1
|
Ali BS, Mohammed AF, Kariuki BM, El-Awady R, H M Abdu-Allah H. Tetrahydrocarbazoles incorporating 5-arylidene-4-thiazolinones as potential antileukemia and antilymphoma targeting tyrosine kinase and tubulin polymerase enzymes: Design, synthesis, structural, biological and molecular docking studies. Bioorg Chem 2024; 153:107817. [PMID: 39278066 DOI: 10.1016/j.bioorg.2024.107817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/23/2024] [Accepted: 09/08/2024] [Indexed: 09/17/2024]
Abstract
Finding effective and selective anticancer agents is a top medical priority due to high clinical treatment demand. However, current anticancer agents have serious side effects and resistance development remains a big concern. This creates an urgent need for new multitarget drugs that could solve these problems. Tetrahydrocarbazoles and 5-arylidene-4-thiazolinones have always attracted researchers for their multifaced anticancer activities and the possibility to be easily derivatized. Thereby, herein we report the combination of the two scaffolds to provide compounds 9a-j and 10a-j that were fully characterized and their tautomeric form was confirmed by crystal structure. 9a-j and 10a-j wereassessedfor invitro antiproliferative activityusing SRB assay against a panel of seven human cancer cell lines with doxorubicin as the standard. The results revealed that the cell lines derived from leukemia (Jurkat) and lymphoma (U937) are the most sensitive. Compounds 9d, 10e, 10g, and 10f revealed the highest potency (IC50 = 3.11-11.89 μM) with much lower effects on normal lymphocytes cell line (IC50 > 50 µM). The results show that modifications at 6th position of the THC and the nature of the substituent at the arylidene moiety affect the activity. To exploit the mode of action, 9d, 10e, 10f, and 10g were evaluated as VEGFR-2 and EGFR inhibitors. 10e is the most potent (IC50 0.26 and 0.14 μM) against both enzymes. It also induced G0-G1-phase cell cycle arrest and apoptosis. While 10g exhibited higher potency (IC50 9.95 μM) than vincristine (IC50 15.63 μM) against tubulin. A molecular docking study was carried out to understand the interactions between 10e, 10g and their targets. This study reveals 10e and 10g as possible candidates for developing multitarget anticancer agents against leukemia and lymphoma.
Collapse
Affiliation(s)
- Basma S Ali
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Anber F Mohammed
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | | | - Raafat El-Awady
- Research Institute for Medical and Health Sciences and College of Pharmacy, University of sharjah, Sharjah 27272, United Arab Emirates
| | - Hajjaj H M Abdu-Allah
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt.
| |
Collapse
|
2
|
Singh A, Singh K, Sharma A, Kaur U, Kaur K, Mohinder Singh Bedi P. Recent Developments in 1,2,3-Triazole Based α-Glucosidase Inhibitors: Design Strategies, Structure-Activity Relationship and Mechanistic Insights. Chem Biodivers 2024; 21:e202401109. [PMID: 38951966 DOI: 10.1002/cbdv.202401109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/29/2024] [Accepted: 07/01/2024] [Indexed: 07/03/2024]
Abstract
Diabetes mellitus is a chronic and most prevalent metabolic disorder affecting 422 million the people worldwide and causing life-threatening associated conditions including disorders of kidney, heart, and nervous system as well as leg amputation and retinopathy. Steadily rising cases from the last few decades suggest the failure of currently available drugs in containment of this disease. α-Glucosidase is a potential target for effectively tackling this disease and attracting significant interest from medicinal chemists around the globe. Besides having a set of side effects, currently available α-glucosidase inhibitors (carbohydrate mimics) offer better tolerability, safety, and synergistic pharmacological outcomes with other antidiabetic drugs therefore medicinal chemists have working extensively over last three decades for developing alternative α-glucosidase inhibitors. The 1,2,3-Triazole nucleus is energetically used by various research groups around the globe for the development of α-glucosidase inhibitors posing it as an optimum scaffold in the field of antidiabetic drug development. This review is a systematic analysis of α-glucosidase inhibitors developed by employing 1,2,3-triazole scaffold with special focus on design strategies, structure-activity relationships, and mechanism of inhibitory effect. This article will act as lantern for medicinal chemists in developing of potent, safer, and effective α-glucosidase inhibitors with desired properties and improved therapeutic efficacy.
