1
|
Arumugam N, Darshan V M D, Venketesh V, Pradhan SS, Garg A, Sivaramakrishnan V, Kanchi S, Mahalingam SM. Synthesis, computational docking and molecular dynamics studies of a new class of spiroquinoxalinopyrrolidine embedded chromanone hybrids as potent anti-cholinesterase agents. RSC Adv 2024; 14:18815-18831. [PMID: 38867740 PMCID: PMC11167517 DOI: 10.1039/d4ra02432j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 05/23/2024] [Indexed: 06/14/2024] Open
Abstract
Novel structurally intriguing heterocycles embedded with spiropyrrolidine, quinoxaline and chromanone units were synthesized in good yields using a [Bmim]Br accelerated multicomponent reaction strategy. The key step of the reaction is 1,3-dipolar cycloaddition involving highly functionalized dipolarophile, viz. 3-benzylidenechroman-4-one, to afford spiroquinoxalinopyrrolidine embedded chromanone hybrid heterocycles. The formation of spiro products occurs via two C-C, two N-C and one C-N bonds possessing four adjoining stereogenic centers, two of which are spiro carbons. The newly synthesized spiro compounds showed potent acetylcholinesterase and butyrylcholinesterase inhibitory activities. Moreover, compounds with fluorine displayed the highest AChE (3.20 ± 0.16 μM) and BChE (18.14 ± 0.06 μM) inhibitory activities. Further, docking studies, followed by all-atom molecular dynamics, showed results that are consistent with in vitro experimental findings. Although docking scores for the synthesized derivatives were higher than those of the standard drug, MD MMPBSA results showed better binding of synthesized derivatives (-93.5 ± 11.9 kcal mol-1) compared to the standard drug galantamine (-66.2 ± 12.3 kcal mol-1) for AChE but exhibited similar values (-98.1 ± 11.2 and -97.9 ± 11.5 kcal mol-1) for BChE. These differences observed in drug binding with AChE/BChE are consistent with RMSD, RMSF, LIG plots, and FEL structural analysis. Taken together, these derivatives could be potential candidates as inhibitors of AChE and BChE.
Collapse
Affiliation(s)
- Natarajan Arumugam
- Department of Chemistry, College of Science, King Saud University P. O. Box 2455 Riyadh 11451 Saudi Arabia
| | - Datta Darshan V M
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam Andhra Pradesh 515134 India
| | - Vishal Venketesh
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam Andhra Pradesh 515134 India
| | - Sai Sanwid Pradhan
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam Andhra Pradesh 515134 India
| | - Anuj Garg
- Department of Physics, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam Andhra Pradesh 515134 India
| | - Venketesh Sivaramakrishnan
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam Andhra Pradesh 515134 India
| | - Subbarao Kanchi
- Department of Physics, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam Andhra Pradesh 515134 India
| | | |
Collapse
|
2
|
Ragab A, Salem MA, Ammar YA, Aboulthana WM, Helal MH, Abusaif MS. Explore new quinoxaline pharmacophore tethered sulfonamide fragments as in vitro α-glucosidase, α-amylase, and acetylcholinesterase inhibitors with ADMET and molecular modeling simulation. Drug Dev Res 2024; 85:e22216. [PMID: 38831547 DOI: 10.1002/ddr.22216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/05/2024] [Accepted: 05/18/2024] [Indexed: 06/05/2024]
Abstract
A new series of quinoxaline-sulfonamide derivatives 3-12 were synthesized using fragment-based drug design by reaction of quinoxaline sulfonyl chloride (QSC) with different amines and hydrazines. The quinoxaline-sulfonamide derivatives were evaluated for antidiabetic and anti-Alzheimer's potential against α-glucosidase, α-amylase, and acetylcholinesterase enzymes. These derivatives showed good to moderate potency against α-amylase and α-glucosidase with inhibitory percentages between 24.34 ± 0.01%-63.09 ± 0.02% and 28.95 ± 0.04%-75.36 ± 0.01%, respectively. Surprisingly, bis-sulfonamide quinoxaline derivative 4 revealed the most potent activity with inhibitory percentages of 75.36 ± 0.01% and 63.09 ± 0.02% against α-glucosidase and α-amylase compared to acarbose (IP = 57.79 ± 0.01% and 67.33 ± 0.01%), respectively. Moreover, the quinoxaline derivative 3 exhibited potency as α-glucosidase and α-amylase inhibitory with a minute decline from compound 4 and acarbose with inhibitory percentages of 44.93 ± 0.01% and 38.95 ± 0.01%. Additionally, in vitro acetylcholinesterase inhibitory activity for designed derivatives exhibited weak to moderate activity. Still, sulfonamide-quinoxaline derivative 3 emerged as the most active member with inhibitory percentage of 41.92 ± 0.02% compared with donepezil (IP = 67.27 ± 0.60%). The DFT calculations, docking simulation, target prediction, and ADMET analysis were performed and discussed in detail.
Collapse
Affiliation(s)
- Ahmed Ragab
- Department of Chemistry, Faculty of Science (boys), Al-Azhar University, Nasr, Cairo, Egypt
| | - Mohamed A Salem
- Department of Chemistry, Faculty of Science and Arts, King Khalid University, Mohail, Assir, Saudi Arabia
| | - Yousry A Ammar
- Department of Chemistry, Faculty of Science (boys), Al-Azhar University, Nasr, Cairo, Egypt
| | - Wael M Aboulthana
- Biochemistry Department, Biotechnology Research Institute, National Research Centre, Dokki, Cairo, Egypt
| | - Mohamed H Helal
- Department of Chemistry, Faculty of Arts and Science, Northern Border University, Rafha, Saudi Arabia
| | - Moustafa S Abusaif
- Department of Chemistry, Faculty of Science (boys), Al-Azhar University, Nasr, Cairo, Egypt
| |
Collapse
|
3
|
Alkaltham MF, Almansour AI, Arumugam N, Vagolu SK, Tønjum T, Alaqeel SI, Rajaratnam S, Sivaramakrishnan V. Activity against Mycobacterium tuberculosis of a new class of spirooxindolopyrrolidine embedded chromanone hybrid heterocycles. RSC Adv 2024; 14:11604-11613. [PMID: 38605893 PMCID: PMC11008671 DOI: 10.1039/d4ra01501k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/02/2024] [Indexed: 04/13/2024] Open
Abstract
A new class of structurally intriguing heterocycles embedded with spiropyrrolidine, oxindole and chromanones was prepared by regio- and stereoselectively in quantitative yields using an intermolecular tandem cycloaddition protocol. The compounds synthesized were assayed for their anti-mycobacterial activity against Mycobacterium tuberculosis (Mtb) H37Rv and isoniazid-resistant (katG and inhA promoter mutations) clinical Mtb isolates. Four compounds exhibited significant antimycobacterial activity against Mtb strains tested. In particular, a compound possessing a fluorine substituted derivative displayed potent activity at 0.39 μg mL-1 against H37Rv, while it showed 0.09 μg mL-1 and 0.19 μg mL-1 activity against inhA promoter and katG mutation isolates, respectively. A molecular docking study was conducted with the potent compound, which showed results that were consistent with the in vitro experiments.
