1
|
Rana R, Sharma A, Kumar N, Khanna A, Jyoti, Dhir M, Gulati HK, Singh JV, Bedi PMS. A comprehensive review of synthetic and semisynthetic xanthine oxidase inhibitors: identification of potential leads based on in-silico computed ADME characteristics. Mol Divers 2024:10.1007/s11030-024-10962-1. [PMID: 39164505 DOI: 10.1007/s11030-024-10962-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 08/07/2024] [Indexed: 08/22/2024]
Abstract
Xanthine oxidase (XO) inhibitors, both synthetic and semisynthetic, have been developed extensively over the past few decades. The increased level of XO is not only the major cause of gout but is also responsible for various conditions associated with hyperuricemia, such as cardiovascular disorders, chronic kidney disorders, diabetes, Alzheimer's disease and chronic wounds. Marketed available XO inhibitors (allopurinol, febuxostat, and topiroxostat) are used to treat hyperuricemia but they are associated with fatal side effects, which pose serious problems for the healthcare system, rising the need for new, more potent, safer compounds. This review summarizes recent findings on XO and describes their design, synthesis, biological significance in the development of anti-hyperuricemic drugs with ADME profile, structure activity relationship (SAR) and molecular docking studies. The results might help medicinal chemists to develop more efficacious XO inhibitors.
Collapse
Affiliation(s)
- Rupali Rana
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India.
| | - Anchal Sharma
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India.
| | - Nitish Kumar
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Aanchal Khanna
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Jyoti
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Muskan Dhir
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Harmandeep Kaur Gulati
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Jatinder Vir Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Preet Mohinder Singh Bedi
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
- Drug and Pollution Testing Laboratory, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| |
Collapse
|
2
|
Sun ZG, Wu KX, Ullah I, Zhu HL. Recent Advances in Xanthine Oxidase Inhibitors. Mini Rev Med Chem 2024; 24:1177-1186. [PMID: 37711003 DOI: 10.2174/1389557523666230913091558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/24/2023] [Accepted: 07/24/2023] [Indexed: 09/16/2023]
Abstract
Uric acid is a product of purine nucleotide metabolism, and high concentrations of uric acid can lead to hyperuricemia, gout and other related diseases. Xanthine oxidase, the only enzyme that catalyzes xanthine and hypoxanthine into uric acid, has become a target for drug development against hyperuricemia and gout. Inhibition of xanthine oxidase can reduce the production of uric acid, so xanthine oxidase inhibitors are used to treat hyperuricemia and related diseases, including gout. In recent years, researchers have obtained new xanthine oxidase inhibitors through drug design, synthesis, or separation of natural products. This paper summarizes the research on xanthine oxidase inhibitors since 2015, mainly including natural products, pyrimidine derivatives, triazole derivatives, isonicotinamide derivatives, chalcone derivatives, furan derivatives, coumarin derivatives, pyrazole derivatives, and imidazole derivatives, hoping to provide valuable information for the research and development of novel xanthine oxidase inhibitors.
