, Russia
| | - Nikolay P. Gorbunov
- Department of Biophysics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
- Department of Molecular Genetics, Institute of Experimental Medicine, 197376 St. Petersburg, Russia
| | - Igor P. Smirnov
- Department of Cell Biology, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
| | - Ekaterina N. Grafskaia
- Department of Cell Biology, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
| | - Ivan A. Latsis
- Department of Cell Biology, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
| | - Oleg M. Panasenko
- Department of Biophysics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
| | - Vassili N. Lazarev
- Department of Biological and Medical Physics, Moscow Institute of Physics and Technology (State University), Moscow Region, 141701 Dolgoprudny, Russia
- Department of Cell Biology, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
| |
Collapse
|
6
|
Effects of Medicinal Leech-Related Cationic Antimicrobial Peptides on Human Blood Cells and Plasma. Molecules 2022; 27:molecules27185848. [PMID: 36144584 PMCID: PMC9503446 DOI: 10.3390/molecules27185848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/26/2022] [Accepted: 09/05/2022] [Indexed: 11/17/2022] Open
Abstract
Cationic antimicrobial peptides (CAMPs) are considered as next-generation antibiotics with a lower probability of developing bacterial resistance. In view of potential clinical use, studies on CAMP biocompatibility are important. This work aimed to evaluate the behavior of synthetic short CAMPs (designed using bioinformatic analysis of the medicinal leech genome and microbiome) in direct contact with blood cells and plasma. Eight CAMPs were included in the study. Hemolysis and lactate dehydrogenase assays showed that the potency to disrupt erythrocyte, neutrophil and mononuclear cell membranes descended in the order pept_1 > pept_3 ~ pept_5 > pept_2 ~ pept_4. Pept_3 caused both cell lysis and aggregation. Blood plasma and albumin inhibited the CAMP-induced hemolysis. The chemiluminescence method allowed the detection of pept_3-mediated neutrophil activation. In plasma coagulation assays, pept_3 prolonged the activated partial thromboplastin time (APTT) and prothrombin time (at 50 μM by 75% and 320%, respectively). Pept_3 was also capable of causing fibrinogen aggregation. Pept_6 prolonged APTT (at 50 μM by 115%). Pept_2 was found to combine higher bactericidal activity with lower effects on cells and coagulation. Our data emphasize the necessity of investigating CAMP interaction with plasma.
Collapse
|
7
|
Sharma A, Kumar A, de la Torre BG, Albericio F. Liquid-Phase Peptide Synthesis (LPPS): A Third Wave for the Preparation of Peptides. Chem Rev 2022; 122:13516-13546. [PMID: 35816287 DOI: 10.1021/acs.chemrev.2c00132] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Since the last century, peptides have gained wide acceptance as drugs, with almost 100 already in the market and a large number in the pipeline. In this context, peptide synthesis has grown massively as a stringent field for pharmaceuticals around the globe. Three methodologies, namely, classical solution peptide synthesis (CSPS), solid-phase peptide synthesis (SPPS), and liquid-phase peptide synthesis (LPPS), have made significant contributions to the field. This review provides a comprehensive and integrated vision of LPPS as the third wave for peptide synthesis. LPPS combines the advantages of CSPS and SPPS, where peptide elongation is carried out in solution and the growing peptide chain is supported on a soluble tag, which confers characteristic properties. LPPS protocols allow the large-scale production of peptides and reduce the use of excess reagents and solvents, thus meeting the principles of green chemistry. In this review, tags associated with LPPS are broadly discussed under the following headings: polydisperse polyethylene glycol (PEG), membrane-enhanced peptide synthesis (MEPS), fluorous technology, ionic liquids (ILs), PolyCarbon, hydrophobic polymers, and group-assisted purification (GAP). It also highlights the signature accomplishments of LPPS tags and the limitations of the same.