Collapse
Affiliation(s)
- Manal Fahad Alkaltham
- Department of Chemistry, College of Science, King Saud University P.O. Box 2455 Riyadh 11451 Saudi Arabia
| | - Abdulrahman I Almansour
- Department of Chemistry, College of Science, King Saud University P.O. Box 2455 Riyadh 11451 Saudi Arabia
| | - Natarajan Arumugam
- Department of Chemistry, College of Science, King Saud University P.O. Box 2455 Riyadh 11451 Saudi Arabia
| | - Siva Krishna Vagolu
- Department of Microbiology, University of Oslo N-0316 Oslo Norway
- Department of Microbiology, Oslo University Hospital N-0424 Oslo Norway
| | - Tone Tønjum
- Department of Microbiology, University of Oslo N-0316 Oslo Norway
- Department of Microbiology, Oslo University Hospital N-0424 Oslo Norway
| | - Shatha Ibrahim Alaqeel
- Department of Chemistry, College of Science, King Saud University (034) Riyadh 11495 Saudi Arabia
| | - Saiswaroop Rajaratnam
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning Prasanthi Nilayam Anantapur Andhra Pradesh India
| | - Venketesh Sivaramakrishnan
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning Prasanthi Nilayam Anantapur Andhra Pradesh India
| |
Collapse
|
4
|
Sankar Ganesan T, Elangovan N, Thirumavalavan M, Seenan S, Sowrirajan S, Chandrasekar S, Arumugam N, Almansour AI, Mahalingam SM, V M DD, Kanchi S, Sivaramakrishnan V. Synthesis, topology, molecular docking and dynamics studies of o-phenylenediamine derivative. J Biomol Struct Dyn 2024:1-20. [PMID: 38577881 DOI: 10.1080/07391102.2024.2317981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 02/07/2024] [Indexed: 04/06/2024]
Abstract
The N, N'-(1,2-phenylene) bis (1- (4- chlorophenyl) methanimine) (CS4) was synthesized and characterized by infrared (IR), absorption (UV-vis) and NMR (1H and 13C) spectral analyses. The structural parameters, vibrational frequencies, potential energy and the distribution analysis (PED) were calculated by using DFT with the basis set of B3LYP/cc-pVDZ and these spectral values were compared to the experimental values. HOMO and LUMO studied were performed in order to understand the stability and biological activity of the compound. The most reactive sites on the compound were investigated by utilizing MEP energy surface and Fukui function descriptor with the natural population analysis (NPA) of the charges. The study of the natural bond orbitals (NBO) reveals the delocalization of the intramolecular interaction of the charges in the compound. Additionally, topological investigations (ELF, LOL), determination of thermodynamic parameters and noncovalent interaction (NCI) study by using topology (RDG) analysis were also carried out. Finally, the molecular docking and molecular dynamics simulations was carried out by examining against glycosylphosphatidylinositol phospholipase D inhibitor receptor for distinct protein targets (3MZG).Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- T Sankar Ganesan
- Department of Chemistry, Arignar Anna Government Arts College, Affiliated to Bharathidasan University, Tiruchirappalli, Tamilnadu, India
| | - N Elangovan
- Research Centre for Computational and Theoretical Chemistry, Tiruchirappalli, Tamilnadu, India
| | | | - Shanthi Seenan
- Department of Chemistry, Saveetha Engineering College, Chennai, Tamil Nadu, India
| | - S Sowrirajan
- Research Centre for Computational and Theoretical Chemistry, Tiruchirappalli, Tamilnadu, India
| | - S Chandrasekar
- Department of Chemistry, Arignar Anna Government Arts College, Affiliated to Bharathidasan University, Tiruchirappalli, Tamilnadu, India
| | - Natarajan Arumugam
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | | | | - Datta Darshan V M
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Anantapur, Andhra Pradesh, India
| | - Subbarao Kanchi
- Department of Physics, Sri Sathya Sai Institute of Higher Learning, Puttaparthi, Andhra Pradesh, India
| | - Venketesh Sivaramakrishnan
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Anantapur, Andhra Pradesh, India
| |
Collapse
|
5
|
Farghaly TA, Alqurashi RM, Masaret GS, Abdulwahab HG. Recent Methods for the Synthesis of Quinoxaline Derivatives and their Biological Activities. Mini Rev Med Chem 2024; 24:920-982. [PMID: 37885112 DOI: 10.2174/0113895575264375231012115026] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/31/2023] [Accepted: 08/11/2023] [Indexed: 10/28/2023]
Abstract
Quinoxaline derivatives have been incorporated into numerous marketed drugs used for the treatment of various diseases. Examples include glecaprevir (Mavyret), voxilaprevir (Vosevi), Balversa (L01EX16) (erdafitinib), carbadox, XK469R (NSC698215), and becampanel (AMP397). These quinoxaline derivatives exhibit a diverse range of pharmacological activities, including antibacterial, antitubercular, antiviral, anti-HIV, anti-inflammatory, antifungal, anticancer, antiproliferative, antitumor, kinase inhibition, antimicrobial, antioxidant, and analgesic effects. Recognizing the significance of these bioactive quinoxaline derivatives, researchers have dedicated their efforts to developing various synthetic methods for their production. This review aimed to compile the most recent findings on the synthesis and biological properties of quinoxaline derivatives from 2015 to 2023.