Collapse
Affiliation(s)
- Zhi-Gang Sun
- Central Laboratory, Linyi Central Hospital, No. 17 Jiankang Road, Linyi, 276400, China
| | - Kai-Xiang Wu
- School of Clinical Medicine, Jining Medical University, No. 133 Hehua Road, Jining, 272067, China
| | - Inam Ullah
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, No. 163 Xianlin Road, Nanjing, 210023, China
| | - Hai-Liang Zhu
- Central Laboratory, Linyi Central Hospital, No. 17 Jiankang Road, Linyi, 276400, China
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, No. 163 Xianlin Road, Nanjing, 210023, China
| |
Collapse
|
3
|
Singh A, Singh K, Sharma A, Kaur K, Chadha R, Singh Bedi PM. Past, present and future of xanthine oxidase inhibitors: design strategies, structural and pharmacological insights, patents and clinical trials. RSC Med Chem 2023; 14:2155-2191. [PMID: 37974965 PMCID: PMC10650961 DOI: 10.1039/d3md00316g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 08/06/2023] [Indexed: 11/19/2023] Open
Abstract
Xanthine oxidase, a molybdo-flavoenzyme, and an isoform of xanthine dehydrogenase both exist as xanthine oxidoreductase and are responsible for purine catabolism. Xanthine oxidase is more involved in pathological conditions when extensively modulated. Elevation of xanthine oxidase is not only the prime cause of gout but is also responsible for various hyperuricemia associated pathological conditions like diabetes, chronic wounds, cardiovascular disorders, Alzheimer's disease, etc. Currently available xanthine oxidase inhibitors in clinical practice (allopurinol, febuxostat and topiroxostat) suffer from fatal side effects that pose a serious problem to the healthcare system, raising global emergency to develop novel, potent and safer xanthine oxidase inhibitors. This review will provide key and systematic information about: a. design strategies (inspired from both marketed drugs in clinical practice and natural products), structural insights and pharmacological output (xanthine oxidase inhibition and associated activities) of various pre-clinical candidates reported by various research groups across the globe in the past two decades; b. patented xanthine oxidase inhibitors published in the last three decades and c. clinical trials and their outcomes on approved drug candidates. Information generated in this review has suggested fragment-based drug design (FBDD) and molecular hybridization techniques to be most suitable for development of desired xanthine oxidase inhibitors as one provides high selectivity toward the enzyme and the other imparts multifunctional properties to the structure and both may possess capabilities to surpass the limitations of currently available clinical drugs. All in combination will exclusively update researchers working on xanthine oxidase inhibitors and allied areas and potentially help in designing rational, novel, potent and safer xanthine oxidase inhibitors that can effectively tackle xanthine oxidase related disease conditions and disorders.
Collapse
Affiliation(s)
- Atamjit Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University Amritsar Punjab 143005 India
| | - Karanvir Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University Amritsar Punjab 143005 India
| | - Aman Sharma
- Department of Pharmaceutical Sciences, Guru Nanak Dev University Amritsar Punjab 143005 India
| | - Kirandeep Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University Amritsar Punjab 143005 India
| | - Renu Chadha
- University Institute of Pharmaceutical Sciences, Panjab University Chandigarh 160014 India
| | - Preet Mohinder Singh Bedi
- Department of Pharmaceutical Sciences, Guru Nanak Dev University Amritsar Punjab 143005 India
- Drug and Pollution Testing Laboratory, Guru Nanak Dev University Amritsar Punjab 143005 India
| |
Collapse
|
4
|
Agrawal N, Arya M, Kushwah P. Therapeutic voyage of synthetic and natural xanthine oxidase inhibitors. Chem Biol Drug Des 2023; 102:1293-1307. [PMID: 37550063 DOI: 10.1111/cbdd.14319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 08/09/2023]
Abstract
Xanthine oxidase (XO) inhibitors are commonly used to treat gout, nephropathy, and renal stone diseases related to hyperuricemia. However, recent research has shown that these inhibitors may also have potential benefits in preventing vascular diseases, including those affecting the cerebrovasculature. This is due to emerging evidence suggesting that serum uric acid is involved in the growth of cardiovascular disease, and XO inhibition can reduce oxidative stress in the vasculature. There is a great interest in the development of new XO inhibitors for the treatment of hyperuricemia and gout. The present review discusses the many synthetic and natural XO inhibitors that have been developed which are found to have greater potency.
Collapse
Affiliation(s)
- Neetu Agrawal
- Institute of Pharmaceutical Research, GLA University, Mathura, India
| | - Medha Arya
- Institute of Pharmaceutical Research, GLA University, Mathura, India
| | - Priya Kushwah
- Institute of Pharmaceutical Research, GLA University, Mathura, India
| |
Collapse
|
5
|
Ten Years Milestones in Xanthine Oxidase Inhibitors Discovery: Febuxostat-Based Inhibitors Trends, Bifunctional Derivatives, and Automatized Screening Assays. ORGANICS 2022. [DOI: 10.3390/org3040026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Xanthine oxidase (XO) is an enzyme involved in the oxidative process of hypoxanthine and xanthine to uric acid (UA). This process also produces reactive oxygen species (ROS) as byproducts. Both UA and ROS are dangerous for human health, and some health conditions trigger upregulation of XO activity, which results in many diseases (cancer, atherosclerosis, hepatitis, gout, and others) given the worsened scenario of ROS and UA overproduction. So, XO became an attractive target to produce and discover novel selective drugs based on febuxostat, the most recent XO inhibitor out of only two approved by FDA. Under this context, high-performance liquid chromatography (HPLC) and capillary electrophoresis (CE) have been successfully applied to rapidly and easily screen for bioactive compounds, isolated or in complex natural matrixes, that act as enzyme inhibitors through the use of an immobilized enzyme reactor (IMER). This article’s goal is to present advances comprising febuxostat-based XO inhibitors as a new trend, bifunctional moieties capable of inhibiting XO and modulating ROS activity, and in-flow techniques employing an IMER in HPLC and CE to screen for synthetic and natural compounds that act as XO inhibitors.