Collapse
Affiliation(s)
- Atamjit Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Karanvir Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Aman Sharma
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Uttam Kaur
- University School of Business Management, Chandigarh University, Gharuan, 140413, India
| | - Kamaljit Kaur
- Hershey Dental Group, Hershey, Pennsylvania, 17033, USA
| | - Preet Mohinder Singh Bedi
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
- Drug and Pollution testing Laboratory, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| |
Collapse
|
3
|
Sciacca C, Cardullo N, Pulvirenti L, Travagliante G, D'Urso A, D'Agata R, Peri E, Cancemi P, Cornu A, Deffieux D, Pouységu L, Quideau S, Muccilli V. Synthesis of obovatol and related neolignan analogues as α-glucosidase and α-amylase inhibitors. Bioorg Chem 2024; 147:107392. [PMID: 38723423 DOI: 10.1016/j.bioorg.2024.107392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/12/2024] [Accepted: 04/21/2024] [Indexed: 05/18/2024]
Abstract
Diabetes mellitus is a metabolic disease characterized by hyperglycemia, which can be counteracted by the inhibition of α-glucosidase (α-Glu) and α-amylase (α-Amy), enzymes responsible for the hydrolysis of carbohydrates. In recent decades, many natural compounds and their bioinspired analogues have been studied as α-Glu and α-Amy inhibitors. However, no studies have been devoted to the evaluation of α-Glu and α-Amy inhibition by the neolignan obovatol (1). In this work, we report the synthesis of 1 and a library of new analogues. The synthesis of these compounds was achieved by implementing methodologies based on: phenol allylation, Claisen/Cope rearrangements, methylation, Ullmann coupling, demethylation, phenol oxidation and Michael-type addition. Obovatol (1) and ten analogues were evaluated for their in vitro inhibitory activity towards α-Glu and α-Amy. Our investigation highlighted that the naturally occurring 1 and four neolignan analogues (11, 22, 26 and 27) were more effective inhibitors than the hypoglycemic drug acarbose (α-Amy: 34.6 µM; α-Glu: 248.3 µM) with IC5O value of 6.2-23.6 µM toward α-Amy and 39.8-124.6 µM toward α-Glu. Docking investigations validated the inhibition outcomes, highlighting optimal compatibility between synthesized neolignans and both the enzymes. Concurrently circular dichroism spectroscopy detected the conformational changes in α-Glu induced by its interaction with the studied neolignans. Detailed studies through fluorescence measurements and kinetics of α-Glu and α-Amy inhibition also indicated that 1, 11, 22, 26 and 27 have the greatest affinity for α-Glu and 1, 11 and 27 for α-Amy. Surface plasmon resonance imaging (SPRI) measurements confirmed that among the compounds studied, the neolignan 27 has the greater affinity for both enzymes, thus corroborating the results obtained by kinetics and fluorescence quenching. Finally, in vitro cytotoxicity of the investigated compounds was tested on human colon cancer cell line (HCT-116). All these results demonstrate that these obovatol-based neolignan analogues constitute promising candidates in the pursuit of developing novel hypoglycemic drugs.
Collapse
Affiliation(s)
- Claudia Sciacca
- Department of Chemical Sciences, University of Catania, V.le A. Doria 6, 95125 Catania, Italy
| | - Nunzio Cardullo
- Department of Chemical Sciences, University of Catania, V.le A. Doria 6, 95125 Catania, Italy
| | - Luana Pulvirenti
- CNR-ICB, Consiglio Nazionale delle Ricerche-Istituto di Chimica Biomolecolare, via Paolo Gaifami 18, Catania 95126, Italy
| | - Gabriele Travagliante
- Department of Chemical Sciences, University of Catania, V.le A. Doria 6, 95125 Catania, Italy
| | - Alessandro D'Urso
- Department of Chemical Sciences, University of Catania, V.le A. Doria 6, 95125 Catania, Italy
| | - Roberta D'Agata
- Department of Chemical Sciences, University of Catania, V.le A. Doria 6, 95125 Catania, Italy
| | - Emanuela Peri
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo 90128, Italy
| | - Patrizia Cancemi
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo 90128, Italy
| | - Anaëlle Cornu
- Univ. Bordeaux, ISM (CNRS-UMR 5255), 351 cours de la Libération, Talence Cedex, France
| | - Denis Deffieux
- Univ. Bordeaux, ISM (CNRS-UMR 5255), 351 cours de la Libération, Talence Cedex, France
| | - Laurent Pouységu
- Univ. Bordeaux, ISM (CNRS-UMR 5255), 351 cours de la Libération, Talence Cedex, France
| | - Stéphane Quideau
- Univ. Bordeaux, ISM (CNRS-UMR 5255), 351 cours de la Libération, Talence Cedex, France; Institut Universitaire de France, 1 rue Descartes, 75231 Paris Cedex 05, France.