Collapse
Affiliation(s)
- Thoraya A Farghaly
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Raghad M Alqurashi
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ghada S Masaret
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Hanan Gaber Abdulwahab
- Department of Pharmaceutical Medicinal Chemistry and Drug Design, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
6
|
Azomethine Ylides-Versatile Synthons for Pyrrolidinyl-Heterocyclic Compounds. Molecules 2023; 28:molecules28020668. [PMID: 36677727 PMCID: PMC9866015 DOI: 10.3390/molecules28020668] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Azomethine ylides are nitrogen-based three-atom components commonly used in [3+2]-cycloaddition reactions with various unsaturated 2π-electron components. These reactions are highly regio- and stereoselective and have attracted the attention of organic chemists with respect to the construction of diverse heterocycles potentially bearing four new contiguous stereogenic centers. This review article complies the most important [3+2]-cycloaddition reactions of azomethine ylides with various olefinic, unsaturated 2π-electron components (acyclic, alicyclic, heterocyclic, and exocyclic ones) reported over the past two decades.
Collapse
|
7
|
Multifunctional Derivatives of Spiropyrrolidine Tethered Indeno-Quinoxaline Heterocyclic Hybrids as Potent Antimicrobial, Antioxidant and Antidiabetic Agents: Design, Synthesis, In Vitro and In Silico Approaches. Molecules 2022; 27:molecules27217248. [PMID: 36364077 PMCID: PMC9653804 DOI: 10.3390/molecules27217248] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/12/2022] [Accepted: 10/17/2022] [Indexed: 12/04/2022] Open
Abstract
To combat emerging antimicrobial-resistant microbes, there is an urgent need to develop new antimicrobials with better therapeutic profiles. For this, a series of 13 new spiropyrrolidine derivatives were designed, synthesized, characterized and evaluated for their in vitro antimicrobial, antioxidant and antidiabetic potential. Antimicrobial results revealed that the designed compounds displayed good activity against clinical isolated strains, with 5d being the most potent (MIC 3.95 mM against Staphylococcus aureus ATCC 25923) compared to tetracycline (MIC 576.01 mM). The antioxidant activity was assessed by trapping DPPH, ABTS and FRAP assays. The results suggest remarkable antioxidant potential of all synthesized compounds, particularly 5c, exhibiting the strongest activity with IC50 of 3.26 ± 0.32 mM (DPPH), 7.03 ± 0.07 mM (ABTS) and 3.69 ± 0.72 mM (FRAP). Tested for their α-amylase inhibitory effect, the examined analogues display a variable degree of α-amylase activity with IC50 ranging between 0.55 ± 0.38 mM and 2.19 ± 0.23 mM compared to acarbose (IC50 1.19 ± 0.02 mM), with the most active compounds being 5d, followed by 5c and 5j, affording IC50 of 0.55 ± 0.38 mM, 0.92 ± 0.10 mM, and 0.95 ± 0.14 mM, respectively. Preliminary structure–activity relationships revealed the importance of such substituents in enhancing the activity. Furthermore, the ADME screening test was applied to optimize the physicochemical properties and determine their drug-like characteristics. Binding interactions and stability between ligands and active residues of the investigated enzymes were confirmed through molecular docking and dynamic simulation study. These findings provided guidance for further developing leading new spiropyrrolidine scaffolds with improved dual antimicrobial and antidiabetic activities.
Collapse
|
8
|
The synthesis and cytotoxic activity of N-unsubstituted 3-aryl-4-(trifluoromethyl)-4H-spiro[chromeno[3,4-c]pyrrolidine-1,11'-indeno[1,2-b]quinoxalines]. Chem Heterocycl Compd (N Y) 2022. [DOI: 10.1007/s10593-022-03113-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
9
|
Youssef MA, Panda SS, Aboshouk DR, Said MF, El Taweel A, GabAllah M, Fayad W, Soliman AF, Mostafa A, Fawzy NG, Girgis AS. Novel Curcumin Mimics: Design, Synthesis, Biological Properties and Computational Studies of Piperidone‐Piperazine Conjugates. ChemistrySelect 2022. [DOI: 10.1002/slct.202201406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- M. Adel Youssef
- Department of Chemistry Faculty of Science Helwan University Helwan Egypt
| | - Siva S. Panda
- Department of Chemistry and Physics Augusta University Augusta GA 30912 USA
| | - Dalia R. Aboshouk
- Department of Pesticide Chemistry National Research Centre Dokki Giza 12622 Egypt
| | - Mona F. Said
- Department of Pharmaceutical Chemistry Faculty of Pharmacy Cairo University Cairo 11562 Egypt
| | - Ahmed El Taweel
- Center of Scientific Excellence for Influenza Viruses National Research Centre Dokki Giza 12622 Egypt
| | - Mohamed GabAllah
- Center of Scientific Excellence for Influenza Viruses National Research Centre Dokki Giza 12622 Egypt
| | - Walid Fayad
- Drug Bioassay-Cell Culture Laboratory, Pharmacognosy Department National Research Centre Dokki, Giza 12622 Egypt
| | - Ahmed F. Soliman
- Drug Bioassay-Cell Culture Laboratory, Pharmacognosy Department National Research Centre Dokki, Giza 12622 Egypt
| | - Ahmed Mostafa
- Center of Scientific Excellence for Influenza Viruses National Research Centre Dokki Giza 12622 Egypt
| | - Nehmedo G. Fawzy
- Department of Pesticide Chemistry National Research Centre Dokki Giza 12622 Egypt
| | - Adel S. Girgis
- Department of Pesticide Chemistry National Research Centre Dokki Giza 12622 Egypt
| |
Collapse
|
10
|
Nguyen TH, Tran PT, Pham NQA, Hoang VH, Hiep DM, Ngo ST. Identifying Possible AChE Inhibitors from Drug-like Molecules via Machine Learning and Experimental Studies. ACS OMEGA 2022; 7:20673-20682. [PMID: 35755364 PMCID: PMC9219098 DOI: 10.1021/acsomega.2c00908] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/27/2022] [Indexed: 05/30/2023]
Abstract
Acetylcholinesterase (AChE) is one of the most important drug targets for Alzheimer's disease (AD) treatment. In this work, a machine learning model was trained to rapidly and accurately screen large chemical databases for the potential inhibitors of AChE. The obtained results were then validated via in vitro enzyme assay. Moreover, atomistic simulations including molecular docking and molecular dynamics simulations were then used to understand molecular insights into the binding process of ligands to AChE. In particular, two compounds including benzyl trifluoromethyl ketone and trifluoromethylstyryl ketone were indicated as highly potent inhibitors of AChE because they established IC50 values of 0.51 and 0.33 μM, respectively. The obtained IC50 of two compounds is significantly lower than that of galantamine (2.10 μM). The predicted log(BB) suggests that the compounds may be able to traverse the blood-brain barrier. A good agreement between computational and experimental studies was observed, indicating that the hybrid approach can enhance AD therapy.