Collapse
|
6
|
Kaur G, Singh A, Arora G, Monga A, Jassal AK, Uppal J, Bedi PMS, Bora KS. Synthetic heterocyclic derivatives as promising xanthine oxidase inhibitors: An overview. Chem Biol Drug Des 2022; 100:443-468. [PMID: 35763448 DOI: 10.1111/cbdd.14109] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 06/19/2022] [Accepted: 06/26/2022] [Indexed: 11/28/2022]
Abstract
Inhibition of xanthine oxidase is an effective and most prominent therapeutic approach for the management of gout. Discovery of its association in the pathophysiology of diabetes, cardiovascular disorders, etc., widened its therapeutic horizons. Limited drug candidates in clinical practice along with side effects forced researchers to develop more efficacious and safer xanthine oxidase inhibitors for the management of gout and other disorders associated with xanthine oxidase hyperactivity. In this regard, this review focus on: (a) Various drug candidates in clinical practice and under clinical trials, (b) Development of various heterocyclic motifs as xanthine oxidase inhibitors in last two decades and (c) Various patented synthetic xanthine oxidase inhibitors.
Collapse
Affiliation(s)
- Gurinder Kaur
- University Institute of Pharma. Sciences, Chandigarh University, Mohali, Punjab, India
| | - Atamjit Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Geetakshi Arora
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Aditi Monga
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Anupmjot Kaur Jassal
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Jasreen Uppal
- University Institute of Pharma. Sciences, Chandigarh University, Mohali, Punjab, India
| | - Preet Mohinder Singh Bedi
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India.,Drug and Pollution testing Laboratory, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Kundan Singh Bora
- University Institute of Pharma. Sciences, Chandigarh University, Mohali, Punjab, India
| |
Collapse
|
7
|
Karakılıç E, Alım Z, Günel A, Baran A. A versatile study of novel A3B-type unsymmetric zinc(II) phthalocyanines containing thiazolidin-4-one: Their, carbonic anhydrase I, II isoenzymes, and xanthine oxidase inhibitors evaluation. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132630] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
8
|
Zhu X, Yang C, Zhang L, Li J. Identification of novel dual inhibitors targeting XOR and URAT1 via multiple virtual screening methods. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
9
|
Zhou Q, Li X, Wang X, Shi D, Zhang S, Yin Y, Zhang H, Liu B, Song N, Zhang Y. Vanillic Acid as a Promising Xanthine Oxidase Inhibitor: Extraction from Amomum villosum Lour and Biocompatibility Improvement via Extract Nanoemulsion. Foods 2022; 11:foods11070968. [PMID: 35407055 PMCID: PMC8997653 DOI: 10.3390/foods11070968] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 02/05/2023] Open
Abstract
Gout is an oxidative stress-related disease. Food-derived vanillic acid, a promising xanthine oxidase inhibitor, could potentially be used as a safe, supportive, and therapeutic product for gout. The extraction of vanillic acid from a classic Chinese herbal plant Amomum villosum with ethanol was investigated in the study. The optimum conditions were determined as extraction time of 74 min, extraction temperature of 48.36 °C, and a solid-to-liquid ratio of 1:35 g·mL−1 using the Box–Behnken design (BBD) of response surface methodology (RSM). The experimental extraction yield of 9.276 mg·g−1 matched with the theoretical value of 9.272 ± 0.011 mg·g−1 predicted by the model. The vanillic acid in Amomum villosum was determined to be 0.5450 mg·g−1 by high-performance liquid chromatography–diode array detection (HPLC–DAD) under the optimum extraction conditions and exhibited xanthine oxidase (XO) inhibitory activity, with the half-maximal inhibitory concentration (IC50) of 1.762 mg·mL−1. The nanoemulsion of Amomum villosum extract consists of 49.97% distilled water, 35.09% Smix (mixture of tween 80 and 95% ethanol with 2:1 ratio), and 14.94% n-octanol, with a particle size of 110.3 ± 1.9 nm. The nanoemulsion of Amomum villosum extract exhibited markable XO inhibitory activity, with an inhibition rate of 58.71%. The result demonstrated the potential benefit of Amomum villosum as an important dietary source of xanthine oxidase inhibitors for gout.