Collapse
Affiliation(s)
- Anamika Sharma
- Peptide Science Laboratory, School of Chemistry and Physics, University of KwaZulu-Natal, Westville, Durban 4000, South Africa.,Department of Chemistry, Prayoga Institute of Education Research (PIER), Bangalore 560082, India
| | - Ashish Kumar
- Peptide Science Laboratory, School of Chemistry and Physics, University of KwaZulu-Natal, Westville, Durban 4000, South Africa.,KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa.,Anthem Biosciences Pvt. Ltd., No 49 Canara Bank Road, Bommasandra Industrial Area, Phase I Bommasandra, Bangalore 560099, India
| | - Beatriz G de la Torre
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa
| | - Fernando Albericio
- Peptide Science Laboratory, School of Chemistry and Physics, University of KwaZulu-Natal, Westville, Durban 4000, South Africa.,Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain.,CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine, and Department of Organic Chemistry, University of Barcelona, Martí i Franqués 1-11, 08028 Barcelona, Spain
| |
Collapse
|
8
|
Muramatsu W, Yamamoto H. An economical approach for peptide synthesis via regioselective C-N bond cleavage of lactams. Chem Sci 2022; 13:6309-6315. [PMID: 35733900 PMCID: PMC9159104 DOI: 10.1039/d2sc01466a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/21/2022] [Indexed: 11/21/2022] Open
Abstract
An economical, solvent-free, and metal-free method for peptide synthesis via C-N bond cleavage using lactams has been developed. The method not only eliminates the need for condensation agents and their auxiliaries, which are essential for conventional peptide synthesis, but also exhibits high atom economy. The reaction is versatile because it can tolerate side chains bearing a range of functional groups, affording up to >99% yields of the corresponding peptides without racemisation or polymerisation. Moreover, the developed strategy enables peptide segment coupling, providing access to a hexapeptide that occurs as a repeat sequence in spider silk proteins.
Collapse
Affiliation(s)
- Wataru Muramatsu
- Peptide Research Center, Chubu University 1200 Matsumoto-cho Kasugai Aichi 487-8501 Japan
| | - Hisashi Yamamoto
- Peptide Research Center, Chubu University 1200 Matsumoto-cho Kasugai Aichi 487-8501 Japan
| |
Collapse
|
9
|
Rodríguez V. Insights into post-translational modification enzymes from RiPPs: A toolkit for applications in peptide synthesis. Biotechnol Adv 2022; 56:107908. [PMID: 35032597 DOI: 10.1016/j.biotechadv.2022.107908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 12/30/2021] [Accepted: 01/09/2022] [Indexed: 11/02/2022]
Abstract
The increasing length and complexity of peptide drug candidates foster the development of novel strategies for their manufacture, which should include sustainable and efficient technologies. In this context, including enzymatic catalysis in the production of peptide molecules has gained interest. Here, several enzymes from ribosomally synthesized and post-translationally modified peptides biosynthesis pathways are reviewed, with attention to their capacity to introduce stability-promoting structural features on peptides, providing an initial framework towards their use in therapeutic peptide production processes.
Collapse
Affiliation(s)
- Vida Rodríguez
- Faculty of Engineering, Science and Technology, Bernardo O'Higgins University, Viel 1497, Santiago, Chile.
| |
Collapse
|
10
|
Nagaya A, Murase S, Mimori Y, Wakui K, Yoshino M, Matsuda A, Kobayashi Y, Kurasaki H, Cary DR, Masuya K, Handa M, Nishizawa N. Extended Solution-phase Peptide Synthesis Strategy Using Isostearyl-Mixed Anhydride Coupling and a New C-Terminal Silyl Ester-Protecting Group for N-Methylated Cyclic Peptide Production. Org Process Res Dev 2021. [DOI: 10.1021/acs.oprd.1c00078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Akihiro Nagaya
- Chemical Research Laboratories, Nissan Chemical Corporation, 2-10-1, Tsuboi-Nishi, Funabashi 274-8507, Chiba, Japan
| | - Shota Murase
- Chemical Research Laboratories, Nissan Chemical Corporation, 2-10-1, Tsuboi-Nishi, Funabashi 274-8507, Chiba, Japan
| | - Yuji Mimori
- Chemical Research Laboratories, Nissan Chemical Corporation, 2-10-1, Tsuboi-Nishi, Funabashi 274-8507, Chiba, Japan
| | - Kazuya Wakui
- Chemical Research Laboratories, Nissan Chemical Corporation, 2-10-1, Tsuboi-Nishi, Funabashi 274-8507, Chiba, Japan
| | - Madoka Yoshino
- Chemical Research Laboratories, Nissan Chemical Corporation, 2-10-1, Tsuboi-Nishi, Funabashi 274-8507, Chiba, Japan
| | - Ayumu Matsuda
