1
|
Sun J, Zhan X, Wang W, Yang X, Liu Y, Yang H, Deng J, Yang H. Natural aporphine alkaloids: A comprehensive review of phytochemistry, pharmacokinetics, anticancer activities, and clinical application. J Adv Res 2024; 63:231-253. [PMID: 37935346 PMCID: PMC11380034 DOI: 10.1016/j.jare.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/17/2023] [Accepted: 11/03/2023] [Indexed: 11/09/2023] Open
Abstract
BACKGROUND Cancer is the most common cause of death and is still a serious public health problem. Alkaloids, a class of bioactive compounds widely diffused in plants, especially Chinese herbs, are used as functional ingredients, precursors, and lead compounds in food and clinical applications. Among them, aporphine alkaloids (AAs), as an important class of isoquinoline alkaloids, exert a strong anticancer effect on multiple cancer types. AIM OF REVIEW This review aims to comprehensively summarize the phytochemistry, pharmacokinetics, and bioavailability of seven subtypes of AAs and their derivatives from various plants and highlight their anticancer bioactivities and mechanisms of action. Key Scientific Concepts of Review. The chemical structures and botanical diversity of AAs are elucidated, and promising results are highlighted regarding the potent anticancer activities of AAs and their derivatives, contributing to their pharmacological benefits. This work provides a better understanding of AAs and combinational anticancer therapies involving them, thereby improving the development of functional food containing plant-derived AA and the clinical application of AAs.
Collapse
Affiliation(s)
- Jing Sun
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Xingtian Zhan
- School of Public Administration and Policy, Renmin University of China, Beijing 100872, China.
| | - Weimin Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Xiaojie Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yichen Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Huanzhi Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Jianjun Deng
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R&D Center of Biomaterials and Fermentation Engineering, Biotech & Biomed Research Institute, School of Chemical Engineering, Northwest University, Xi'an, China
| | - Haixia Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
2
|
Zell L, Bretl A, Temml V, Schuster D. Dopamine Receptor Ligand Selectivity-An In Silico/In Vitro Insight. Biomedicines 2023; 11:1468. [PMID: 37239139 PMCID: PMC10216180 DOI: 10.3390/biomedicines11051468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/03/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Different dopamine receptor (DR) subtypes are involved in pathophysiological conditions such as Parkinson's Disease (PD), schizophrenia and depression. While many DR-targeting drugs have been approved by the U.S. Food and Drug Administration (FDA), only a very small number are truly selective for one of the DR subtypes. Additionally, most of them show promiscuous activity at related G-protein coupled receptors, thus suffering from diverse side-effect profiles. Multiple studies have shown that combined in silico/in vitro approaches are a valuable contribution to drug discovery processes. They can also be applied to divulge the mechanisms behind ligand selectivity. In this study, novel DR ligands were investigated in vitro to assess binding affinities at different DR subtypes. Thus, nine D2R/D3R-selective ligands (micro- to nanomolar binding affinities, D3R-selective profile) were successfully identified. The most promising ligand exerted nanomolar D3R activity (Ki = 2.3 nM) with 263.7-fold D2R/D3R selectivity. Subsequently, ligand selectivity was rationalized in silico based on ligand interaction with a secondary binding pocket, supporting the selectivity data determined in vitro. The developed workflow and identified ligands could aid in the further understanding of the structural motifs responsible for DR subtype selectivity, thus benefitting drug development in D2R/D3R-associated pathologies such as PD.
Collapse
Affiliation(s)
| | | | | | - Daniela Schuster
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Paracelsus Medical University, 5020 Salzburg, Austria; (L.Z.); (A.B.); (V.T.)