Collapse
Affiliation(s)
- Trung Hai Nguyen
- Laboratory
of Theoretical and Computational Biophysics, Advanced Institute of
Materials Science, Ton Duc Thang
University, Ho Chi Minh City, Vietnam
- Faculty
of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Phuong-Thao Tran
- Hanoi
University of Pharmacy, 13-15 Le Thanh Tong, Hanoi 008404, Vietnam
| | - Ngoc Quynh Anh Pham
- Faculty
of Chemical Engineering, Ho Chi Minh City
University of Technology (HCMUT), Ho Chi Minh City 700000, Vietnam
| | - Van-Hai Hoang
- Faculty
of Pharmacy, Phenikka University, Hanoi 008404, Vietnam
- Phenikka
Institute for Advanced Study, Phenikka University, Hanoi 008404, Vietnam
| | - Dinh Minh Hiep
- Department
of Agriculture and Rural Development, Ho Chi Minh City 700000, Vietnam
| | - Son Tung Ngo
- Laboratory
of Theoretical and Computational Biophysics, Advanced Institute of
Materials Science, Ton Duc Thang
University, Ho Chi Minh City, Vietnam
- Faculty
of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| |
Collapse
|
11
|
Singh R, Saini MR. Regioselective Synthesis of Iminothiazolidinone Appended Novel Dispiro Indenoquinoxaline‐Pyrrolidines by 1,3‐Dipolar Cycloaddition Strategy. ChemistrySelect 2022. [DOI: 10.1002/slct.202104080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ruby Singh
- Department of Chemistry School of Basic Sciences Jaipur National University Jaipur Rajasthan India
| | - Munna Ram Saini
- Department of Chemistry School of Basic Sciences Jaipur National University Jaipur Rajasthan India
| |
Collapse
|
12
|
Arumugam N, Almansour AI, Kumar RS, Soliman SM, Viswanathan E, Perumal K, Angamuthu G, Karuppiah P, Al-Dhabi NA. Synthesis, structure and biological evaluation of highly functionalized 2-azetidinone integrated spirooxindolopyrrolidine heterocyclic hybrid. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
13
|
Girgis AS, D'Arcy P, Aboshouk DR, Bekheit MS. Synthesis and bio-properties of 4-piperidone containing compounds as curcumin mimics. RSC Adv 2022; 12:31102-31123. [DOI: 10.1039/d2ra05518j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/23/2022] [Indexed: 11/05/2022] Open
Abstract
3,5-Diyliden-4-piperidone scaffold are considered as curcumin mimic exhibiting diverse bio-properties.
Collapse
Affiliation(s)
- Adel S. Girgis
- Department of Pesticide Chemistry, National Research Centre, Dokki, Giza 12622, Egypt
| | - Padraig D'Arcy
- Department of Biomedical and Clinical Sciences, Linköping University, SE-581 83, Linköping, Sweden
| | - Dalia R. Aboshouk
- Department of Pesticide Chemistry, National Research Centre, Dokki, Giza 12622, Egypt
| | - Mohamed S. Bekheit
- Department of Pesticide Chemistry, National Research Centre, Dokki, Giza 12622, Egypt
| |
Collapse
|
14
|
Shahidul Islam M, Al‐Majid AM, Azam M, Prakash Verma V, Barakat A, Haukka M, Domingo LR, Elgazar AA, Mira A, Badria FA. Synthesis of Spirooxindole Analogs Tethered Pyrazole Scaffold as Acetylcholinesterase Inhibitors. ChemistrySelect 2021. [DOI: 10.1002/slct.202103255] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Mohammad Shahidul Islam
- Department of Chemistry College of Science King Saud University P.O. Box 2455 Riyadh 11451 Saudi Arabia
- Department of Chemistry Banasthali Vidyapith Banasthali- 304022 Rajasthan India
| | | | - Mohammad Azam
- Department of Chemistry College of Science King Saud University P.O. Box 2455 Riyadh 11451 Saudi Arabia
| | - Ved Prakash Verma
- Department of Chemistry Banasthali Vidyapith Banasthali- 304022 Rajasthan India
| | - Assem Barakat
- Department of Chemistry College of Science King Saud University P.O. Box 2455 Riyadh 11451 Saudi Arabia
- Department of Chemistry, Faculty of Science Alexandria University, P.O. Box 426, Ibrahimia Alexandria 21321 Egypt
| | - Matti Haukka
- Department of Chemistry University of Jyväskylä, P.O. Box 35 FI-40014 Jyväskylä Finland
| | - Luis R. Domingo
- Department of Organic Chemistry University of Valencia, Dr. Moliner 50 46100 Burjassot, Valencia Spain
| | - Abdullah A. Elgazar
- Department of Pharmacognosy, Faculty of Pharmacy Kafrelsheikh University Kafrelsheikh 33516 Egypt
| | - Amira Mira
- Department of Pharmacognosy, Faculty of Pharmacy Mansoura University Mansoura 35516 Egypt
| | - Farid A. Badria
- Department of Pharmacognosy, Faculty of Pharmacy Mansoura University Mansoura 35516 Egypt
| |
Collapse
|
15
|
Islam M, Al-Majid AM, Azam M, Verma VP, Barakat A, Haukka M, Elgazar AA, Mira A, Badria FA. Construction of Spirooxindole Analogues Engrafted with Indole and Pyrazole Scaffolds as Acetylcholinesterase Inhibitors. ACS OMEGA 2021; 6:31539-31556. [PMID: 34869980 PMCID: PMC8637602 DOI: 10.1021/acsomega.1c03978] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 11/01/2021] [Indexed: 05/12/2023]
Abstract
Twenty-five new hits of spirooxindole analogs 8a-y engrafted with indole and pyrazole scaffolds were designed and constructed via a [3+2]cycloaddition (32CA) reaction starting from three components: new chalcone-based indole and pyrazole scaffolds 5a-d, substituted isatins 6a-c, and secondary amines 7a-d. The potency of the compounds were assessed in modulating cholinesterase (AChE) activity using Ellman's method. Compounds 8i and 8y showed the strongest acetylcholine esterase inhibition (AChEI) with IC50 values of 24.1 and 27.8 μM, respectively. Molecular docking was used to study their interaction with the active site of hAChE.