| | - Vera Muccilli
- Department of Chemical Sciences, University of Catania, V.le A. Doria 6, 95125 Catania, Italy.
| |
Collapse
|
4
|
Chen NY, Li CP, Huang HF. Synthesis, antitumor evaluation and computational study of thiazolidinone derivatives of dehydroabietic acid-based B ring-fused-thiazole. Mol Divers 2024; 28:875-888. [PMID: 36862356 DOI: 10.1007/s11030-023-10626-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/21/2023] [Indexed: 03/03/2023]
Abstract
In an attempt to search for new natural product-based antitumor agents, a series of novel thiazolidinone derivatives of dehydroabietic acid-based B ring-fused-thiazole were designed and synthesized. The primary antitumor tests showed that compounds 5 m exhibited almost the best inhibitory activity against the tested cancer cells. The computational study suggested NOTCH1, IGF1R, TLR4, and KDR were the core targets of the title compounds, and the IC50 of SCC9 and Cal27 is strong correlation with the binding ability of TLR4 and compounds.
Collapse
Affiliation(s)
- Nai-Yuan Chen
- School of Public Health, Guangxi Medical University, Nanning, 530021, China.
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, 530021, China.
| | - Cui-Ping Li
- Key Laboratory of Research and Application of Stomatological Equipment, School of Stomatology/Hospital of Stomatology, Guangxi Medical University, Nanning, 530021, China.
| | - Hong-Fei Huang
- XI DA Testing Co., Ltd. of GuangXi, Nanning, 530007, China
| |
Collapse
|
5
|
Salama EE, Youssef MF, Aboelmagd A, Boraei ATA, Nafie MS, Haukka M, Barakat A, Sarhan AAM. Discovery of Potent Indolyl-Hydrazones as Kinase Inhibitors for Breast Cancer: Synthesis, X-ray Single-Crystal Analysis, and In Vitro and In Vivo Anti-Cancer Activity Evaluation. Pharmaceuticals (Basel) 2023; 16:1724. [PMID: 38139850 PMCID: PMC10748079 DOI: 10.3390/ph16121724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/02/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
According to data provided by the World Health Organization (WHO), a total of 2.3 million women across the globe received a diagnosis of breast cancer in the year 2020, and among these cases, 685,000 resulted in fatalities. As the incidence of breast cancer statistics continues to rise, it is imperative to explore new avenues in the ongoing battle against this disease. Therefore, a number of new indolyl-hydrazones were synthesized by reacting the ethyl 3-formyl-1H-indole-2-carboxylate 1 with thiosemicarbazide, semicarbazide.HCl, 4-nitrophenyl hydrazine, 2,4-dinitrophenyl hydrazine, and 4-amino-5-(1H-indol-2-yl)-1,2,4-triazole-3-thione to afford the new hit compounds, which were assigned chemical structures as thiosemicarbazone 3, bis(hydrazine derivative) 5, semicarbzone 6, Schiff base 8, and the corresponding hydrazones 10 and 12 by NMR, elemental analysis, and X-ray single-crystal analysis. The MTT assay was employed to investigate the compounds' cytotoxicity against breast cancer cells (MCF-7). Cytotoxicity results disclosed potent IC50 values against MCF-7, especially compounds 5, 8, and 12, with IC50 values of 2.73 ± 0.14, 4.38 ± 0.23, and 7.03 ± 0.37 μM, respectively, compared to staurosproine (IC50 = 8.32 ± 0.43 μM). Consequently, the activities of compounds 5, 8, and 12 in relation to cell migration were investigated using the wound-healing test. The findings revealed notable wound-healing efficacy, with respective percentages of wound closure measured at 48.8%, 60.7%, and 51.8%. The impact of the hit compounds on cell proliferation was assessed by examining their apoptosis-inducing