- PeptiDream, Inc., 3-25-23 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan
| | - Yutaka Kobayashi
- PeptiDream, Inc., 3-25-23 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan
| | - Haruaki Kurasaki
- PeptiDream, Inc., 3-25-23 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan
| | - Douglas R. Cary
- PeptiDream, Inc., 3-25-23 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan
| | - Keiichi Masuya
- PeptiDream, Inc., 3-25-23 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan
| | - Michiharu Handa
- Chemical Research Laboratories, Nissan Chemical Corporation, 2-10-1, Tsuboi-Nishi, Funabashi 274-8507, Chiba, Japan
| | - Naoki Nishizawa
- Chemical Research Laboratories, Nissan Chemical Corporation, 2-10-1, Tsuboi-Nishi, Funabashi 274-8507, Chiba, Japan
| |
Collapse
|
11
|
Pawlas J, Rasmussen JH. Circular Aqueous Fmoc/t-Bu Solid-Phase Peptide Synthesis. CHEMSUSCHEM 2021; 14:3231-3236. [PMID: 34270883 DOI: 10.1002/cssc.202101028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/02/2021] [Indexed: 06/13/2023]
Abstract
Circular economy and aqueous synthesis are attractive concepts for sustainable chemistry. Here it is reported that the two can be combined in the universal method for peptide chemistry, fluorenylmethoxycarbonyl(Fmoc)/t-Bu solid-phase peptide synthesis (SPPS). It was demonstrated that Fmoc/t-Bu SPPS could be performed under aqueous conditions using standard Fmoc amino acids (AAs) employing TentaGel S as resin and 4 : 1 mixture of water with inexpensive green solvent PolarClean. This resin/solvent combination played a crucial dual role by virtue of improving resin swelling and solubility of starting materials. In a model coupling, TCFH and 2,4,6-collidine afforded a full conversion at only 1.3 equiv. AA, and these conditions were used in SPPS of Leu enkephaline amide affording the model peptide in 85 % yield and 86 % purity. A method to recycle the waste by filtration through a mixed ion exchange resin was developed, allowing reusing the waste without affecting quality of the peptide. The method herein obviates the use of unconventional or processed AAs in aqueous SPPS while using lower amounts of starting materials. By recycling/reusing SPPS waste the hazardous dipolar aprotic solvents used in SPPS were not only replaced with an aqueous medium, solvent use was also significantly reduced. This opens up a new direction in aqueous peptide chemistry in which efficient use of inexpensive starting materials and waste minimization is coupled with the universal Fmoc/t-Bu SPPS.
Collapse
Affiliation(s)
- Jan Pawlas
- PolyPeptide Group, Limhamnsvägen 108, PO BOX 30089, 20061, Limhamn, Sweden
| | - Jon H Rasmussen
- PolyPeptide Group, Limhamnsvägen 108, PO BOX 30089, 20061, Limhamn, Sweden
| |
Collapse
|
12
|
Muramatsu W, Yamamoto H. Peptide Bond Formation of Amino Acids by Transient Masking with Silylating Reagents. J Am Chem Soc 2021; 143:6792-6797. [PMID: 33929829 DOI: 10.1021/jacs.1c02600] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A one-pot peptide bond-forming reaction has been developed using unprotected amino acids and peptides. Two different silylating reagents, HSi[OCH(CF3)2]3 and MTBSTFA, are instrumental for the successful implementation of this approach, being used for the activation and transient masking of unprotected amino acids and peptides at C-termini and N-termini, respectively. Furthermore, CsF and imidazole are used as catalysts, activating HSi[OCH(CF3)2]3 and also accelerating chemoselective silylation. This method is versatile as it tolerates side chains that bear a range of functional groups, while providing up to >99% yields of corresponding peptides without any racemization or polymerization.
Collapse
Affiliation(s)
- Wataru Muramatsu
- Molecular Catalyst Research Center, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501, Japan
| | - Hisashi Yamamoto
- Molecular Catalyst Research Center, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501, Japan
| |
Collapse
|
13
|
Dominique P, Schnurr M, Lewandowski B. Chiral recognition of amino-acid esters by a glucose-derived macrocyclic receptor. Chem Commun (Camb) 2021; 57:3476-3479. [PMID: 33688892 DOI: 10.1039/d1cc00878a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We report a glucose-based crown ether capable of chiral recognition of a wide range of amino-acid methyl esters in aqueous environments. The enantioselectivities towards amino-acids with extended hydrophobic side chains displayed by the glucose-derived macrocycle are among the highest observed for small molecule synthetic receptors to date.
