1
|
Li Y, Qu J, Jiang L, Peng X, Wu K, Chen M, Peng Y, Cao X. Application and challenges of nitrogen heterocycles in PROTAC linker. Eur J Med Chem 2024; 273:116520. [PMID: 38788299 DOI: 10.1016/j.ejmech.2024.116520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/07/2024] [Accepted: 05/19/2024] [Indexed: 05/26/2024]
Abstract
The absence of effective active pockets makes traditional molecularly targeted drug strategies ineffective against 80 % of human disease-related proteins. The PROTAC technology effectively makes up for the deficiency of traditional molecular targeted drugs, which produces drug activity by degrading rather than inhibiting the target protein. The degradation of PROTAC is not only affected by POI ligand and E3 ligand, but by the selection of suitable linker which can play an important role in the efficiency and selectivity of the degradation. In the early exploring stage of the PROTAC, flexible chains were priorly applied as the linker of PROTAC. Although PROTAC with flexible chains as linkers sometimes perform well in vitro bioactivity evaluations, the introduction of lipophilic flexible chains reduces the hydrophilicity of these molecules, resulting in generally poor pharmacokinetic characteristics and pharmacological activities in vivo. In addition, recent reports have also shown that some PROTAC with flexible chains have some risks to causing hemolysis in vivo. Therefore, PROTAC with flexible chains show less druggability and large difficulty to entering the clinical trial stage. On the other hand, the application of nitrogen heterocycles in the design of PROTAC linkers has been widely reported in recent years. More and more reports have shown that the introduction of nitrogen heterocycles in the linker not only can effectively improves the metabolism of PROTAC in vivo, but also can enhance the degradation efficiency and selectivity of PROTAC. These PROTAC with nitrogen heterocycle linkers have attracted much attention of pharmaceutical chemists. The introduction of nitrogen heterocycles in the linker deserves priority consideration in the primary design of the PROTAC based on various druggabilities including pharmacokinetic characteristics and pharmacological activity. In this work, we summarized the optimization process and progress of nitrogen heterocyclic rings as the PROTAC linker in recent years. However, there were still limited understanding of how to discover, design and optimize PROTAC. For example, the selection of the types of nitrogen heterocycles and the optimization sites of this linker are challenges for researchers, choosing between four to six-membered nitrogen heterocycles, selecting from saturated to unsaturated ones, and even optimizing the length and extension angle of the linker. There is a truly need for theoretical explanation and elucidation of the PROTAC to guide the developing of more effective and valuable PROTAC.
Collapse
Affiliation(s)
- Yang Li
- Institute of Pharmacy and Pharmacology, Hunan Province, Cooperative Innovation Center for Molecular Target New Drug Study, College of Pharmacy, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Junfeng Qu
- Institute of Pharmacy and Pharmacology, Hunan Province, Cooperative Innovation Center for Molecular Target New Drug Study, College of Pharmacy, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Lizhi Jiang
- Institute of Pharmacy and Pharmacology, Hunan Province, Cooperative Innovation Center for Molecular Target New Drug Study, College of Pharmacy, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Xiaoyu Peng
- Institute of Pharmacy and Pharmacology, Hunan Province, Cooperative Innovation Center for Molecular Target New Drug Study, College of Pharmacy, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Kaiyue Wu
- Department of Pharmacy, Ezhou Central Hospital, Ezhou, Hubei, China
| | - Miaojia Chen
- Department of Pharmacy, The First People's Hospital, Pingjiang, Yueyang, Hunan, China
| | - Yuanyuan Peng
- School of Electrical and Automation Engineering, East China Jiaotong University, Nanchang, 330000, China
| | - Xuan Cao
- Institute of Pharmacy and Pharmacology, Hunan Province, Cooperative Innovation Center for Molecular Target New Drug Study, College of Pharmacy, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| |
Collapse
|
2
|
Yedla P, Babalghith AO, Andra VV, Syed R. PROTACs in the Management of Prostate Cancer. Molecules 2023; 28:molecules28093698. [PMID: 37175108 PMCID: PMC10179857 DOI: 10.3390/molecules28093698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/15/2023] [Accepted: 04/17/2023] [Indexed: 05/15/2023] Open
Abstract
Cancer treatments with targeted therapy have gained immense interest due to their low levels of toxicity and high selectivity. Proteolysis-Targeting Chimeras (PROTACs) have drawn special attention in the development of cancer therapeutics owing to their unique mechanism of action, their ability to target undruggable proteins, and their focused target engagement. PROTACs selectively degrade the target protein through the ubiquitin-proteasome system, which describes a different mode of action compared to conventional small-molecule inhibitors or even antibodies. Among different cancer types, prostate cancer (PC) is the most prevalent non-cutaneous cancer in men. Genetic alterations and the overexpression of several genes, such as FOXA1, AR, PTEN, RB1, TP53, etc., suppress the immune response, resulting in drug resistance to conventional drugs in prostate cancer. Since the progression of ARV-110 (PROTAC for PC) into clinical phases, the focus of research has quickly shifted to protein degraders targeting prostate cancer. The present review highlights an overview of PROTACs in prostate cancer and their superiority over conventional inhibitors. We also delve into the underlying pathophysiology of the disease and explain the structural design and linkerology strategies for PROTAC molecules. Additionally, we touch on the various targets for PROTAC in prostate cancer, including the androgen receptor (AR) and other critical oncoproteins, and discuss the future prospects and challenges in this field.
