1
|
Moralev A, Salomatina OV, Chernikov IV, Salakhutdinov NF, Zenkova MA, Markov AV. A Novel 3- meta-Pyridine-1,2,4-oxadiazole Derivative of Glycyrrhetinic Acid as a Safe and Promising Candidate for Overcoming P-Glycoprotein-Mediated Multidrug Resistance in Tumor Cells. ACS OMEGA 2023; 8:48813-48824. [PMID: 38162726 PMCID: PMC10753724 DOI: 10.1021/acsomega.3c06202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/04/2023] [Accepted: 12/06/2023] [Indexed: 01/03/2024]
Abstract
Given the pharmacophore properties of the nitrogen-containing moiety in the molecular structure of P-glycoprotein (P-gp) inhibitors, we report the evaluation of the P-gp inhibitory and MDR reversal activities of 2g, a 3-meta-pyridin-1,2,4-oxadiazole derivative of 18βH-glycyrrhetinic acid. Through molecular docking, we have shown that 2g has the potential to directly interact with the transmembrane domain of P-gp with a low free binding energy (-10.2 kcal/mol). Using KB-8-5 human cervical carcinoma cells and RLS40 murine lymphosarcoma cells, both of which exhibit a multidrug-resistant (MDR) phenotype mediated by P-gp activation, we have shown that 2g, at nontoxic concentrations, effectively increased the intracellular accumulation of fluorescent P-gp substrates (rhodamine 123 or doxorubicin (DOX)), leading to a marked sensitization of the model cells to the cytotoxic effect of DOX. Considering the comparable activity of 2g with verapamil, a known P-gp inhibitor, 2g can be considered as a promising candidate for the development of agents capable of overcoming P-gp-mediated MDR in tumor cells.
Collapse
Affiliation(s)
- Arseny
D. Moralev
- Institute of Chemical
Biology and Fundamental Medicine Siberian Branch of the Russian Academy
of Sciences, Novosibirsk 630090, Russia
- Faculty of
Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Oksana V. Salomatina
- Institute of Chemical
Biology and Fundamental Medicine Siberian Branch of the Russian Academy
of Sciences, Novosibirsk 630090, Russia
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry
Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Ivan V. Chernikov
- Institute of Chemical
Biology and Fundamental Medicine Siberian Branch of the Russian Academy
of Sciences, Novosibirsk 630090, Russia
| | - Nariman F. Salakhutdinov
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry
Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Marina A. Zenkova
- Institute of Chemical
Biology and Fundamental Medicine Siberian Branch of the Russian Academy
of Sciences, Novosibirsk 630090, Russia
| | - Andrey V. Markov
- Institute of Chemical
Biology and Fundamental Medicine Siberian Branch of the Russian Academy
of Sciences, Novosibirsk 630090, Russia
| |
Collapse
|
3
|
Salomatina OV, Dyrkheeva NS, Popadyuk II, Zakharenko AL, Ilina ES, Komarova NI, Reynisson J, Salakhutdinov NF, Lavrik OI, Volcho KP. New Deoxycholic Acid Derived Tyrosyl-DNA Phosphodiesterase 1 Inhibitors Also Inhibit Tyrosyl-DNA Phosphodiesterase 2. Molecules 2021; 27:molecules27010072. [PMID: 35011303 PMCID: PMC8746696 DOI: 10.3390/molecules27010072] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 12/04/2022] Open
Abstract
A series of deoxycholic acid (DCA) amides containing benzyl ether groups on the steroid core were tested against the tyrosyl-DNA phosphodiesterase 1 (TDP1) and 2 (TDP2) enzymes. In addition, 1,2,4- and 1,3,4-oxadiazole derivatives were synthesized to study the linker influence between a para-bromophenyl moiety and the steroid scaffold. The DCA derivatives demonstrated promising inhibitory activity against TDP1 with IC50 in the submicromolar range. Furthermore, the amides and the 1,3,4-oxadiazole derivatives inhibited the TDP2 enzyme but at substantially higher concentration. Tryptamide 5 and para-bromoanilide 8 derivatives containing benzyloxy substituent at the C-3 position and non-substituted hydroxy group at C-12 on the DCA scaffold inhibited both TDP1 and TDP2 as well as enhanced the cytotoxicity of topotecan in non-toxic concentration in vitro. According to molecular modeling, ligand 5 is anchored into the catalytic pocket of TDP1 by one hydrogen bond to the backbone of Gly458 as well as by π–π stacking between the indolyl rings of the ligand and Tyr590, resulting in excellent activity. It can therefore be concluded that these derivatives contribute to the development of specific TDP1 and TDP2 inhibitors for adjuvant therapy against cancer in combination with topoisomerase poisons.