Collapse
Affiliation(s)
- Mohammad
Shahidul Islam
- Department
of Chemistry, College of Science, King Saud
University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
- Department
of Chemistry, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India
| | - Abdullah Mohammed Al-Majid
- Department
of Chemistry, College of Science, King Saud
University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Mohammad Azam
- Department
of Chemistry, College of Science, King Saud
University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Ved Prakash Verma
- Department
of Chemistry, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India
| | - Assem Barakat
- Department
of Chemistry, College of Science, King Saud
University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
- Department
of Chemistry, Faculty of Science, Alexandria
University, P.O. Box 426, Ibrahimia, Alexandria 21321, Egypt
| | - Matti Haukka
- Department
of Chemistry, University of Jyväskylä, P.O. Box 35, FI-40014 Jyväskylä, Finland
| | - Abdullah A. Elgazar
- Department
of Pharmacognosy, Faculty of Pharmacy, Kafrelsheikh
University, Kafrelsheikh 33516, Egypt
| | - Amira Mira
- Department
of Pharmacognosy, Faculty of Pharmacy, Mansoura
University, Mansoura 35516, Egypt
| | - Farid A. Badria
- Department
of Pharmacognosy, Faculty of Pharmacy, Mansoura
University, Mansoura 35516, Egypt
| |
Collapse
|
16
|
Suwanhom P, Saetang J, Khongkow P, Nualnoi T, Tipmanee V, Lomlim L. Synthesis, Biological Evaluation, and In Silico Studies of New Acetylcholinesterase Inhibitors Based on Quinoxaline Scaffold. Molecules 2021; 26:4895. [PMID: 34443482 PMCID: PMC8400540 DOI: 10.3390/molecules26164895] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/07/2021] [Accepted: 08/09/2021] [Indexed: 12/13/2022] Open
Abstract
A quinoxaline scaffold exhibits various bioactivities in pharmacotherapeutic interests. In this research, twelve quinoxaline derivatives were synthesized and evaluated as new acetylcholinesterase inhibitors. We found all compounds showed potent inhibitory activity against acetylcholinesterase (AChE) with IC50 values of 0.077 to 50.080 µM, along with promising predicted drug-likeness and blood-brain barrier (BBB) permeation. In addition, potent butyrylcholinesterase (BChE) inhibitory activity with IC50 values of 14.91 to 60.95 µM was observed in some compounds. Enzyme kinetic study revealed the most potent compound (6c) as a mixed-type AChE inhibitor. No cytotoxicity from the quinoxaline derivatives was noticed in the human neuroblastoma cell line (SHSY5Y). In silico study suggested the compounds preferred the peripheral anionic site (PAS) to the catalytic anionic site (CAS), which was different from AChE inhibitors (tacrine and galanthamine). We had proposed the molecular design guided for quinoxaline derivatives targeting the PAS site. Therefore, the quinoxaline derivatives could offer the lead for the newly developed candidate as potential acetylcholinesterase inhibitors.
Collapse
Affiliation(s)
- Paptawan Suwanhom
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai 90112, Songkhla, Thailand;
- Phytomedicine and Pharmaceutical Biotechnology Excellent Center (PPBEC), Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai 90112, Songkhla, Thailand
| | - Jirakrit Saetang
- Department of Surgery, Faculty of Medicine, Prince of Songkla University, Hat Yai 90112, Songkhla, Thailand;
| | - Pasarat Khongkow
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai 90112, Songkhla, Thailand;
| | - Teerapat Nualnoi
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai 90112, Songkhla, Thailand;
| | - Varomyalin Tipmanee
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai 90112, Songkhla, Thailand;
| | - Luelak Lomlim
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai 90112, Songkhla, Thailand;
- Phytomedicine and Pharmaceutical Biotechnology Excellent Center (PPBEC), Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai 90112, Songkhla, Thailand
| |
Collapse
|
17
|
Arumugam N, Almansour AI, Kumar RS, Siva Krishna V, Sriram D, Dege N. Stereoselective synthesis and discovery of novel spirooxindolopyrrolidine engrafted indandione heterocyclic hybrids as antimycobacterial agents. Bioorg Chem 2021; 110:104798. [PMID: 33735710 DOI: 10.1016/j.bioorg.2021.104798] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 02/28/2021] [Accepted: 03/01/2021] [Indexed: 10/22/2022]
Abstract
Novel spirooxindolopyrrolidine embedded indandione heterocyclic hybrids were obtained in excellent yields via a regio- and stereoselective one-pot three component reaction between Baylis-Hillman adduct and non-stabilized azomethine ylides. The structure of newly synthesized compounds was elucidated through 1D and 2D spectroscopic data and the stereochemistry was determined by single crystal X-ray diffraction analysis. In vitro tubercular activity against Mycobacterium tuberculosis H37Rv using MABA assay reveals that the compound bearing chlorine substituted on the oxindole ring displayed the most potent activity with MIC 0.78 μg/mL and is two-fold active than the standard drug, ethambutol (MIC 1.56 μg/mL).