properties. Intriguingly, compound 5 exhibited a significant enhancement in cell death within MCF-7 cells, registering a notable increase of 39.26% in comparison to the untreated control group, which demonstrated only 1.27% cell death. Furthermore, the mechanism of action of compound 5 was scrutinized through testing against kinase receptors. The results revealed significant kinase inhibition, particularly against PI3K-α, PI3K-β, PI3K-δ, CDK2, AKT-1, and EGFR, showcasing promising activity, compared to standard drugs targeting these receptors. In the conclusive phase, through in vivo assay, compound 5 demonstrated a substantial reduction in tumor volume, decreasing from 106 mm³ in the untreated control to 56.4 mm³. Moreover, it significantly attenuated tumor proliferation by 46.9%. In view of these findings, the identified leads exhibit promises for potential development into future medications for the treatment of breast cancer, as they effectively hinder both cell migration and proliferation.
Collapse
Affiliation(s)
- Eid E. Salama
- Department of Chemistry, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt; (M.F.Y.); (A.A.); or (A.T.A.B.); (M.S.N.)
| | - Mohamed F. Youssef
- Department of Chemistry, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt; (M.F.Y.); (A.A.); or (A.T.A.B.); (M.S.N.)
| | - Ahmed Aboelmagd
- Department of Chemistry, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt; (M.F.Y.); (A.A.); or (A.T.A.B.); (M.S.N.)
| | - Ahmed T. A. Boraei
- Department of Chemistry, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt; (M.F.Y.); (A.A.); or (A.T.A.B.); (M.S.N.)
| | - Mohamed S. Nafie
- Department of Chemistry, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt; (M.F.Y.); (A.A.); or (A.T.A.B.); (M.S.N.)
- Department of Chemistry, College of Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
| | - Matti Haukka
- Department of Chemistry, University of Jyväskylä, P.O. Box 35, FI-40014 Jyväskylä, Finland;
| | - Assem Barakat
- Chemistry Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Ahmed A. M. Sarhan
- Chemistry Department, Faculty of Science, Arish University, Al-Arish 45511, Egypt; or
| |
Collapse
|
6
|
Wang R, Huang R, Yuan Y, Wang Z, Shen K. The anti-breast cancer potential of indole/isatin hybrids. Arch Pharm (Weinheim) 2023; 356:e2300402. [PMID: 37650315 DOI: 10.1002/ardp.202300402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 09/01/2023]
Abstract
Breast cancer (BC) is one of the most prevalent malignancies and the major contributor to cancer mortality in women globally, with a high degree of heterogeneity and a dismal prognosis. As drug resistance is responsible for most BC fatalities and advanced BC is currently considered incurable, finding innovative anti-BC chemotherapeutics is urgently required. Indole and its analog isatin (indole-1H-2,3-dione) are prominent pharmacophores in the development of novel medications, and their derivatives exhibit strong anticancer activities, also against BC. In particular, indole/isatin hybrids exhibit significant potency against BC including multidrug-resistant forms and excellent selectivity by influencing a variety of biological targets associated with the disease, supplying helpful building blocks for the identification of potential new BC treatment options. This review includes articles from 2020 to the present and provides insights into the in vitro and in vivo anti-BC potential, molecular mechanisms, and structure-activity relationships (SARs) of indole/isatin hybrids that may be helpful in the development of innovative anti-BC chemotherapeutics.