Collapse
Affiliation(s)
- Oksana V. Salomatina
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, SB RAS, 9, Lavrent’ev Ave., 630090 Novosibirsk, Russia; (O.V.S.); (I.I.P.); (N.I.K.); (N.F.S.)
| | - Nadezhda S. Dyrkheeva
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, 8, Lavrent’ev Ave., 630090 Novosibirsk, Russia; (N.S.D.); (A.L.Z.); (E.S.I.); (O.I.L.)
| | - Irina I. Popadyuk
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, SB RAS, 9, Lavrent’ev Ave., 630090 Novosibirsk, Russia; (O.V.S.); (I.I.P.); (N.I.K.); (N.F.S.)
| | - Alexandra L. Zakharenko
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, 8, Lavrent’ev Ave., 630090 Novosibirsk, Russia; (N.S.D.); (A.L.Z.); (E.S.I.); (O.I.L.)
| | - Ekaterina S. Ilina
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, 8, Lavrent’ev Ave., 630090 Novosibirsk, Russia; (N.S.D.); (A.L.Z.); (E.S.I.); (O.I.L.)
| | - Nina I. Komarova
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, SB RAS, 9, Lavrent’ev Ave., 630090 Novosibirsk, Russia; (O.V.S.); (I.I.P.); (N.I.K.); (N.F.S.)
| | - Jóhannes Reynisson
- School of Pharmacy and Bioengineering, Keele University, Staffordshire ST5 5BG, UK;
| | - Nariman F. Salakhutdinov
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, SB RAS, 9, Lavrent’ev Ave., 630090 Novosibirsk, Russia; (O.V.S.); (I.I.P.); (N.I.K.); (N.F.S.)
| | - Olga I. Lavrik
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, 8, Lavrent’ev Ave., 630090 Novosibirsk, Russia; (N.S.D.); (A.L.Z.); (E.S.I.); (O.I.L.)
| | - Konstantin P. Volcho
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, SB RAS, 9, Lavrent’ev Ave., 630090 Novosibirsk, Russia; (O.V.S.); (I.I.P.); (N.I.K.); (N.F.S.)
- Correspondence:
| |
Collapse
|
4
|
Riadi Y, Afzal O, Al-Tamimi AMS, Ali A, Ali A. Ultrasonic-Mediated Green Synthesis of Novel S-Arylated-Pyridopyrimidines and Antimicrobial Evaluation against Escherichia coli and Staphylococcus aureus. Polycycl Aromat Compd 2021. [DOI: 10.1080/10406638.2021.1984953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Yassine Riadi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Abdul-Malek S. Al-Tamimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Abuzer Ali
- Department of Pharmacognosy, College of Pharmacy, Taif University, Taif, Saudi Arabia
| | - Amena Ali
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, Taif, Saudi Arabia
| |
Collapse
|
5
|
Prasher P, Sharma M. Medicinal chemistry of pyrophosphate mimics: A mini review. Drug Dev Res 2021; 83:3-15. [PMID: 34506652 DOI: 10.1002/ddr.21877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/20/2021] [Accepted: 08/24/2021] [Indexed: 12/21/2022]
Abstract
The pyrophosphate mimicking groups offer rational modification of the pyrophosphate-bearing natural substrates of the overexpressed enzymes that cause the onset of disease progression. Mainly, the modified substrate interacts differently with the enzyme active site eventually causing its deactivation, or provides the therapeutically active products at the completion of the catalytic cycle that contribute toward the inhibition of the target enzyme. Many of the pyrophosphate mimic-containing molecules serve as competitive or allosteric inhibitors of the target enzyme to achieve the desirable properties for the mitigation of the target enzyme's pathophysiology. This review presents an epigrammatic overview of the pyrophosphate mimics in medicinal chemistry.