Collapse
Affiliation(s)
- Natarajan Arumugam
- Department of Chemistry, College of Science, King Saud University, P.O Box 2455, Riyadh 11451, Saudi Arabia.
| | - Abdulrahman I Almansour
- Department of Chemistry, College of Science, King Saud University, P.O Box 2455, Riyadh 11451, Saudi Arabia
| | - Raju Suresh Kumar
- Department of Chemistry, College of Science, King Saud University, P.O Box 2455, Riyadh 11451, Saudi Arabia.
| | - Vagolu Siva Krishna
- Medicinal Chemistry and Antimycobacterial Research Laboratory, Pharmacy Group, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Hyderabad 500078, Telangana, India
| | - Dharmarajan Sriram
- Medicinal Chemistry and Antimycobacterial Research Laboratory, Pharmacy Group, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Hyderabad 500078, Telangana, India
| | - Necmi Dege
- Department of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, Samsun 55139, Turkey
| |
Collapse
|
18
|
Arumugam N, Almansour AI, Kumar RS, Soliman SM, Viswanathan E, Dege N, Karuppiah P, Al-Dhabi NA. Synthesis, X-ray structural determination and biological evaluation of novel ferrocene grafted spiroquinoxalinopyrrolidine. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129348] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
19
|
A stereo, regioselective synthesis and discovery of antimycobaterium tuberculosis activity of novel β-lactam grafted spirooxindolopyrrolidine hybrid heterocycles. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2020.102938] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|
20
|
Arumugam N, Almansour AI, Kumar RS, Yeswanthkumar S, Padmanaban R, Arun Y, Kansız S, Dege N, Manohar TS, Venketesh S. Design, stereoselective synthesis, computational studies and cholinesterase inhibitory activity of novel spiropyrrolidinoquinoxaline tethered indole hybrid heterocycle. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
21
|
Singh R, Bhardwaj D, Saini MR. Recent advancement in the synthesis of diverse spiro-indeno[1,2-b]quinoxalines: a review. RSC Adv 2021. [DOI: 10.1039/d0ra09130h] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The nitrogen-containing indeno[1,2-b]quinoxaline ring is a privileged structurally fused active system and has notable applications in various fields of chemistry.
Collapse
Affiliation(s)
- Ruby Singh
- Department of Chemistry
- School of Basic Sciences
- Jaipur National University
- Jaipur
- India
| | - Diksha Bhardwaj
- Department of Chemistry
- School of Basic Sciences
- Jaipur National University
- Jaipur
- India
| | - Munna Ram Saini
- Department of Chemistry
- School of Basic Sciences
- Jaipur National University
- Jaipur
- India
| |
Collapse
|
22
|
Almansour AI, Arumugam N, Kumar RS, Raju R, Ponmurugan K, AlDhabi N, Premnath D. Broad spectrum antimicrobial activity of dispirooxindolopyrrolidine fused acenaphthenone heterocyclic hybrid against healthcare associated microbial pathogens (HAMPs). J Infect Public Health 2020; 13:2001-2008. [PMID: 33109496 DOI: 10.1016/j.jiph.2020.09.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/20/2020] [Accepted: 09/27/2020] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Healthcare-associated infections (HAI) are prime health task worldwide and issue of patient safety besides intensifying antimicrobial drug resistance. It is essential to formulate structurally fascinating novel, active and cost-effective anti-microbial drugs possessing a peculiar way of action and capable of overcoming the resistance to effectively combat this disease. MATERIALS AND METHODS The synthesized spiro-heterocyclic hybrids (SHHs) were elucidated through spectroscopic analysis and were assessed for their in vitro antimicrobial activity by agar diffusion method and minimal inhibitory concentration (MIC) value was also determined. In addition, antioxidant potential was also evaluated through DPPH radical scavenging assays. RESULTS The novel class of SHHs 4a and 4b displayed significant antibacterial activity against selected healthcare associated microbial pathogens (HAMPs). In addition, SHH 4b showed potent antioxidant properties. CONCLUSION Antibacterial and antifungal activity of dispirooxindolopyrrolidine fused acenaphthenone heterocyclic hybrids were examined. Interestingly, SHH 4b exhibited potent antimicrobial activity against selected HAMPs. Further, these compounds were also showed potent antioxidant properties. These results revealed that SHH 4b is a promising lead for the development of new antimicrobial drugs.
Collapse
Affiliation(s)
- Abdulrahman I Almansour
- Department of Chemistry, College of Science, P.O. Box 2455, King Saud University, Riyadh 11451, Saudi Arabia
| | - Natarajan Arumugam
- Department of Chemistry, College of Science, P.O. Box 2455, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Raju Suresh Kumar
- Department of Chemistry, College of Science, P.O. Box 2455, King Saud University, Riyadh 11451, Saudi Arabia
| | - Rajesh Raju
- Department of Organic Chemistry, University of Madras, Guindy Campus, Chennai, 600 025, India
| | - Karuppiah Ponmurugan
- Department of Botany and Microbiology, College of Science, P.O. Box 2455, King Saud University, Riyadh 11451, Saudi Arabia
| | - NaifAbdullah AlDhabi
- Department of Botany and Microbiology, College of Science, P.O. Box 2455, King Saud University, Riyadh 11451, Saudi Arabia
| | - Dhanaraj Premnath
- Department of Bioscience and Technology, Karunya Institute of Technology and Science, Branch of Bioinformatics, School of Agriculture and Biosciences, Karunya Nagar, Coimbatore, 641114, India
| |
Collapse
|
23
|
Barakat A, Alshahrani S, Al-Majid AM, Ali M, Altowyan MS, Islam MS, Alamary AS, Ashraf S, Ul-Haq Z. Synthesis of a New Class of Spirooxindole-Benzo[ b]Thiophene-Based Molecules as Acetylcholinesterase Inhibitors. Molecules 2020; 25:E4671. [PMID: 33066293 PMCID: PMC7594047 DOI: 10.3390/molecules25204671] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/04/2020] [Accepted: 10/12/2020] [Indexed: 11/29/2022] Open
Abstract
A series of new oxindole-based spiro-heterocycles bearing the benzo[b]thiophene motif were synthesized via a 1,3-dipolar cycloaddition reaction and their acetylcholinesterase (AChE) inhibitory activity was evaluated. All the synthesized compounds exhibited moderate inhibitory activities against AChE, while IIc was found to be the most active analog with an IC50 value of 20,840 µM·L-1. Its molecular structure was a 5-chloro-substituted oxindole bearing benzo[b]thiophene and octahydroindole moieties. Based on molecular docking studies, IIc was strongly bound to the catalytic and peripheral anionic sites of the protein through hydrophilic, hydrophobic, and π-stacking interactions with Asp74, Trp86, Tyr124, Ser125, Glu202, Ser203, Trp236, Trp286, Phe297, Tyr337, and Tyr341. These interactions also indicated that the multiplicity of the IIc aromatic core significantly favored its activity.