Collapse
Affiliation(s)
- Pit Dominique
- Laboratory of Organic Chemistry, ETH Zürich, Vladimir-Prelog-Weg 1-5, Zürich 8093, Switzerland.
| | | | | |
Collapse
|
14
|
Abstract
The pancreatic peptide hormone insulin, first discovered exactly 100 years ago, is essential for glycemic control and is used as a therapeutic for the treatment of type 1 and, increasingly, type 2 diabetes. With a worsening global diabetes epidemic and its significant health budget imposition, there is a great demand for new analogues possessing improved physical and functional properties. However, the chemical synthesis of insulin's intricate 51-amino acid, two-chain, three-disulfide bond structure, together with the poor physicochemical properties of both the individual chains and the hormone itself, has long represented a major challenge to organic chemists. This review provides a timely overview of the past efforts to chemically assemble this fascinating hormone using an array of strategies to enable both correct folding of the two chains and selective formation of disulfide bonds. These methods not only have contributed to general peptide synthesis chemistry and enabled access to the greatly growing numbers of insulin-like and cystine-rich peptides but also, today, enable the production of insulin at the synthetic efficiency levels of recombinant DNA expression methods. They have led to the production of a myriad of novel analogues with optimized structural and functional features and of the feasibility for their industrial manufacture.
Collapse
|
15
|
Pennington MW, Zell B, Bai CJ. Commercial manufacturing of current good manufacturing practice peptides spanning the gamut from neoantigen to commercial large-scale products. MEDICINE IN DRUG DISCOVERY 2021. [DOI: 10.1016/j.medidd.2020.100071] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
16
|
Martin V, Egelund PHG, Johansson H, Thordal Le Quement S, Wojcik F, Sejer Pedersen D. Greening the synthesis of peptide therapeutics: an industrial perspective. RSC Adv 2020; 10:42457-42492. [PMID: 35516773 PMCID: PMC9057961 DOI: 10.1039/d0ra07204d] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 11/03/2020] [Indexed: 12/13/2022] Open
Abstract
Solid-phase peptide synthesis (SPPS) is generally the method of choice for the chemical synthesis of peptides, allowing routine synthesis of virtually any type of peptide sequence, including complex or cyclic peptide products. Importantly, SPPS can be automated and is scalable, which has led to its widespread adoption in the pharmaceutical industry, and a variety of marketed peptide-based drugs are now manufactured using this approach. However, SPPS-based synthetic strategies suffer from a negative environmental footprint mainly due to extensive solvent use. Moreover, most of the solvents used in peptide chemistry are classified as problematic by environmental agencies around the world and will soon need to be replaced, which in recent years has spurred a movement in academia and industry to make peptide synthesis greener. These efforts have been centred around solvent substitution, recycling and reduction, as well as exploring alternative synthetic methods. In this review, we focus on methods pertaining to solvent substitution and reduction with large-scale industrial production in mind, and further outline emerging technologies for peptide synthesis. Specifically, the technical requirements for large-scale manufacturing of peptide therapeutics are addressed.
