1
|
Ryzhikh D, Seo H, Lee J, Lee J, Nam MH, Song M, Hwang GT. On-DNA Mannich Reaction for DNA-Encoded Library Synthesis. J Org Chem 2024; 89:16957-16963. [PMID: 39482967 DOI: 10.1021/acs.joc.4c02098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
The β-amino ketones produced through the Mannich reaction hold significant potential as candidates for various drugs. In this study, we optimized on-DNA Mannich reaction conditions and applied them to investigate the reactions of DNA-conjugated aldehydes with various amine and ketone building blocks. The developed on-DNA Mannich reaction preserved the DNA integrity and established viable routes for library production. These results underscore the potential of the Mannich reaction in DNA-encoded library (DEL) synthesis.
Collapse
Affiliation(s)
- Danila Ryzhikh
- KNU G-LAMP Project Group, KNU Institute of Basic Sciences, Department of Chemistry, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Hyewon Seo
- New Drug Development Center (NDDC), Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI hub), Daegu 41061, Republic of Korea
| | - Jihoon Lee
- New Drug Development Center (NDDC), Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI hub), Daegu 41061, Republic of Korea
| | - Jieon Lee
- New Drug Development Center (NDDC), Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI hub), Daegu 41061, Republic of Korea
| | - Myung Hee Nam
- Metropolitan Seoul Center, Korea Basic Science Institute (KBSI), Seoul 02841, Republic of Korea
| | - Minsoo Song
- New Drug Development Center (NDDC), Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI hub), Daegu 41061, Republic of Korea
| | - Gil Tae Hwang
- KNU G-LAMP Project Group, KNU Institute of Basic Sciences, Department of Chemistry, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
2
|
Niwa M, Hayashida J, Tokugawa M, Nanya T, Tanabe M, Honda N, Inohana T, Fukano H, Shigeta Y, Kuboyama T, Itoh S. Enzymatic Cleavage of Double-Stranded DNA-Encoded Libraries (DELs) to Single-Stranded DELs with Compounds at the 3' End: Its Application in Photo-Crosslinking Selection. Chemistry 2024:e202403233. [PMID: 39390663 DOI: 10.1002/chem.202403233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/06/2024] [Accepted: 10/10/2024] [Indexed: 10/12/2024]
Abstract
DNA-encoded library (DEL) technology is a crucial tool in pharmaceutical research, rapidly identifying compounds that bind to a target of interest from an extensive pool of compounds. In this study, we propose a new method for generating single-stranded DELs (ssDELs) with compounds at the 3' end. The introduction of uniquely designed hairpin-shaped headpieces containing deoxyuridine (NC-HP) and the use of a cleavage enzyme facilitate the conversion from double-stranded DELs (dsDELs) to such ssDELs. Moreover, Klenow fill-in provides the dsDELs with photo-crosslinkers covalently linked to the coding region, which exhibit durability even under stringent washing conditions and enable photo-crosslinking with a high signal-to-noise ratio, as also confirmed in cell-based photo-crosslinking selections.
Collapse
Affiliation(s)
- Masatoshi Niwa
- Chemical Research Laboratories, Nissan Chemical Corporation, 10-1 Tsuboi-Nishi 2-chome, Funabashi, Chiba, Japan
| | - Jun Hayashida
- Biological Research Laboratories, Nissan Chemical Corporation, 1470, Shiraoka, Shiraoka, Saitama, Japan
| | - Munefumi Tokugawa
- Chemical Research Laboratories, Nissan Chemical Corporation, 10-1 Tsuboi-Nishi 2-chome, Funabashi, Chiba, Japan
| | - Takeshi Nanya
- Biological Research Laboratories, Nissan Chemical Corporation, 1470, Shiraoka, Shiraoka, Saitama, Japan
| | - Masako Tanabe
- Biological Research Laboratories, Nissan Chemical Corporation, 1470, Shiraoka, Shiraoka, Saitama, Japan
| | - Naoko Honda
- Chemical Research Laboratories, Nissan Chemical Corporation, 10-1 Tsuboi-Nishi 2-chome, Funabashi, Chiba, Japan
| | - Takehiko Inohana
- Chemical Research Laboratories, Nissan Chemical Corporation, 10-1 Tsuboi-Nishi 2-chome, Funabashi, Chiba, Japan
| | - Hajime Fukano
- Biological Research Department, Daiichi Sankyo RD Novare Co., Ltd., 1-16-13, Kitakasai, Edogawa-ku, Tokyo, Japan