Collapse
Affiliation(s)
- Qian Zhou
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; (Q.Z.); (X.L.); (X.W.); (S.Z.); (Y.Y.); (H.Z.); (B.L.); (N.S.)
- Department of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Xiaoyan Li
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; (Q.Z.); (X.L.); (X.W.); (S.Z.); (Y.Y.); (H.Z.); (B.L.); (N.S.)
- Department of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Xiaohui Wang
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; (Q.Z.); (X.L.); (X.W.); (S.Z.); (Y.Y.); (H.Z.); (B.L.); (N.S.)
- Department of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Dongdong Shi
- Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
| | - Shengao Zhang
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; (Q.Z.); (X.L.); (X.W.); (S.Z.); (Y.Y.); (H.Z.); (B.L.); (N.S.)
- Department of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yuqi Yin
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; (Q.Z.); (X.L.); (X.W.); (S.Z.); (Y.Y.); (H.Z.); (B.L.); (N.S.)
- Department of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Hanlin Zhang
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; (Q.Z.); (X.L.); (X.W.); (S.Z.); (Y.Y.); (H.Z.); (B.L.); (N.S.)
- Department of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Bohao Liu
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; (Q.Z.); (X.L.); (X.W.); (S.Z.); (Y.Y.); (H.Z.); (B.L.); (N.S.)
- Department of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Nannan Song
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; (Q.Z.); (X.L.); (X.W.); (S.Z.); (Y.Y.); (H.Z.); (B.L.); (N.S.)
- Department of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yinghua Zhang
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; (Q.Z.); (X.L.); (X.W.); (S.Z.); (Y.Y.); (H.Z.); (B.L.); (N.S.)
- Department of Food Science, Northeast Agricultural University, Harbin 150030, China
- Correspondence:
| |
Collapse
|
10
|
Saha D, Maajid Taily I, Banerjee P. Electricity Driven 1,3‐Oxohydroxylation of Donor‐Acceptor Cyclopropanes: a Mild and Straightforward Access to β‐Hydroxy Ketones. European J Org Chem 2021. [DOI: 10.1002/ejoc.202101022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Debarshi Saha
- Department of Chemistry Indian Institute of Technology Ropar Rupnagar Punjab 140001
| | - Irshad Maajid Taily
- Department of Chemistry Indian Institute of Technology Ropar Rupnagar Punjab 140001
| | - Prabal Banerjee
- Department of Chemistry Indian Institute of Technology Ropar Rupnagar Punjab 140001
| |
Collapse
|
11
|
Chen Y, Gao Y, Wu F, Luo X, Ju X, Liu G. Computationally exploring novel xanthine oxidase inhibitors using docking-based 3D-QSAR, molecular dynamics, and virtual screening. NEW J CHEM 2020. [DOI: 10.1039/d0nj03221b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Computationally exploring novel potential xanthine oxidase inhibitors using a systematic modeling study.