| |
Collapse
|
3
|
Zhu R, Jiang G, Tang W, Zhao X, Chen F, Zhang X, Ye N. Aporphines: A privileged scaffold in CNS drug discovery. Eur J Med Chem 2023; 256:115414. [PMID: 37172474 DOI: 10.1016/j.ejmech.2023.115414] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/21/2023] [Accepted: 04/22/2023] [Indexed: 05/15/2023]
Abstract
Aporphine alkaloids embedded in 4H-dibenzo[de,g]quinoline four-ring structures belong to one of the largest subclasses of isoquinoline alkaloids. Aporphine is a privileged scaffold in the field of organic synthesis and medicinal chemistry for the discovery of new therapeutic agents for central nervous system (CNS) diseases, cancer, metabolic syndrome, and other diseases. In the past few decades, aporphine has attracted continuing interest to be widely used to develop selective or multitarget directed ligands (MTDLs) targeting the CNS (e.g., dopamine D1/2/5, serotonin 5-HT1A/2A/2C and 5-HT7, adrenergic α/β receptors, and cholinesterase enzymes), thereby serving as valuable pharmacological probes for mechanism studies or as potential leads for CNS drug discovery. The aims of the present review are to highlight the diverse CNS activities of aporphines, discuss their SAR, and briefly summarize general synthetic routes, which will pave the way for the design and development of new aporphine derivatives as promising CNS active drugs in the future.
Collapse
Affiliation(s)
- Rongfeng Zhu
- Department of Medicinal Chemistry, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Guangqian Jiang
- Department of Medicinal Chemistry, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Wanyu Tang
- Department of Medicinal Chemistry, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Xiaobao Zhao
- Department of Medicinal Chemistry, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Fan Chen
- Department of Medicinal Chemistry, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Xiaoya Zhang
- Department of Medicinal Chemistry, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Na Ye
- Department of Medicinal Chemistry, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, China.
| |
Collapse
|
4
|
Namballa HK, Madapa S, Sigalapalli DK, Harding WW. Semisynthetic Transformations on (+)-Boldine Reveal a 5-HT 2A/2CR Antagonist. JOURNAL OF NATURAL PRODUCTS 2022; 85:2149-2158. [PMID: 36001775 DOI: 10.1021/acs.jnatprod.2c00365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Aporphine alkaloids have shown affinity for serotonin receptors (5-HTRs), and there has been a recent upsurge of interest in aporphines as 5-HT2CR ligands. 1,2,9,10-Tetraoxygenated aporphine alkaloids in particular have demonstrated good affinity for 5-HTRs. In continued efforts to understand the impacts of structural modification of the 1,2,9,10-tetraoxygenated aporphine template on affinity, selectivity, and activity at 5-HT2R subtypes, we used (+)-boldine (8) as a semisynthetic feedstock in the preparation of C-2-alkoxylated (+)-predicentrine analogues. Compound 10n, which contains a benzyloxy group at C-2, has been identified as a novel 5-HT2CR ligand with strong affinity (4 nM) and moderate selectivity versus 5-HT2BR and 5-HT2AR (12-fold and 6-fold, respectively). Compound 10n functions as an antagonist at 5-HT2A and 5-HT2C receptors. Computational experiments indicate that several hydrophobic interactions as well as strong H-bond and salt bridge interactions between the protonated amine moiety in 10n and Asp134 are responsible for the potent 5-HT2CR affinity of this compound. Furthermore, compound 10n displays favorable predicted drug-like characteristics, which is encouraging toward future optimization.
Collapse
Affiliation(s)
- Hari K Namballa
- Department of Chemistry, Hunter College, City University of New York, 695 Park Avenue, New York, New York 10065, United States
| | - Sudharshan Madapa
- Department of Chemistry, Hunter College, City University of New York, 695 Park Avenue, New York, New York 10065, United States
| | - Dilep K Sigalapalli
- Department of Pharmaceutical Chemistry, Vignan Pharmacy College, Jawaharlal Nehru Technological University, Vadlamudi 522213, Andhra Pradesh, India
| | - Wayne W Harding
- Department of Chemistry, Hunter College, City University of New York, 695 Park Avenue, New York, New York 10065, United States
- Ph.D. Program in Biochemistry, CUNY Graduate Center, 365 5th Avenue, New York, New York 10016, United States
- Ph.D. Program in Chemistry, CUNY Graduate Center, 365 5th Avenue, New York, New York 10016, United States
| |
Collapse
|