- Hit Discovery Platform Laboratories, Research Function, R&D Division, Daiichi Sankyo Co., Ltd., 1-16-13, Kitakasai, Edogawa-ku, Tokyo, Japan
| | - Yukihiro Shigeta
- Head Office, Nissan Chemical Corporation, 5-1, Nihonbashi 2-chome, Chuo-ku, Tokyo, Japan
| | - Takeshi Kuboyama
- Head Office, Nissan Chemical Corporation, 5-1, Nihonbashi 2-chome, Chuo-ku, Tokyo, Japan
| | - Shin Itoh
- Chemical Research Laboratories, Nissan Chemical Corporation, 10-1 Tsuboi-Nishi 2-chome, Funabashi, Chiba, Japan
| |
Collapse
|
3
|
Zhao G, Zhu M, Li Y, Zhang G, Li Y. Using DNA-encoded libraries of fragments for hit discovery of challenging therapeutic targets. Expert Opin Drug Discov 2024; 19:725-740. [PMID: 38753553 DOI: 10.1080/17460441.2024.2354287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/08/2024] [Indexed: 05/18/2024]
Abstract
INTRODUCTION The effectiveness of Fragment-based drug design (FBDD) for targeting challenging therapeutic targets has been hindered by two factors: the small library size and the complexity of the fragment-to-hit optimization process. The DNA-encoded library (DEL) technology offers a compelling and robust high-throughput selection approach to potentially address these limitations. AREA COVERED In this review, the authors propose the viewpoint that the DEL technology matches perfectly with the concept of FBDD to facilitate hit discovery. They begin by analyzing the technical limitations of FBDD from a medicinal chemistry perspective and explain why DEL may offer potential solutions to these limitations. Subsequently, they elaborate in detail on how the integration of DEL with FBDD works. In addition, they present case studies involving both de novo hit discovery and full ligand discovery, especially for challenging therapeutic targets harboring broad drug-target interfaces. EXPERT OPINION The future of DEL-based fragment discovery may be promoted by both technical advances and application scopes. From the technical aspect, expanding the chemical diversity of DEL will be essential to achieve success in fragment-based drug discovery. From the application scope side, DEL-based fragment discovery holds promise for tackling a series of challenging targets.
Collapse
Affiliation(s)
- Guixian Zhao
- Chongqing University FuLing Hospital, Chongqing University, Chongqing, China
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Mengping Zhu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Yangfeng Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Gong Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Yizhou Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| |
Collapse
|
4
|
Zhou Y, Shen W, Gao Y, Peng J, Li Q, Wei X, Liu S, Lam FS, Mayol-Llinàs J, Zhao G, Li G, Li Y, Sun H, Cao Y, Li X. Protein-templated ligand discovery via the selection of DNA-encoded dynamic libraries. Nat Chem 2024; 16:543-555. [PMID: 38326646 DOI: 10.1038/s41557-024-01442-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 01/04/2024] [Indexed: 02/09/2024]
Abstract
DNA-encoded chemical libraries (DELs) have become a powerful technology platform in drug discovery. Dual-pharmacophore DELs display two sets of small molecules at the termini of DNA duplexes, thereby enabling the identification of synergistic binders against biological targets, and have been successfully applied in fragment-based ligand discovery and affinity maturation of known ligands. However, dual-pharmacophore DELs identify separate binders that require subsequent linking to obtain the full ligands, which is often challenging. Here we report a protein-templated DEL selection approach that can identify full ligand/inhibitor structures from DNA-encoded dynamic libraries (DEDLs) without the need for subsequent fragment linking. Our approach is based on dynamic DNA hybridization and target-templated in situ ligand synthesis, and it incorporates and encodes the linker structures in the library, along with the building blocks, to be sampled by the target protein. To demonstrate the performance of this method, 4.35-million- and 3.00-million-member DEDLs with different library architectures were prepared, and hit selection was achieved against four therapeutically relevant target proteins.