Collapse
Affiliation(s)
- Ruo Wang
- Department of General Surgery, Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Renhong Huang
- Department of General Surgery, Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yaofeng Yuan
- Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), Department of Chemistry, Fuzhou University, Fuzhou, China
| | - Zheng Wang
- Department of General Surgery, Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kunwei Shen
- Department of General Surgery, Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
7
|
Magdy Eldaly S, Salama Zakaria D, Hanafy Metwally N. Design, Synthesis, Anticancer Evaluation and Molecular Modeling Studies of New Thiazolidinone-Benzoate Scaffold as EGFR Inhibitors, Cell Cycle Interruption and Apoptosis Inducers in HepG2. Chem Biodivers 2023; 20:e202300138. [PMID: 37695095 DOI: 10.1002/cbdv.202300138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 08/02/2023] [Indexed: 09/12/2023]
Abstract
Synthesis of new anticancer candidates with protein kinases inhibitory potency is a major goal of pharmaceutical science and synthetic research. This current work represents the synthesis of a series of substituted benzoate-thiazolidinones. Most prepared thiazolidinones were evaluated in vitro for their potential anticancer activity against three cell lines by MTT assay, and they found to be more effective against cancer cell lines with no harm toward normal cells. Thiazolidinones 5 c and 5 h were further evaluated to be kinase inhibitors against EGFR showing effective inhibitory impact (with IC50 value; 0.2±0.009 and 0.098±0.004 μM, for 5 c and 5 h, respectively). Furthermore, 5 c and 5 h have effects on cell cycle and apoptosis induction capability in HepG2 cell lines by DNA-flow cytometry analysis and annexin V-FITC apoptosis assay, respectively. The results showed that they have effect of disrupting the cell cycle and causing cell mortality by apoptosis in the treated cells. Moreover, molecular docking studies showed better binding patterns for 5 c and 5 h with the active site of the epidermal growth factor receptor (EGFR) protein kinase (PDB code 1M17). Finally, toxicity risk and physicochemical characterization by Osiris method was performed on most of the compounds, revealing excellent properties as possible drugs.
Collapse
Affiliation(s)
- Salwa Magdy Eldaly
- Department of Chemistry, Faculty of Science, Cairo University, 12613, Giza, Egypt
| | - Dalia Salama Zakaria
- Department of Chemistry, Faculty of Science, Cairo University, 12613, Giza, Egypt
| | | |
Collapse
|
8
|
Soni JP, Chilvery S, Sharma A, Reddy GN, Godugu C, Shankaraiah N. Design, synthesis and in vitro cytotoxicity evaluation of indolo-pyrazoles grafted with thiazolidinone as tubulin polymerization inhibitors. RSC Med Chem 2023; 14:549-562. [PMID: 36970141 PMCID: PMC10033828 DOI: 10.1039/d2md00442a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
In the pursuit of potential and effective chemotherapeutic agents, a series of 2-((3-(indol-3-yl)-pyrazol-5-yl)imino)thiazolidin-4-ones was designed and synthesized, conjoining salient pharmacophoric properties for directing prominent cytotoxicity. The in vitro cytotoxicity evaluation revealed potent compounds with IC50 values <10 μM on tested human cancer cell lines. Compound 6c exhibited the highest cytotoxicity with an IC50 value of 3.46 μM against melanoma cancer cells (SK-MEL-28) and was highly cytospecific and selective towards cancer cells. The traditional apoptosis assays revealed morphological and nuclear alterations such as apoptotic body formation, condensed/horseshoe-shaped/fragmented/blebbing nuclei, and the generation of ROS. Flow cytometric analysis revealed effective early-stage apoptosis induction and cell-cycle arrest in the G2/M phase. In addition, the enzyme-based effect of 6c on tubulin showed the inhibition of tubulin polymerization (about 60% inhibition, IC50 was <1.73 μM). Moreover, molecular modeling studies affirmed the constant accommodation of compound 6c at the active pocket of tubulin, establishing many electrostatic and hydrophobic interactions with the active pocket's residues. The tubulin-6c complex was stable during the MD simulation for 50 ns with the recommended range of RMSD value (2-4 Å) for each pose.