Collapse
Affiliation(s)
- Parteek Prasher
- UGC Sponsored Centre for Advanced Studies, Department of Chemistry, Guru Nanak Dev University, Amritsar, India.,Department of Chemistry, University of Petroleum & Energy Studies, Dehradun, India
| | - Mousmee Sharma
- UGC Sponsored Centre for Advanced Studies, Department of Chemistry, Guru Nanak Dev University, Amritsar, India.,Department of Chemistry, Uttaranchal University, Dehradun, India
| |
Collapse
|
8
|
Malancona S, Mori M, Fezzardi P, Santoriello M, Basta A, Nibbio M, Kovalenko L, Speziale R, Battista MR, Cellucci A, Gennari N, Monteagudo E, Di Marco A, Giannini A, Sharma R, Pires M, Real E, Zazzi M, Dasso Lang MC, De Forni D, Saladini F, Mely Y, Summa V, Harper S, Botta M. 5,6-Dihydroxypyrimidine Scaffold to Target HIV-1 Nucleocapsid Protein. ACS Med Chem Lett 2020; 11:766-772. [PMID: 32435383 DOI: 10.1021/acsmedchemlett.9b00608] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 03/19/2020] [Indexed: 01/27/2023] Open
Abstract
The HIV-1 nucleocapsid (NC) protein is a small basic DNA and RNA binding protein that is absolutely necessary for viral replication and thus represents a target of great interest to develop new anti-HIV agents. Moreover, the highly conserved sequence offers the opportunity to escape the drug resistance (DR) that emerged following the highly active antiretroviral therapy (HAART) treatment. On the basis of our previous research, nordihydroguaiaretic acid 1 acts as a NC inhibitor showing moderate antiviral activity and suboptimal drug-like properties due to the presence of the catechol moieties. A bioisosteric catechol replacement approach led us to identify the 5-dihydroxypyrimidine-6-carboxamide substructure as a privileged scaffold of a new class of HIV-1 NC inhibitors. Hit validation efforts led to the identification of optimized analogs, as represented by compound 28, showing improved NC inhibition and antiviral activity as well as good ADME and PK properties.
Collapse
Affiliation(s)
| | - Mattia Mori
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, via Aldo Moro 2, 53100 Siena, Italy
| | - Paola Fezzardi
- IRBM S.p.A., Via Pontina Km 30.600, 00071 Pomezia, Rome, Italy
| | | | - Andreina Basta
- IRBM S.p.A., Via Pontina Km 30.600, 00071 Pomezia, Rome, Italy
| | - Martina Nibbio
- IRBM S.p.A., Via Pontina Km 30.600, 00071 Pomezia, Rome, Italy
| | - Lesia Kovalenko
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, 74 Route du Rhin, 67401 Illkirch, France
| | | | | | | | - Nadia Gennari
- IRBM S.p.A., Via Pontina Km 30.600, 00071 Pomezia, Rome, Italy
| | | | | | - Alessia Giannini
- Department of Medical Biotechnologies, University of Siena, Viale Mario Bracci, 16, 50100 Siena, Italy
| | - Rajhans Sharma
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, 74 Route du Rhin, 67401 Illkirch, France
| | - Manuel Pires
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, 74 Route du Rhin, 67401 Illkirch, France
| | - Eleonore Real
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, 74 Route du Rhin, 67401 Illkirch, France
| | - Maurizio Zazzi
- Department of Medical Biotechnologies, University of Siena, Viale Mario Bracci, 16, 50100 Siena, Italy
| | - Maria Chiara Dasso Lang
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, via Aldo Moro 2, 53100 Siena, Italy
| | | | - Francesco Saladini
- Department of Medical Biotechnologies, University of Siena, Viale Mario Bracci, 16, 50100 Siena, Italy
| | - Yves Mely
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, 74 Route du Rhin, 67401 Illkirch, France
| | - Vincenzo Summa
- IRBM S.p.A., Via Pontina Km 30.600, 00071 Pomezia, Rome, Italy
| | - Steven Harper
- IRBM S.p.A., Via Pontina Km 30.600, 00071 Pomezia, Rome, Italy
| | - Maurizio Botta
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, via Aldo Moro 2, 53100 Siena, Italy
| |
Collapse
|