Collapse
Grants
- AoE/P-705/16, 17301118, 17111319, 17303220, 17300321, 17318322, C7005-20G, C7016-22G, and 2122-7S04 Research Grants Council, University Grants Committee (RGC, UGC)
- 21877093, 22222702, and 91953119 National Science Foundation of China | National Natural Science Foundation of China-Yunnan Joint Fund (NSFC-Yunnan Joint Fund)
- Health@InnoHK Innovation and Technology Commission (ITF)
Collapse
Affiliation(s)
- Yu Zhou
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong SAR, China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Health@InnoHK, Innovation and Technology Commission, Hong Kong SAR, China
| | - Wenyin Shen
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong SAR, China
| | - Ying Gao
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong SAR, China
| | - Jianzhao Peng
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong SAR, China
| | - Qingrong Li
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong SAR, China
| | - Xueying Wei
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong SAR, China
| | - Shihao Liu
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong SAR, China
| | - Fong Sang Lam
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong SAR, China
| | - Joan Mayol-Llinàs
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Health@InnoHK, Innovation and Technology Commission, Hong Kong SAR, China
| | - Guixian Zhao
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences; Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Gang Li
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, China
| | - Yizhou Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences; Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Hongzhe Sun
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong SAR, China.
| | - Yan Cao
- School of Pharmacy, Naval Medical University, Shanghai, China.
| | - Xiaoyu Li
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong SAR, China.
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Health@InnoHK, Innovation and Technology Commission, Hong Kong SAR, China.
| |
Collapse
|
5
|
Yang F, Zhou P, Huang Z, Liao J, Huang G, Liang T, Zhang Z. Ruthenium(II)-Catalyzed Remote C-H Sulfonylation of 2-Pyridones. Org Lett 2023; 25:5779-5783. [PMID: 37498216 DOI: 10.1021/acs.orglett.3c02004] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Herein, a ruthenium-mediated remote C-H mono- and disulfonylation of 2-pyridones with arylsulfonyl chlorides is developed. The catalytic system consisting of a [Ru(p-cymene)Cl2]2 catalyst and KOAc additive allows 2-pyridones to undergo C3,C5-disulfonylation in 1,4-dioxane, and C5-sulfonylation when the C3-position of 2-pyridones is blocked. The successful transformation of the products and late-stage modification of estrone further highlighted the potential utility and significance of this synthetic protocol. Preliminary mechanistic studies indicated that the remote regioselectivity might be dictated via chelation-assisted ruthenation.
Collapse
Affiliation(s)
- Fengqi Yang
- Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, P. R. China
| | - Pengfei Zhou
- Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, P. R. China
| | - Zeng Huang
- Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, P. R. China
| | - Junqiu Liao
- Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, P. R. China
| | - Guan Huang
- Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, P. R. China
| | - Taoyuan Liang
- Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, P. R. China
| | - Zhuan Zhang
- Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, P. R. China
| |
Collapse
|
6
|
An Y, Lee J, Seo H, Bae S, Kang J, Lee J, Kim J, Nam MH, Song M, Hwang GT. Groebke-Blackburn-Bienaymé Reaction for DNA-Encoded Library Technology. Org Lett 2023; 25:4445-4450. [PMID: 37310879 DOI: 10.1021/acs.orglett.3c01366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This study presents a DNA-compatible synthesis of diverse 5-arylimidazo[1,2-a]pyridin-3-amine derivatives using the Suzuki-Miyaura reaction, followed by a Groebke-Blackburn-Bienaymé (GBB) reaction. The GBB reaction demonstrates a wide substrate scope, mild one-pot reaction conditions, and compatibility with subsequent enzymatic ligation, highlighting its potential in DNA-encoded library technology.
Collapse
Affiliation(s)
- Yujin An
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Juyeon Lee
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Hyewon Seo
- New Drug Development Center (NDDC), Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDIhub), Daegu 41061, Republic of Korea
| | - Seri Bae
- New Drug Development Center (NDDC), Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDIhub), Daegu 41061, Republic of Korea
| | - Jihee Kang
- New Drug Development Center (NDDC), Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDIhub), Daegu 41061, Republic of Korea
| | - Jieon Lee
- New Drug Development Center (NDDC), Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDIhub), Daegu 41061, Republic of Korea
| | - Jinwoo Kim
- Seoul Center, Korea Basic Science Institute (KBSI), Seoul 02841, Republic of Korea
| | - Myung Hee Nam
- Seoul Center, Korea Basic Science Institute (KBSI), Seoul 02841, Republic of Korea
| | - Minsoo Song
- New Drug Development Center (NDDC), Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDIhub), Daegu 41061, Republic of Korea
| | - Gil Tae Hwang
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
7
|
Wen X, Wu X, Jin R, Lu X. Privileged heterocycles for DNA-encoded library design and hit-to-lead optimization. Eur J Med Chem 2023; 248:115079. [PMID: 36669370 DOI: 10.1016/j.ejmech.2022.115079] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/22/2022] [Accepted: 12/29/2022] [Indexed: 01/15/2023]
Abstract
It is well known that heterocyclic compounds play a key role in improving drug activity, target selectivity, physicochemical properties as well as reducing toxicity. In this review, we summarized the representative heterocyclic structures involved in hit compounds which were obtained from DNA-encoded library from 2013 to 2021. In some examples, the state of the art in heterocycle-based DEL synthesis and hit-to-lead optimization are highlighted. We hope that more and more novel heterocycle-based DEL toolboxes and in-depth pharmaceutical research on these lead compounds can be developed to accelerate the discovery of new drugs.