Collapse
Affiliation(s)
- Jay Prakash Soni
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) Balanagar Hyderabad 500036 India
| | - Shrilekha Chilvery
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) Balanagar Hyderabad 500036 India
| | - Anamika Sharma
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) Balanagar Hyderabad 500036 India
| | - G Nikitha Reddy
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) Balanagar Hyderabad 500036 India
| | - Chandraiah Godugu
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) Balanagar Hyderabad 500036 India
| | - Nagula Shankaraiah
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) Balanagar Hyderabad 500036 India
| |
Collapse
|
9
|
Biologically Oriented Hybrids of Indole and Hydantoin Derivatives. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020602. [PMID: 36677661 PMCID: PMC9866919 DOI: 10.3390/molecules28020602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/23/2022] [Accepted: 12/29/2022] [Indexed: 01/11/2023]
Abstract
Indoles and hydantoins are important heterocycles scaffolds which present in numerous bioactive compounds which possess various biological activities. Moreover, they are essential building blocks in organic synthesis, particularly for the preparation of important hybrid molecules. The series of hybrid compounds containing indoles and imidazolidin-2-one moiety with direct C-C bond were synthesized using an amidoalkylation one-pot reaction. All compounds were investigated as a growth regulator for germination, growth and development of wheat seeds (Triticum aestivum L). Their effect on drought resistance at very low concentrations (4 × 10-5 M) was evaluated. The study highlighted identified the leading compounds, 3a and 3e, with higher growth-regulating activity than the indole-auxin analogues.
Collapse
|
10
|
Upadhyay R, Khalifa Z, Patel D, Patel AB. Rhodanine‐Incorporated Indole Derivatives as Pharmacologically Vital Hybrids. ChemistrySelect 2022. [DOI: 10.1002/slct.202203896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Rachana Upadhyay
- Department of Chemistry Government College Daman (Affiliated to Veer Narmad South Gujarat University Surat Daman (U.T.) 396210 India
| | - Zebabanu Khalifa
- Department of Chemistry Government College Daman (Affiliated to Veer Narmad South Gujarat University Surat Daman (U.T.) 396210 India
| | - Divyesh Patel
- Department of Chemistry Faculty of Science The Maharaja Sayajirao University of Baroda Vadodara 390002 India
| | - Amit B. Patel
- Department of Chemistry Government College Daman (Affiliated to Veer Narmad South Gujarat University Surat Daman (U.T.) 396210 India
| |
Collapse
|
11
|
El-Rayyes A, Soliman AM, Saeed A. Synthesis and Anticancer Evaluation of New Thiazole and Thiadiazole Derivatives Bearing Acetanilide Moiety. RUSS J GEN CHEM+ 2022; 92:2132-2144. [PMID: 36408422 PMCID: PMC9643967 DOI: 10.1134/s1070363222100267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 07/30/2022] [Accepted: 08/02/2022] [Indexed: 09/08/2024]
Abstract
New thiazole and thiadiazole derivatives bound to the acetanilide moiety were synthesized and evaluated for their cytotoxic activity. The precursor N-(4-acetamidophenyl)-N'-phenylthiourea (2) was cyclocondensed with ethyl bromoacetate to afford a mixture of the two isomers, 2-(4-acetamidophenylimino)-3-phenylthiazolidin-4-one (3a, 23%) and 3-(4-acetamidophenyl)-2-phenyliminothiazolidin-4-one (3b, 71%). The Knoevenagel reaction of 3b with various aromatic aldehydes afforded 5-arylidene-2-phenyliminothiazolidin-4-one derivatives 5a-5e. Intramolecular cyclization of thiourea scaffold 2 with chloroacetone and/or phenacyl chloride gave the conforming thiazole derivatives 6a and 6b. A new series of thiadiazole derivatives 9a-9c and 11a-11c was synthesized by the reaction of N-(4-acetamidophenyl)-N'-phenylthiourea (2) with selected derivatives of hydrazonoyl halide in ethanol and triethylamine. The structures of the synthesized thiazole and thiadiazole compounds were elucidated by their compatible spectral data. The cytotoxic activity of the synthesized thiazole and thiadiazole derivatives was screened against four human cancer cell lines and showed promising results. Thiazolidin-4-one compound 5d showed the strongest cytotoxic effects on hepatocellular carcinoma (IC50 = 8.80 ± 0.31 μg/mL), mammary gland breast cancer (IC50 = 7.22 ± 0.65 μg/mL) and colorectal carcinoma (IC50 = 9.35 ± 0.61 μg/mL) cell lines.
