1
|
Guo J, Chen S, Onishi Y, Shi Q, Song Y, Mei H, Chen L, Kool ET, Zhu RY. RNA Control via Redox-Responsive Acylation. Angew Chem Int Ed Engl 2024; 63:e202402178. [PMID: 38480851 PMCID: PMC11909701 DOI: 10.1002/anie.202402178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Indexed: 04/05/2024]
Abstract
Incorporating stimuli-responsive components into RNA constructs provides precise spatiotemporal control over RNA structures and functions. Despite considerable advancements, the utilization of redox-responsive stimuli for the activation of caged RNAs remains scarce. In this context, we present a novel strategy that leverages post-synthetic acylation coupled with redox-responsive chemistry to exert control over RNA. To achieve this, we design and synthesize a series of acylating reagents specifically tailored for introducing disulfide-containing acyl adducts into the 2'-OH groups of RNA ("cloaking"). Our data reveal that these acyl moieties can be readily appended, effectively blocking RNA catalytic activity and folding. We also demonstrate the traceless release and reactivation of caged RNAs ("uncloaking") through reducing stimuli. By employing this strategy, RNA exhibits rapid cellular uptake, effective distribution and activation in the cytosol without lysosomal entrapment. We anticipate that our methodology will be accessible to laboratories engaged in RNA biology and holds promise as a versatile platform for RNA-based applications.
Collapse
Affiliation(s)
- Junsong Guo
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore 117544, Singapore
| | - Siqin Chen
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore 117544, Singapore
| | - Yoshiyuki Onishi
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Qi Shi
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore 117544, Singapore
| | - Yangyang Song
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Dr, Singapore 117599, Singapore
| | - Hui Mei
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Leilei Chen
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Dr, Singapore 117599, Singapore
| | - Eric T. Kool
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Ru-Yi Zhu
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore 117544, Singapore
| |
Collapse
|
2
|
Hayashi J, Ochi Y, Senpuku K, Wada SI, Wada F, Harada-Shiba M, Urata H. Rational design of prodrug-type apoB-targeted siRNA for nuclease resistance improvement without compromising gene silencing potency. Bioorg Med Chem 2024; 104:117693. [PMID: 38552598 DOI: 10.1016/j.bmc.2024.117693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/12/2024] [Accepted: 03/15/2024] [Indexed: 04/20/2024]
Abstract
Synthetic siRNA molecules without chemical modifications are easily degraded in the body, and 2'-O-modifications are frequently introduced to enhance stability. However, such chemical modifications tend to impact the gene knockdown potency of siRNA negatively. To circumvent this problem, we previously developed a prodrug-type siRNA bearing 2'-O-methyldithiomethyl (MDTM) groups, which can be converted into unmodified siRNA under the reductive environment in cells. In this study, we developed a nuclease-resistant prodrug-type 2'-O-MDTM siRNA for deployment in future animal experiments. To rationally design siRNA modified with a minimal number of 2'-O-MDTM nucleotide residues, we identified the sites susceptible to nuclease digestion and tolerant to 2'-O-methyl (2'-OMe) modification in the antisense strand of apolipoprotein B-targeted siRNA. Subsequently, we optimized the positions where the 2'-OMe and 2'-O-MDTM groups should be incorporated. siRNA bearing the 2'-O-MDTM and 2'-OMe groups at their respective optimized positions exhibited efficient knockdown potency in vitro and enhanced stability in serum.
Collapse
Affiliation(s)
- Junsuke Hayashi
- Department of Bioorganic Chemistry, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan.
| | - Yosuke Ochi
- Department of Bioorganic Chemistry, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Kota Senpuku
- Department of Bioorganic Chemistry, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Shun-Ichi Wada
- Department of Bioorganic Chemistry, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Fumito Wada
- National Cerebral & Cardiovascular Center Research Institute, 6-1 Kishibe-shinmachi, Suita, Osaka 564-8565, Japan
| | - Mariko Harada-Shiba
- National Cerebral & Cardiovascular Center Research Institute, 6-1 Kishibe-shinmachi, Suita, Osaka 564-8565, Japan
| | - Hidehito Urata
- Department of Bioorganic Chemistry, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan.