Collapse
Affiliation(s)
- Xin Wen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai, 201203, China.
| | - Xinyuan Wu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai, 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China.
| | - Rui Jin
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai, 201203, China.
| | - Xiaojie Lu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai, 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China.
| |
Collapse
|
8
|
Nie Q, Sun J, Fang X, He X, Xiong F, Zhang G, Li Y, Li Y. Antimony salt-promoted cyclization facilitating on-DNA syntheses of dihydroquinazolinone derivatives and its applications. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
9
|
Li Y, Cheng S, Tian Y, Zhang Y, Zhao Y. Recent ring distortion reactions for diversifying complex natural products. Nat Prod Rep 2022; 39:1970-1992. [PMID: 35972343 DOI: 10.1039/d2np00027j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Covering: 2013-2022.Chemical diversification of natural products is an efficient way to generate natural product-like compounds for modern drug discovery programs. Utilizing ring-distortion reactions for diversifying natural products would directly alter the core ring systems of small molecules and lead to the production of structurally complex and diverse compounds for high-throughput screening. We review the ring distortion reactions recently used in complexity-to-diversity (CtD) and pseudo natural products (pseudo-NPs) strategies for diversifying complex natural products. The core ring structures of natural products are altered via ring expansion, ring cleavage, ring edge-fusion, ring spiro-fusion, ring rearrangement, and ring contraction. These reactions can rapidly provide natural product-like collections with properties suitable for a wide variety of biological and medicinal applications. The challenges and limitations of current ring distortion reactions are critically assessed, and avenues for future improvements of this rapidly expanding field are discussed. We also provide a toolbox for chemists for the application of ring distortion reactions to access natural product-like molecules.
Collapse
Affiliation(s)
- Yu Li
- School of Pharmacy, Nantong University, Nantong 226001, China.
| | - Shihao Cheng
- School of Pharmacy, Nantong University, Nantong 226001, China.
| | - Yun Tian
- School of Pharmacy, Nantong University, Nantong 226001, China.
| | - Yanan Zhang
- School of Pharmacy, Nantong University, Nantong 226001, China.
| | - Yu Zhao
- School of Pharmacy, Nantong University, Nantong 226001, China.
| |
Collapse
|
10
|
Sun J, Nie Q, Fang X, He Z, Zhang G, Li Y, Li Y. Vinyl azide as a synthon for DNA-compatible divergent transformations into N-heterocycles. Org Biomol Chem 2022; 20:5045-5049. [PMID: 35703385 DOI: 10.1039/d2ob00862a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Inspired by diversity-oriented synthesis, we have developed a series of DNA-compatible transformations utilizing on-DNA vinyl azide as a synthon to forge divergent N-heterocyclic scaffolds. Polysubstituted imidazoles and isoquinolines were efficiently obtained with moderate-to-excellent conversions. Besides, the "one-pot" strategy to prepare in-house on-DNA vinyl azides afforded synthons readily. Results from substrate scope exploration and enzymatic ligation further demonstrate the feasibility of these N-heterocycle syntheses in DNA-encoded chemical library construction.