Collapse
Affiliation(s)
- Poornachandra Yedla
- Department of Pharmacogenomics, Institute of Translational Research, Asian Healthcare Foundation, Asian Institute of Gastroenterology Hospitals, Gachibowli, Hyderabad 500082, India
| | - Ahmed O Babalghith
- Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Vindhya Vasini Andra
- Department of Medical Oncology, Omega Hospitals, Gachibowli, Hyderabad 500032, India
| | - Riyaz Syed
- Department of Chemiinformatics, Centella Scientific, JHUB, Jawaharlal Nehru Technological University, Hyderabad 500085, India
| |
Collapse
|
3
|
Wang C, Zhang Y, Zhang T, Shi L, Geng Z, Xing D. Proteolysis-targeting chimaeras (PROTACs) as pharmacological tools and therapeutic agents: advances and future challenges. J Enzyme Inhib Med Chem 2022; 37:1667-1693. [PMID: 35702041 PMCID: PMC9225776 DOI: 10.1080/14756366.2022.2076675] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Proteolysis-targeting chimaeras (PROTACs) have been developed to be an emerging technology for targeted protein degradation and attracted the favour of academic institutions, large pharmaceutical enterprises, and biotechnology companies. The mechanism is based on the inhibition of protein function by hijacking a ubiquitin E3 ligase for protein degradation. The heterobifunctional PROTACs contain a ligand for recruiting an E3 ligase, a linker, and another ligand to bind with the protein targeted for degradation. To date, PROTACs targeting ∼70 proteins, many of which are clinically validated drug targets, have been successfully developed with several in clinical trials for diseases therapy. In this review, the recent advances in PROTACs against clinically validated drug targets are summarised and the chemical structure, cellular and in vivo activity, pharmacokinetics, and pharmacodynamics of these PROTACs are highlighted. In addition, the potential advantages, challenges, and prospects of PROTACs technology in disease treatment are discussed.
Collapse
Affiliation(s)
- Chao Wang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, China
| | - Yujing Zhang
- The Affiliated Cardiovascular Hospital of Qingdao University, Qingdao University, Qingdao, China.,School of Pharmacy, Qingdao University, Qingdao, China
| | - Tingting Zhang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, China
| | - Lingyu Shi
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, China
| | - Zhongmin Geng
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, China
| | - Dongming Xing
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, China.,School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
4
|
Advances in AR-targeting chimeras: a case study of proteolysis-targeting chimeras from bench to bedside. Future Med Chem 2022; 14:1471-1489. [PMID: 36214138 DOI: 10.4155/fmc-2022-0147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Proteolysis-targeting chimera (PROTAC) is an emerging revolutionary technology that promotes degradation of target proteins by proteolysis. AR-targeting PROTACs marked many milestones in the history of PROTAC development. In this review, the author discusses the development of AR-targeting PROTACs over the last two decades. Also included in this focused review are medicinal chemistry strategies, pharmacokinetic profiles and clinical development. Taking AR targeting PROTACs for case study, this review provides a target specific overview of how PROTAC technology has advanced from a revolutionary concept and achieved proof of concept leading to drug candidates that benefit patients.
Collapse
|
5
|
Avgeris I, Pliatsika D, Nikolaropoulos SS, Fousteris MA. Targeting androgen receptor for prostate cancer therapy: From small molecules to PROTACs. Bioorg Chem 2022; 128:106089. [PMID: 35973305 DOI: 10.1016/j.bioorg.2022.106089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/30/2022] [Accepted: 08/06/2022] [Indexed: 12/13/2022]
Abstract
Prostate cancer (PCa) remains a serious type of cancer for men worldwide. The majority of new PCa cases are associated with androgen receptor (AR) hyperactivity. Various AR-targeting molecules that suppress its activity have been discovered. In this review, we present the already marketed antiandrogens and a selection of structurally and chemically interesting AR-targeting compounds, from a pharmacochemical perspective. Focus has been placed on the applied design approaches, structural evolution and structure-activity relationships of the most prominent compound classes. Passing from the traditional steroidal AR antagonists to the modern AR-targeting proteolysis targeting chimeras (PROTACs), we intend to provide a comprehensive overview on AR-targeting molecules for PCa treatment.