| |
Collapse
|
3
|
Sugimoto N, Hayashi J, Funaki R, Wada SI, Wada F, Harada-Shiba M, Urata H. Prodrug-Type Phosphotriester Oligonucleotides with Linear Disulfide Promoieties Responsive to Reducing Environment. Chembiochem 2023; 24:e202300526. [PMID: 37840006 DOI: 10.1002/cbic.202300526] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/12/2023] [Accepted: 10/14/2023] [Indexed: 10/17/2023]
Abstract
Various chemical modifications have been developed to create new antisense oligonucleotides (AONs) for clinical applications. Our previously designed prodrug-type phosphotriester-modified oligonucleotide with cyclic disulfides (cyclic SS PTE ON) can be converted into unmodified ON in an intracellular-mimetic reducing environment. However, the conversion rate of the cyclic SS PTE ON was very low, and the AON with cyclic SS PTE modifications showed much weaker antisense activity than corresponding to the fully phosphorothioate-modified AON. In this study, we synthesized several types of PTE ONs containing linear disulfides (linear SS PTE ONs) and evaluated their conversion rates under reducing conditions. From the results, the structural requirements for the conversion of the synthesized linear SS PTE ONs were elucidated. Linear SS PTE ON with promising promoieties showed a nuclease resistance up to 4.8-fold compared to unmodified ON and a cellular uptake by endocytosis without any transfection reagent. In addition, although the knockdown activity of the linear SS PTE gapmer AON is weaker than that of the fully phosphorothioate-modified gapmer AON, the knockdown activity is slightly stronger than that of the cyclic SS PTE gapmer AON. These results suggest that the conversion rates may be related to the expression of the antisense activity.
Collapse
Affiliation(s)
- Norihito Sugimoto
- Department of Bioorganic Chemistry, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Junsuke Hayashi
- Department of Bioorganic Chemistry, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Ryohei Funaki
- Department of Bioorganic Chemistry, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Shun-Ichi Wada
- Department of Bioorganic Chemistry, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Fumito Wada
- National Cerebral & Cardiovascular Center Research Institute, 6-1 Kishibe-shinmachi, Suita, Osaka, 564-8565, Japan
- Present address: Liid Pharmaceuticals, Inc.21001 Open Innovation Center, National Cerebral & Cardiovascular Center, 6-1 Kishibe-shinmachi, Suita, Osaka, 564-8565, Japan
| | - Mariko Harada-Shiba
- National Cerebral & Cardiovascular Center Research Institute, 6-1 Kishibe-shinmachi, Suita, Osaka, 564-8565, Japan
| | - Hidehito Urata
- Department of Bioorganic Chemistry, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| |
Collapse
|
4
|
Yang L, Dmochowski IJ. Conditionally Activated ("Caged") Oligonucleotides. Molecules 2021; 26:1481. [PMID: 33803234 PMCID: PMC7963183 DOI: 10.3390/molecules26051481] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 01/09/2023] Open
Abstract
Conditionally activated ("caged") oligonucleotides provide useful spatiotemporal control for studying dynamic biological processes, e.g., regulating in vivo gene expression or probing specific oligonucleotide targets. This review summarizes recent advances in caging strategies, which involve different stimuli in the activation step. Oligo cyclization is a particularly attractive caging strategy, which simplifies the probe design and affords oligo stabilization. Our laboratory developed an efficient synthesis for circular caged oligos, and a circular caged antisense DNA oligo was successfully applied in gene regulation. A second technology is Transcriptome In Vivo Analysis (TIVA), where caged oligos enable mRNA isolation from single cells in living tissue. We highlight our development of TIVA probes with improved caging stability. Finally, we illustrate the first protease-activated oligo probe, which was designed for caspase-3. This expands the toolkit for investigating the transcriptome under a specific physiologic condition (e.g., apoptosis), particularly in specimens where light activation is impractical.
Collapse
Affiliation(s)
| | - Ivan J. Dmochowski
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA;
| |
Collapse
|