Collapse
Affiliation(s)
- Jie Sun
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China.
| | - Qigui Nie
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China.
| | - Xianfu Fang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China.
| | - Zhiwei He
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China.
| | - Gong Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China. .,Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China
| | - Yangfeng Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China. .,Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China
| | - Yizhou Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China. .,Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China.,Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, 400044 Chongqing, P. R. China.,Beijing National Laboratory for Molecular Sciences, 100190 Beijing, P. R. China
| |
Collapse
|
11
|
Fang X, Wang Y, He P, Liao H, Zhang G, Li Y, Li Y. Visible Light-Promoted Divergent Benzoheterocyclization from Aldehydes for DNA-Encoded Chemical Libraries. Org Lett 2022; 24:3291-3296. [PMID: 35467894 DOI: 10.1021/acs.orglett.2c01187] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Benzoheterocyclics have been widely adopted as drug-like core scaffolds that can be incorporated into DNA-encoded chemical library technology for high-throughput hit discovery. Here, we present a visible light-promoted divergent synthesis of on-DNA benzoheterocycles from aldehydes. Four types of DNA-conjugated benzoheterocyclics were obtained under mild conditions with a broad substrate scope. A cross substrate scope study, together with enzymatic ligation and subsequent chemical diversifications, were conducted, demonstrating the feasibility of this approach in DNA-encoded chemical library construction.
Collapse
Affiliation(s)
- Xianfu Fang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China
| | - Yiting Wang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China
| | - Pengyang He
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China
| | - Huilin Liao
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China
| | - Gong Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China.,Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China
| | - Yangfeng Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China.,Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China
| | - Yizhou Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China.,Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China.,Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, 400044 Chongqing, P. R. China.,Beijing National Laboratory for Molecular Sciences, 100190 Beijing, P. R. China
| |
Collapse
|
12
|
Shi B, Zhou Y, Li X. Recent advances in DNA-encoded dynamic libraries. RSC Chem Biol 2022; 3:407-419. [PMID: 35441147 PMCID: PMC8985084 DOI: 10.1039/d2cb00007e] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/16/2022] [Indexed: 11/21/2022] Open
Abstract
The DNA-encoded chemical library (DEL) has emerged as a powerful technology platform in drug discovery and is also gaining momentum in academic research. The rapid development of DNA-/DEL-compatible chemistries has greatly expanded the chemical space accessible to DELs. DEL technology has been widely adopted in the pharmaceutical industry and a number of clinical drug candidates have been identified from DEL selections. Recent innovations have combined DELs with other legacy and emerging techniques. Among them, the DNA-encoded dynamic library (DEDL) introduces DNA encoding into the classic dynamic combinatorial libraries (DCLs) and also integrates the principle of fragment-based drug discovery (FBDD), making DEDL a novel approach with distinct features from static DELs. In this Review, we provide a summary of the recently developed DEDL methods and their applications. Future developments in DEDLs are expected to extend the application scope of DELs to complex biological systems with unique ligand-discovery capabilities.
Collapse
Affiliation(s)
- Bingbing Shi
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Jining Medical University Jining Shandong 272067 P. R. China
| | - Yu Zhou
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong Pokfulam Road Hong Kong SAR China
| | - Xiaoyu Li
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong Pokfulam Road Hong Kong SAR China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Health@InnoHK, Innovation and Technology Commission Units 1503-1511 15/F. Building 17W Hong Kong SAR China
| |
Collapse
|
13
|
Gui Y, Wong CS, Zhao G, Xie C, Hou R, Li Y, Li G, Li X. Converting Double-Stranded DNA-Encoded Libraries (DELs) to Single-Stranded Libraries for More Versatile Selections. ACS OMEGA 2022; 7:11491-11500. [PMID: 35415338 PMCID: PMC8992267 DOI: 10.1021/acsomega.2c01152] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 03/15/2022] [Indexed: 06/06/2023]
Abstract
DNA-encoded library (DEL) is an efficient high-throughput screening technology platform in drug discovery and is also gaining momentum in academic research. Today, the majority of DELs are assembled and encoded with double-stranded DNA tags (dsDELs) and has been selected against numerous biological targets; however, dsDELs are not amendable to some of the recently developed selection methods, such as the cross-linking-based selection against immobilized targets and live-cell-based selections, which require DELs encoded with single-stranded DNAs (ssDELs). Herein, we present a simple method to convert dsDELs to ssDELs using exonuclease digestion without library redesign and resynthesis. We show that dsDELs could be efficiently converted to ssDELs and used for affinity-based selections either with purified proteins or on live cells.