Collapse
Affiliation(s)
- Assem Barakat
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (S.A.); (A.M.A.-M.); (M.A.); (M.S.I.); (A.S.A.)
- Department of Chemistry, Faculty of Science, Alexandria University, P.O. Box 426, Ibrahimia, Alexandria 21321, Egypt
| | - Saeed Alshahrani
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (S.A.); (A.M.A.-M.); (M.A.); (M.S.I.); (A.S.A.)
| | - Abdullah Mohammed Al-Majid
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (S.A.); (A.M.A.-M.); (M.A.); (M.S.I.); (A.S.A.)
| | - M. Ali
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (S.A.); (A.M.A.-M.); (M.A.); (M.S.I.); (A.S.A.)
| | - Mezna Saleh Altowyan
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh 11564, Saudi Arabia;
| | - Mohammad Shahidul Islam
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (S.A.); (A.M.A.-M.); (M.A.); (M.S.I.); (A.S.A.)
| | - Abdullah Saleh Alamary
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (S.A.); (A.M.A.-M.); (M.A.); (M.S.I.); (A.S.A.)
| | - Sajda Ashraf
- Dr. Panjwani Center for Molecular medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; (S.A.); (Z.U.-H.)
| | - Zaheer Ul-Haq
- Dr. Panjwani Center for Molecular medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; (S.A.); (Z.U.-H.)
| |
Collapse
|
24
|
Discovery of 1,4-pentadien-3-one derivatives containing quinoxaline scaffolds as potential apoptosis inducers. Future Med Chem 2020; 12:1505-1519. [PMID: 32772720 DOI: 10.4155/fmc-2019-0371] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Aim: To synthesize novel antiproliferative agents. Results & methodology: A variety of 1,4-pentadien-3-one derivatives bearing quinoxaline scaffolds was designed and synthesized and their antiproliferative activities were evaluated. Notably, compounds N3 and N4 exhibited markedly greater antiproliferative activities against SMMC-7721 cells in vitro compared with the well-known antitumor drug gemcitabine. The mechanistic investigation showed that compounds N3 and N4 induced SMMC-7721 cell apoptosis by regulating the expression levels of apoptosis-related proteins. In addition, the molecular docking model further revealed that compound N3 could be a potential peroxisome proliferator-activated receptor inhibitor. Conclusion: These compounds might serve as bioactive fragments and lead compounds for developing more potent apoptosis inducers.
Collapse
|
25
|
Boudriga S, Haddad S, Murugaiyah V, Askri M, Knorr M, Strohmann C, Golz C. Three-Component Access to Functionalized Spiropyrrolidine Heterocyclic Scaffolds and Their Cholinesterase Inhibitory Activity. Molecules 2020; 25:E1963. [PMID: 32340203 PMCID: PMC7221748 DOI: 10.3390/molecules25081963] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 04/17/2020] [Accepted: 04/21/2020] [Indexed: 02/06/2023] Open
Abstract
A novel one-pot [3+2]-cycloaddition reaction of (E)-3-arylidene-1-phenyl-succinimides, cyclic 1,2-diketones (isatin, 5-chloro-isatin and acenaphtenequinone), and diverse α-aminoacids such as 2-phenylglycine or sarcosine is reported. The reaction provides succinimide-substituted dispiropyrrolidine derivatives with high regio- and diastereoselectivities under mild reaction conditions. The stereochemistry of these N-heterocycles has been confirmed by four X-ray diffraction studies. Several synthetized compounds show higher inhibition on acetylcholinesterase (AChE) than butyrylcholinesterase (BChE). Of the 17 synthesized compounds tested, five exhibit good AChE inhibition with IC50 of 11.42 to 22.21 µM. A molecular docking study has also been undertaken for compound 4n possessing the most potent AChE inhibitory activity, disclosing its binding to the peripheral anionic site of AChE enzymes.
Collapse
Affiliation(s)
- Sarra Boudriga
- Department of Chemistry, Laboratory of Heterocyclic Chemistry Natural Product and Reactivity/CHPNR, Faculty of Science of Monastir, Monastir 5000, Tunisia;
| | - Saoussen Haddad
- Department of Chemistry, Laboratory of Heterocyclic Chemistry Natural Product and Reactivity/CHPNR, Faculty of Science of Monastir, Monastir 5000, Tunisia;
| | - Vikneswaran Murugaiyah
- Discipline of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, USM 11800, Penang, Malaysia;
| | - Moheddine Askri
- Department of Chemistry, Laboratory of Heterocyclic Chemistry Natural Product and Reactivity/CHPNR, Faculty of Science of Monastir, Monastir 5000, Tunisia;
| | - Michael Knorr
- Institut UTINAM-UMR CNRS 6213, Université Bourgogne Franche-Comté, 16 Route de Gray, 25030 Besançon, France
| | - Carsten Strohmann
- Technische Universität Dortmund, Anorganische Chemie Otto-Hahn-Straße 6, 44221 Dortmund, Germany; (C.S.); (C.G.)
| | - Christopher Golz
- Technische Universität Dortmund, Anorganische Chemie Otto-Hahn-Straße 6, 44221 Dortmund, Germany; (C.S.); (C.G.)
| |
Collapse
|
26
|
Lawson S, Arumugam N, Almansour AI, Suresh Kumar R, Thangamani S. Dispiropyrrolidine tethered piperidone heterocyclic hybrids with broad-spectrum antifungal activity against Candida albicans and Cryptococcus neoformans. Bioorg Chem 2020; 100:103865. [PMID: 32361055 DOI: 10.1016/j.bioorg.2020.103865] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 04/13/2020] [Accepted: 04/17/2020] [Indexed: 12/27/2022]
Abstract
Invasive fungal infections along with rising incidence of resistance to antifungal drugs pose increasing threat to immunocompromised individuals, including cancer patients. In this study, we examined the antifungal activity of dispiropyrrolidine tethered piperidone heterocyclic hybrids. Results indicate that compounds 5a and 6i have demonstrated a potent antifungal effect on multiple fungal strains, including Candida albicans, without exhibiting cytotoxicity to mammalian cells. Furthermore, these two compounds exhibited significant inhibition on Candida albicans hyphae and biofilm development that surpasses the FDA-approved antifungal drug currently used for treatment. Taken together, our results suggest that 5a and 6i are promising candidates for development into new antifungal drugs.