Collapse
Affiliation(s)
- Vincent Martin
- Novo Nordisk A/S, CMC API Development Smørmosevej 17-19 DK-2880 Bagsværd Denmark +45 4444 8888
| | - Peter H G Egelund
- Novo Nordisk A/S, CMC API Development Smørmosevej 17-19 DK-2880 Bagsværd Denmark +45 4444 8888
| | - Henrik Johansson
- Novo Nordisk A/S, CMC API Development Smørmosevej 17-19 DK-2880 Bagsværd Denmark +45 4444 8888
| | | | - Felix Wojcik
- Novo Nordisk A/S, CMC API Development Smørmosevej 17-19 DK-2880 Bagsværd Denmark +45 4444 8888
| | - Daniel Sejer Pedersen
- Novo Nordisk A/S, CMC API Development Smørmosevej 17-19 DK-2880 Bagsværd Denmark +45 4444 8888
| |
Collapse
|
17
|
Kurasaki H, Nagaya A, Kobayashi Y, Matsuda A, Matsumoto M, Morimoto K, Taguri T, Takeuchi H, Handa M, Cary DR, Nishizawa N, Masuya K. Isostearyl Mixed Anhydrides for the Preparation of N-Methylated Peptides Using C-Terminally Unprotected N-Methylamino Acids. Org Lett 2020; 22:8039-8043. [DOI: 10.1021/acs.orglett.0c02984] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Haruaki Kurasaki
- PeptiDream, Inc. 3-25-23 Tonomachi, Kawasaki-ku Kawasaki, Kanagawa 210-0821, Japan
| | - Akihiro Nagaya
- Chemical Research Laboratories, Nissan Chemical Corporation, 2-10-1, Tsuboi-Nishi, Funabashi, Chiba 274-8507, Japan
| | - Yutaka Kobayashi
- PeptiDream, Inc. 3-25-23 Tonomachi, Kawasaki-ku Kawasaki, Kanagawa 210-0821, Japan
| | - Ayumu Matsuda
- PeptiDream, Inc. 3-25-23 Tonomachi, Kawasaki-ku Kawasaki, Kanagawa 210-0821, Japan
| | - Masatoshi Matsumoto
- PeptiDream, Inc. 3-25-23 Tonomachi, Kawasaki-ku Kawasaki, Kanagawa 210-0821, Japan
| | - Koki Morimoto
- PeptiDream, Inc. 3-25-23 Tonomachi, Kawasaki-ku Kawasaki, Kanagawa 210-0821, Japan
| | - Tomonori Taguri
- PeptiDream, Inc. 3-25-23 Tonomachi, Kawasaki-ku Kawasaki, Kanagawa 210-0821, Japan
| | - Hisayuki Takeuchi
- Chemical Research Laboratories, Nissan Chemical Corporation, 2-10-1, Tsuboi-Nishi, Funabashi, Chiba 274-8507, Japan
| | - Michiharu Handa
- Chemical Research Laboratories, Nissan Chemical Corporation, 2-10-1, Tsuboi-Nishi, Funabashi, Chiba 274-8507, Japan
| | - Douglas R. Cary
- PeptiDream, Inc. 3-25-23 Tonomachi, Kawasaki-ku Kawasaki, Kanagawa 210-0821, Japan
| | - Naoki Nishizawa
- Chemical Research Laboratories, Nissan Chemical Corporation, 2-10-1, Tsuboi-Nishi, Funabashi, Chiba 274-8507, Japan
| | - Keiichi Masuya
- PeptiDream, Inc. 3-25-23 Tonomachi, Kawasaki-ku Kawasaki, Kanagawa 210-0821, Japan
| |
Collapse
|
18
|
Acosta GA, Murray L, Royo M, de la Torre BG, Albericio F. Solid-Phase Synthesis of Head to Side-Chain Tyr-Cyclodepsipeptides Through a Cyclative Cleavage From Fmoc-MeDbz/MeNbz-resins. Front Chem 2020; 8:298. [PMID: 32391324 PMCID: PMC7189019 DOI: 10.3389/fchem.2020.00298] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 03/25/2020] [Indexed: 12/16/2022] Open
Abstract
Cyclic depsipeptides constitute a fascinating class of natural products. Most of them are characterized by an ester formed between the β-hydroxy function of Ser/Thr -and related amino acids- and the carboxylic group of the C-terminal amino acid. Less frequent are those where the thiol of Cys is involved rendering a thioester (cyclo thiodepsipeptides) and even less common are the cyclo depsipeptides with a phenyl ester coming from the side-chain of Tyr. Herein, the preparation of the later through a cyclative cleavage using the Fmoc-MeDbz/MeNbz-resin is described. This resin has previously reported for the synthesis of cyclo thiodepsipeptides and homodetic peptides. The use of that resin for the preparation of all these peptides is also summarized.