Collapse
Affiliation(s)
- Ioannis Avgeris
- Laboratory of Medicinal Chemistry, Department of Pharmacy, University of Patras, Patras GR-26500, Greece
| | - Dimanthi Pliatsika
- Laboratory of Medicinal Chemistry, Department of Pharmacy, University of Patras, Patras GR-26500, Greece
| | - Sotiris S Nikolaropoulos
- Laboratory of Medicinal Chemistry, Department of Pharmacy, University of Patras, Patras GR-26500, Greece
| | - Manolis A Fousteris
- Laboratory of Medicinal Chemistry, Department of Pharmacy, University of Patras, Patras GR-26500, Greece.
| |
Collapse
|
6
|
He M, Cao C, Ni Z, Liu Y, Song P, Hao S, He Y, Sun X, Rao Y. PROTACs: great opportunities for academia and industry (an update from 2020 to 2021). Signal Transduct Target Ther 2022; 7:181. [PMID: 35680848 PMCID: PMC9178337 DOI: 10.1038/s41392-022-00999-9] [Citation(s) in RCA: 97] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/25/2022] [Accepted: 04/12/2022] [Indexed: 02/07/2023] Open
Abstract
PROteolysis TArgeting Chimeras (PROTACs) technology is a new protein-degradation strategy that has emerged in recent years. It uses bifunctional small molecules to induce the ubiquitination and degradation of target proteins through the ubiquitin-proteasome system. PROTACs can not only be used as potential clinical treatments for diseases such as cancer, immune disorders, viral infections, and neurodegenerative diseases, but also provide unique chemical knockdown tools for biological research in a catalytic, reversible, and rapid manner. In 2019, our group published a review article "PROTACs: great opportunities for academia and industry" in the journal, summarizing the representative compounds of PROTACs reported before the end of 2019. In the past 2 years, the entire field of protein degradation has experienced rapid development, including not only a large increase in the number of research papers on protein-degradation technology but also a rapid increase in the number of small-molecule degraders that have entered the clinical and will enter the clinical stage. In addition to PROTAC and molecular glue technology, other new degradation technologies are also developing rapidly. In this article, we mainly summarize and review the representative PROTACs of related targets published in 2020-2021 to present to researchers the exciting developments in the field of protein degradation. The problems that need to be solved in this field will also be briefly introduced.
Collapse
Affiliation(s)
- Ming He
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, 100084, Beijing, P. R. China
| | - Chaoguo Cao
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, 100084, Beijing, P. R. China
- Tsinghua-Peking Center for Life Sciences, 100084, Beijing, P. R. China
| | - Zhihao Ni
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, 100084, Beijing, P. R. China
| | - Yongbo Liu
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, 100084, Beijing, P. R. China
| | - Peilu Song
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, 100084, Beijing, P. R. China
| | - Shuang Hao
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, 100084, Beijing, P. R. China
| | - Yuna He
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, 100084, Beijing, P. R. China
| | - Xiuyun Sun
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, 100084, Beijing, P. R. China
| | - Yu Rao
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, 100084, Beijing, P. R. China.
- School of Pharmaceutical Sciences, Zhengzhou University, 450001, Zhengzhou, China.
| |
Collapse
|
7
|
Xie K, Tan K, Naylor MJ. Transcription Factors as Novel Therapeutic Targets and Drivers of Prostate Cancer Progression. Front Oncol 2022; 12:854151. [PMID: 35547880 PMCID: PMC9082354 DOI: 10.3389/fonc.2022.854151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/23/2022] [Indexed: 11/24/2022] Open
Abstract
Prostate cancer is the second most diagnosed cancer among men worldwide. Androgen deprivation therapy, the most common targeted therapeutic option, is circumvented as prostate cancer progresses from androgen dependent to castrate-resistant disease. Whilst the nuclear receptor transcription factor, androgen receptor, drives the growth of prostate tumor during initial stage of the disease, androgen resistance is associated with poorly differentiated prostate cancer. In the recent years, increased research has highlighted the aberrant transcriptional activities of a small number of transcription factors. Along with androgen receptors, dysregulation of these transcription factors contributes to both the poorly differentiated phenotypes of prostate cancer cells and the initiation and progression of prostate carcinoma. As master regulators of cell fate decisions, these transcription factors may provide opportunity for the development of novel therapeutic targets for the management of prostate cancer. Whilst some transcriptional regulators have previously been notoriously difficult to directly target, technological advances offer potential for the indirect therapeutic targeting of these transcription factors and the capacity to reprogram cancer cell phenotype. This mini review will discuss how recent advances in our understanding of transcriptional regulators and material science pave the way to utilize these regulatory molecules as therapeutic targets in prostate cancer.