Collapse
Affiliation(s)
- Yuhan Gui
- Department
of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road,
Hong Kong SAR, China
| | - Clara Shania Wong
- Department
of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road,
Hong Kong SAR, China
| | - Guixian Zhao
- Chongqing
Key Laboratory of Natural Product Synthesis and Drug Research, School
of Pharmaceutical Sciences; Key Laboratory of Biorheological Science
and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 401331, China
| | - Chao Xie
- Department
of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road,
Hong Kong SAR, China
| | - Rui Hou
- Department
of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road,
Hong Kong SAR, China
- Laboratory
for Synthetic Chemistry and Chemical Biology Limited, Health@InnoHK,
Innovation and Technology Commission, Units 1503-1511, 15/F., Building 17W, Hong Kong Science and Technology
Parks, New Territories, Hong Kong SAR , China
| | - Yizhou Li
- Chongqing
Key Laboratory of Natural Product Synthesis and Drug Research, School
of Pharmaceutical Sciences; Key Laboratory of Biorheological Science
and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 401331, China
| | - Gang Li
- Institute
of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518118, China
| | - Xiaoyu Li
- Department
of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road,
Hong Kong SAR, China
- Laboratory
for Synthetic Chemistry and Chemical Biology Limited, Health@InnoHK,
Innovation and Technology Commission, Units 1503-1511, 15/F., Building 17W, Hong Kong Science and Technology
Parks, New Territories, Hong Kong SAR , China
| |
Collapse
|
14
|
Huang Y, Li Y, Li X. Strategies for developing DNA-encoded libraries beyond binding assays. Nat Chem 2022; 14:129-140. [PMID: 35121833 DOI: 10.1038/s41557-021-00877-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 12/01/2021] [Indexed: 01/01/2023]
Abstract
DNA-encoded chemical libraries (DELs) have emerged as a powerful technology in drug discovery. The wide adoption of DELs in the pharmaceutical industry and the rapid advancements of DEL-compatible chemistry have further fuelled its development and applications. In general, a DEL has been considered as a massive binding assay to identify physical binders for individual protein targets. However, recent innovations demonstrate the capability of DELs to operate in the complex milieu of biological systems. In this Perspective, we discuss the recent progress in using DNA-encoded chemical libraries to interrogate complex biological targets and their potential to identify structures that elicit function or possess other useful properties. Future breakthroughs in these aspects are expected to catapult DEL to become a momentous technology platform not only for drug discovery but also to explore fundamental biology.
Collapse
Affiliation(s)
- Yiran Huang
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong SAR, China
| | - Yizhou Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China. .,Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China.
| | - Xiaoyu Li
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong SAR, China. .,Laboratory for Synthetic Chemistry and Chemical Biology Limited, Health@InnoHK, Innovation and Technology Commission, Hong Kong SAR, China.
| |
Collapse
|
15
|
Gao Y, Sun Y, Fang X, Zhao G, Li X, Zhang G, Li Y, Li Y. Development of on-DNA vinyl sulfone synthesis for DNA-encoded chemical libraries. Org Chem Front 2022. [DOI: 10.1039/d2qo00881e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
We present the development of an efficient synthetic route to generate a DNA-compatible vinyl sulfone functional group, and the subsequent chemical transformations demonstrated the feasibility of our method in DEL construction.
Collapse
Affiliation(s)
- Yuting Gao
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China
| | - Yang Sun
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China
| | - Xianfu Fang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China
| | - Guixian Zhao
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China
| | - Xufeng Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China
| | - Gong Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China
| | - Yangfeng Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China
| | - Yizhou Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, 400044 Chongqing, P. R. China
- Beijing National Laboratory for Molecular Sciences, 100190 Beijing, P. R. China
| |
Collapse
|
16
|
Zhang J, Li X, Wei H, Li Y, Zhang G, Li Y. Sequential DNA-Encoded Building Block Fusion for the Construction of Polysubstituted Pyrazoline Core Libraries. Org Lett 2021; 23:8429-8433. [PMID: 34652930 DOI: 10.1021/acs.orglett.1c03145] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The construction of chemical libraries containing polysubstituted pyrazoline scaffolds is highly desirable for the discovery of novel chemical ligands for biological targets. Herein, we report a sequential DNA-encoded synthesis strategy for polysubstituted pyrazoline heterocycles, which fuses a broad panel of aldehydes, aryl amines, and alkenes as building blocks. Furthermore, mock library synthesis and selection demonstrated the ability of the method to produce DNA-encoded focused libraries with highly functionalized pyrazoline cores.
Collapse
Affiliation(s)
- Juan Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Xianfeng Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Haimei Wei
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Yangfeng Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Gong Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Yizhou Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, P. R. China
| |
Collapse
|