Collapse
Affiliation(s)
- Gerardo A Acosta
- CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine, University of Barcelona (UB), Barcelona, Spain.,Department of Organic Chemistry, University of Barcelona, Barcelona, Spain.,Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), Spanish National Research Council (CSIC), Barcelona, Spain.,Associated Unit, Spanish National Research Council-University of Barcelona (CSIC-UB), Barcelona, Spain
| | - Laura Murray
- CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine, University of Barcelona (UB), Barcelona, Spain.,Department of Organic Chemistry, University of Barcelona, Barcelona, Spain
| | - Miriam Royo
- Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), Spanish National Research Council (CSIC), Barcelona, Spain.,Associated Unit, Spanish National Research Council-University of Barcelona (CSIC-UB), Barcelona, Spain
| | - Beatriz G de la Torre
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa.,Peptide Science Laboratory, School of Chemistry and Physics, University of KwaZulu-Natal, Durban, South Africa
| | - Fernando Albericio
- CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine, University of Barcelona (UB), Barcelona, Spain.,Department of Organic Chemistry, University of Barcelona, Barcelona, Spain.,Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), Spanish National Research Council (CSIC), Barcelona, Spain.,Associated Unit, Spanish National Research Council-University of Barcelona (CSIC-UB), Barcelona, Spain.,Peptide Science Laboratory, School of Chemistry and Physics, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
19
|
Scope and Limitations of γ-Valerolactone (GVL) as a Green Solvent to be Used with Base for Fmoc Removal in Solid Phase Peptide Synthesis. Molecules 2019; 24:molecules24214004. [PMID: 31694279 PMCID: PMC6864637 DOI: 10.3390/molecules24214004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/01/2019] [Accepted: 11/04/2019] [Indexed: 01/16/2023] Open
Abstract
GVL is a green solvent used in Fmoc-based solid-phase peptide synthesis. It is susceptible to ring opening in the presence of bases such as piperidines, which are used to remove the Fmoc protecting group. Here we studied the formation of the corresponding acyl piperidides by time-dependent monitoring using NMR. The results, corroborated by theoretical calculations, indicate that a solution of piperidines in GVL should be prepared daily for a better Fmoc removal.
Collapse
|
20
|
Gao B, Chen S, Hou YN, Zhao YJ, Ye T, Xu Z. Solution-phase total synthesis of teixobactin. Org Biomol Chem 2019; 17:1141-1153. [PMID: 30638238 DOI: 10.1039/c8ob02803f] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The first solution-phase total synthesis of the cyclic depsipeptide teixobactin is described. Stereoselective construction of l-allo-enduracididine was established, and the protective groups for the peptide coupling reactions and conditions for the assembly of the fragments were also optimised. The longest linear sequence for the total synthesis was 20 steps from the known l-cis-4-hydroxyproline derivative and gave a 5.6% overall yield. This solution-phase total synthesis could serve as a complement to the current solid-phase synthesis of teixobactin.
Collapse
Affiliation(s)
- Bowen Gao
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, and Engineering Laboratory for Chiral Drug Synthesis, Peking University Shenzhen Graduate School, Xili, Nanshan District, Shenzhen 518055, China.
| | | | | | | | | | | |
Collapse
|
21
|
Pawlas J, Svensson T, Rasmussen JH. 1,4-Benzenedimethanethiol (1,4-BDMT) as a scavenger for greener peptide resin cleavages. RSC Adv 2019; 9:38928-38934. [PMID: 35540669 PMCID: PMC9075962 DOI: 10.1039/c9ra08553j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 11/20/2019] [Indexed: 11/25/2022] Open
Abstract
Aiming at elevating the environmental profile of the solid-phase peptide synthesis (SPPS) methodology by improving the quality of crude peptides that SPPS provides we assessed a series of benzylthiols (BTs) as scavengers for global deprotection/TFA cleavage of exenatide peptide resin accessed by Fmoc SPPS. In these studies we identified 1,4-BDMT as a scavenger that affords the peptide in higher quality than the standard aliphatic thiol reagents, not least in terms of the content of critical peptide impurities in the crude material. Further, 1,4-BDMT exhibited favorable UV detectability as well as stability and solubility in TFA. Finally, based on the MS assessment of the crude exenatide products herein we propose that thiol scavengers in the cleavage of Trp containing peptide resins do not minimize the content of Trp oxidants by means of inhibiting Trp oxidation but rather by forming a peptide–thiol adduct via a mechanism involving an attack of a thiol on an oxindolylalanine (Oia) impurity present in the crude material. 1,4-BDMT is a benign, non-odorous scavenger for peptide resin cleavages which provides crude peptides in higher quality than the aliphatic thiols used for this purpose.![]()
Collapse
|