Collapse
Affiliation(s)
- Kangzhe Xie
- Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine & Health, University of Sydney, Sydney, NSW, Australia
| | - Keely Tan
- Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine & Health, University of Sydney, Sydney, NSW, Australia
| | - Matthew J Naylor
- Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine & Health, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
8
|
Huang J, Lin B, Li B. Anti-Androgen Receptor Therapies in Prostate Cancer: A Brief Update and Perspective. Front Oncol 2022; 12:865350. [PMID: 35372068 PMCID: PMC8965587 DOI: 10.3389/fonc.2022.865350] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 02/17/2022] [Indexed: 12/28/2022] Open
Abstract
Prostate cancer is a major health issue in western countries and is the second leading cause of cancer death in American men. Prostate cancer depends on the androgen receptor (AR), a transcriptional factor critical for prostate cancer growth and progression. Castration by surgery or medical treatment reduces androgen levels, resulting in prostatic atrophy and prostate cancer regression. Thus, metastatic prostate cancers are initially managed with androgen deprivation therapy. Unfortunately, prostate cancers rapidly relapse after castration therapy and progress to a disease stage called castration-resistant prostate cancer (CRPC). Currently, clinical treatment for CRPCs is focused on suppressing AR activity with antagonists like Enzalutamide or by reducing androgen production with Abiraterone. In clinical practice, these treatments fail to yield a curative benefit in CRPC patients in part due to AR gene mutations or splicing variations, resulting in AR reactivation. It is conceivable that eliminating the AR protein in prostate cancer cells is a promising solution to provide a potential curative outcome. Multiple strategies have emerged, and several potent agents that reduce AR protein levels were reported to eliminate xenograft tumor growth in preclinical models via distinct mechanisms, including proteasome-mediated degradation, heat-shock protein inhibition, AR splicing suppression, blockage of AR nuclear localization, AR N-terminal suppression. A few small chemical compounds are undergoing clinical trials combined with existing AR antagonists. AR protein elimination by enhanced protein or mRNA degradation is a realistic solution for avoiding AR reactivation during androgen deprivation therapy in prostate cancers.
Collapse
Affiliation(s)
- Jian Huang
- Pathological Diagnosis and Research Center, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Biyun Lin
- Pathological Diagnosis and Research Center, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Benyi Li
- Department of Urology, The University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
9
|
Hati S, Zallocchi M, Hazlitt R, Li Y, Vijayakumar S, Min J, Rankovic Z, Lovas S, Zuo J. AZD5438-PROTAC: A selective CDK2 degrader that protects against cisplatin- and noise-induced hearing loss. Eur J Med Chem 2021; 226:113849. [PMID: 34560429 PMCID: PMC8608744 DOI: 10.1016/j.ejmech.2021.113849] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 11/20/2022]
Abstract
Cyclin-dependent kinase 2 (CDK2) is a potential therapeutic target for the treatment of hearing loss and cancer. Previously, we identified AZD5438 and AT7519-7 as potent inhibitors of CDK2, however, they also targeted additional kinases, leading to unwanted toxicities. Proteolysis Targeting Chimeras (PROTACs) are a new promising class of small molecules that can effectively direct specific proteins to proteasomal degradation. Herein we report the design, synthesis, and characterization of PROTACs of AT7519-7 and AZD5438 and the identification of PROTAC-8, an AZD5438-PROTAC, that exhibits selective, partial CDK2 degradation. Furthermore, PROTAC-8 protects against cisplatin ototoxicity and kainic acid excitotoxicity in zebrafish. Molecular dynamics simulations reveal the structural requirements for CDK2 degradation. Together, PROTAC-8 is among the first-in-class PROTACs with in vivo therapeutic activities and represents a new lead compound that can be further developed for better efficacy and selectivity for CDK2 degradation against hearing loss and cancer.
Collapse
Affiliation(s)
- Santanu Hati
- Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, NE, 68178, USA
| | - Marisa Zallocchi
- Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, NE, 68178, USA
| | - Robert Hazlitt
- Department of Chemical Biology & Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Yuju Li
- Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, NE, 68178, USA
| | - Sarath Vijayakumar
- Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, NE, 68178, USA
| | - Jaeki Min
- Department of Chemical Biology & Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Zoran Rankovic
- Department of Chemical Biology & Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Sándor Lovas
- Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, NE, 68178, USA
| | - Jian Zuo
- Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, NE, 68178, USA.
| |
Collapse
|