Collapse
Affiliation(s)
- Yanming Chen
- Key Laboratory for Green Chemical Process of Ministry of Education
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology
- School of Chemical Engineering and Pharmacy
- Wuhan Institute of Technology
- Wuhan 430205
| | - Ya Gao
- Key Laboratory for Green Chemical Process of Ministry of Education
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology
- School of Chemical Engineering and Pharmacy
- Wuhan Institute of Technology
- Wuhan 430205
| | - Fengshou Wu
- Key Laboratory for Green Chemical Process of Ministry of Education
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology
- School of Chemical Engineering and Pharmacy
- Wuhan Institute of Technology
- Wuhan 430205
| | - Xiaogang Luo
- Key Laboratory for Green Chemical Process of Ministry of Education
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology
- School of Chemical Engineering and Pharmacy
- Wuhan Institute of Technology
- Wuhan 430205
| | - Xiulian Ju
- Key Laboratory for Green Chemical Process of Ministry of Education
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology
- School of Chemical Engineering and Pharmacy
- Wuhan Institute of Technology
- Wuhan 430205
| | - Genyan Liu
- Key Laboratory for Green Chemical Process of Ministry of Education
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology
- School of Chemical Engineering and Pharmacy
- Wuhan Institute of Technology
- Wuhan 430205
| |
Collapse
|
12
|
Zhang B, Dai X, Bao Z, Mao Q, Duan Y, Yang Y, Wang S. Targeting the subpocket in xanthine oxidase: Design, synthesis, and biological evaluation of 2-[4-alkoxy-3-(1H-tetrazol-1-yl) phenyl]-6-oxo-1,6-dihydropyrimidine-5-carboxylic acid derivatives. Eur J Med Chem 2019; 181:111559. [PMID: 31376568 DOI: 10.1016/j.ejmech.2019.07.062] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/14/2019] [Accepted: 07/21/2019] [Indexed: 12/26/2022]
Abstract
Xanthine oxidase is an important target for the treatment of hyperuricemia, gout and other related diseases. Analysis of the high-resolution structure of xanthine oxidase with febuxostat identified the existence of a subpocket formed by the residues Leu648, Asn768, Lys771, Leu1014 and Pro1076. In this study, we designed and synthesized a series of 2-[4-alkoxy-3-(1H-tetrazol-1-yl) phenyl]-6-oxo-1,6-dihydropyrimidine-5-carboxylic acid derivatives (8a-8z) with a tetrazole group targeting this subpocket of the xanthine oxidase active site, and they were further evaluated for their inhibitory potency against xanthine oxidase in vitro. The results showed that all the tested compounds (8a-8z) exhibited an apparent xanthine oxidase inhibitory potency, with IC50 values ranging from 0.0288 μM to 0.629 μM. Among them, compound 8u emerged as the most potent xanthine oxidase inhibitor, with an IC50 value of 0.0288 μM, which was comparable to febuxostat (IC50 = 0.0236 μM). The structure-activity relationship results revealed that the hydrophobic group at the 4'-position was indispensable for the inhibitory potency in vitro against xanthine oxidase. A Lineweaver-Burk plot revealed that the representative compound 8u acted as a mixed-type inhibitor for xanthine oxidase. Furthermore, molecular modeling studies were performed to gain insights into the binding mode of 8u with xanthine oxidase and suggested that the tetrazole group of the phenyl unit was accommodated in the subpocket, as expected. Moreover, a potassium oxonate-induced hyperuricemia model in rats was chosen to further confirm the hypouricemic effect of compound 8u, and the result demonstrated that compound 8u could effectively reduce serum uric acid levels at an oral dose of 5 mg/kg. In addition, acute oral toxicity study in mice indicated that compound 8u was nontoxic and tolerated at a dose up to 2000 mg/kg. Thus, compound 8u could be a potential and efficacious agent in treatment of hyperuricemia with low toxicity.
Collapse
Affiliation(s)
- Bing Zhang
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Culture Road, Shenhe District, Shenyang, 110016, China
| | - Xiwen Dai
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Culture Road, Shenhe District, Shenyang, 110016, China
| | - Ziyang Bao
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Culture Road, Shenhe District, Shenyang, 110016, China
| | - Qing Mao
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Culture Road, Shenhe District, Shenyang, 110016, China
| | - Yulin Duan
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Culture Road, Shenhe District, Shenyang, 110016, China
| | - Yuwei Yang
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Culture Road, Shenhe District, Shenyang, 110016, China
| | - Shaojie Wang
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Culture Road, Shenhe District, Shenyang, 110016, China.
| |
Collapse
|