Collapse
Affiliation(s)
- Sarah Lawson
- Arizona College of Osteopathic Medicine, Midwestern University, 19555 N. 59th Ave., Glendale, AZ 85308, USA
| | - Natarajan Arumugam
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
| | - Abdulrahman I Almansour
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Raju Suresh Kumar
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Shankar Thangamani
- Department of Pathology and Population Medicine, College of Veterinary Medicine, Midwestern University, 19555 N. 59th Ave., Glendale, AZ 85308, USA.
| |
Collapse
|
27
|
Zimnitskiy NS, Barkov AY, Ulitko MV, Kutyashev IB, Korotaev VY, Sosnovskikh VY. An expedient synthesis of novel spiro[indenoquinoxaline-pyrrolizidine]-pyrazole conjugates with anticancer activity from 1,5-diarylpent-4-ene-1,3-diones through the 1,3-dipolar cycloaddition/cyclocondensation sequence. NEW J CHEM 2020. [DOI: 10.1039/d0nj02817g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A highly regio- and stereoselective two-stage route for the synthesis of spiro[indenoquinoxaline-pyrrolizidine]-pyrazole hybrids with anticancer activity has been developed.
Collapse
Affiliation(s)
- Nikolay S. Zimnitskiy
- Institute of Natural Sciences and Mathematics
- Ural Federal University
- Ekaterinburg
- Russian Federation
| | - Alexey Yu. Barkov
- Institute of Natural Sciences and Mathematics
- Ural Federal University
- Ekaterinburg
- Russian Federation
| | - Maria V. Ulitko
- Institute of Natural Sciences and Mathematics
- Ural Federal University
- Ekaterinburg
- Russian Federation
| | - Igor B. Kutyashev
- Institute of Natural Sciences and Mathematics
- Ural Federal University
- Ekaterinburg
- Russian Federation
| | - Vladislav Yu. Korotaev
- Institute of Natural Sciences and Mathematics
- Ural Federal University
- Ekaterinburg
- Russian Federation
| | | |
Collapse
|
28
|
Das S. Recent applications of ninhydrin in multicomponent reactions. RSC Adv 2020; 10:18875-18906. [PMID: 35518326 PMCID: PMC9054093 DOI: 10.1039/d0ra02930k] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 04/24/2020] [Indexed: 12/29/2022] Open
Abstract
Ninhydrin (1,2,3-indanetrione hydrate) has a remarkable breadth in different fields, including organic chemistry, biochemistry, analytical chemistry and the forensic sciences. For the past several years, it has been considered an important building block in organic synthesis. Therefore, there is increasing interest in ninhydrin-based multicomponent reactions to rapidly build versatile scaffolds. Most of the works described here are simple reactions with readily available starting materials that result in complex molecular architectures. Some of the synthesized compounds exhibit interesting biological activities and constitute a new hope for anticancer agents. The present review aims to highlight the multicomponent reactions of ninhydrin towards diverse organic molecules during the period from 2014 to 2019. This article aims to review recent multicomponent reactions of ninhydrin towards diverse organic scaffolds, such as indeno-fused heterocycles, spiro-indeno heterocycles, quinoxalines, propellanes, cage-like compounds, and dispiro heterocycles.![]()
Collapse
Affiliation(s)
- Suven Das
- Department of Chemistry
- Rishi Bankim Chandra College for Women
- India
| |
Collapse
|
29
|
Design, synthesis and cholinesterase inhibitory activity of novel spiropyrrolidine tethered imidazole heterocyclic hybrids. Bioorg Med Chem Lett 2020; 30:126789. [DOI: 10.1016/j.bmcl.2019.126789] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/24/2019] [Accepted: 10/27/2019] [Indexed: 02/03/2023]
|
30
|
Arumugam N, Almansour AI, Kumar RS, Mohammad Ali Al-Aizari AJ, Alaqeel SI, Kansız S, Krishna VS, Sriram D, Dege N. Regio- and diastereoselective synthesis of spiropyrroloquinoxaline grafted indole heterocyclic hybrids and evaluation of their anti-Mycobacterium tuberculosis activity. RSC Adv 2020; 10:23522-23531. [PMID: 35517328 PMCID: PMC9054781 DOI: 10.1039/d0ra02525a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 05/29/2020] [Indexed: 12/21/2022] Open
Abstract
An efficient and eco compatible approach for the regio- and stereoselective synthesis of structurally diverse novel spiropyrrolidine tethered indole hybrids in excellent yields employing a one-pot multicomponent 1,3-dipolar cycloaddition strategy.
Collapse
Affiliation(s)
- Natarajan Arumugam
- Department of Chemistry
- College of Science
- King Saud University
- Riyadh 11451
- Saudi Arabia
| | | | - Raju Suresh Kumar
- Department of Chemistry
- College of Science
- King Saud University
- Riyadh 11451
- Saudi Arabia
| | | | - Shatha Ibrahim Alaqeel
- Department of Chemistry
- College of Science
- King Saud University (034)
- Riyadh 11495
- Saudi Arabia
| | - Sevgi Kansız
- Department of Fundamental Sciences
- Faculty of Engineering
- Samsun University
- Samsun
- Turkey
| | - Vagolu Siva Krishna
- Medicinal Chemistry and Antimycobacterial Research Laboratory
- Pharmacy Group
- Birla Institute of Technology & Science-Pilani
- Hyderabad Campus
- Hyderabad 500078
| | - Dharmarajan Sriram
- Medicinal Chemistry and Antimycobacterial Research Laboratory
- Pharmacy Group
- Birla Institute of Technology & Science-Pilani
- Hyderabad Campus
- Hyderabad 500078
| | - Necmi Dege
- Department of Physics
- Faculty of Arts and Sciences
- Ondokuz Mayıs University
- Samsun
- Turkey
| |
Collapse
|