Collapse
Affiliation(s)
- Ali El-Rayyes
- Chemistry Department, Faculty of Science, Northern Border University, 1321 Arar, Saudi Arabia
| | - Ahbarah M. Soliman
- Department of Chemistry, Faculty of Science, 919 Omar Al-Mukhtar University, Libya
| | - Ali Saeed
- Department of Chemistry, Faculty of Science, Mansoura University, 35516 Mansoura, Egypt
- Department of Chemistry, Faculty of Science, Sa’adah University, 71333 Sa’adah, Yemen
| |
Collapse
|
12
|
Roszczenko P, Holota S, Szewczyk OK, Dudchak R, Bielawski K, Bielawska A, Lesyk R. 4-Thiazolidinone-Bearing Hybrid Molecules in Anticancer Drug Design. Int J Mol Sci 2022; 23:13135. [PMID: 36361924 PMCID: PMC9654980 DOI: 10.3390/ijms232113135] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 08/16/2023] Open
Abstract
Oncological diseases have currently reached an epidemic scale, especially in industrialized countries. Such a situation has prompted complex studies in medicinal chemistry focused on the research and development of novel effective anticancer drugs. In this review, the data concerning new 4-thiazolidinone-bearing hybrid molecules with potential anticancer activity reported during the period from the years 2017-2022 are summarized. The main emphasis is on the application of molecular hybridization methodologies and strategies in the design of small molecules as anticancer agents. Based on the analyzed data, it was observed that the main directions in this field are the hybridization of scaffolds, the hybrid-pharmacophore approach, and the analogue-based drug design of 4-thiazolidinone cores with early approved drugs, natural compounds, and privileged heterocyclic scaffolds. The mentioned design approaches are effective tools/sources for the generation of hit/lead compounds with anticancer activity and will be relevant to future studies.
Collapse
Affiliation(s)
- Piotr Roszczenko
- Department of Biotechnology, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland
| | - Serhii Holota
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, 79010 Lviv, Ukraine
| | - Olga Klaudia Szewczyk
- Department of Synthesis and Technology of Drugs, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland
| | - Rostyslav Dudchak
- Department of Synthesis and Technology of Drugs, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland
| | - Krzysztof Bielawski
- Department of Synthesis and Technology of Drugs, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland
| | - Anna Bielawska
- Department of Biotechnology, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland
| | - Roman Lesyk
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, 79010 Lviv, Ukraine
| |
Collapse
|
13
|
Ivasechko I, Yushyn I, Roszczenko P, Senkiv J, Finiuk N, Lesyk D, Holota S, Czarnomysy R, Klyuchivska O, Khyluk D, Kashchak N, Gzella A, Bielawski K, Bielawska A, Stoika R, Lesyk R. Development of Novel Pyridine-Thiazole Hybrid Molecules as Potential Anticancer Agents. Molecules 2022; 27:molecules27196219. [PMID: 36234755 PMCID: PMC9570594 DOI: 10.3390/molecules27196219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/14/2022] [Accepted: 09/19/2022] [Indexed: 11/17/2022] Open
Abstract
Novel pyridine-thiazole hybrid molecules were synthesized and subjected to physico-chemical characterization and screening of their cytotoxic action towards a panel of cell lines derived from different types of tumors (carcinomas of colon, breast, and lung, glioblastoma and leukemia), and normal human keratinocytes, for comparison. High antiproliferative activity of the 3-(2-fluorophenyl)-1-[4-methyl-2-(pyridin-2-ylamino)-thiazol-5-yl]-propenone 3 and 4-(2-{1-(2-fluorophenyl)-3-[4-methyl-2-(pyridin-2-ylamino)-thiazol-5-yl]-3-oxopropylsulfanyl}-acetylamino)-benzoic acid ethyl ester 4 was revealed. The IC50 of the compound 3 in HL-60 cells of the acute human promyelocytic leukemia was 0.57 µM, while in the pseudo-normal human cell lines, the IC50 of this compound was >50 µM, which suggests that the compounds 3 and 4 might be perspective anticancer agents. The detected selectivity of the derivatives 3 and 4 for cancer cell lines inspired us to study the mechanisms of their cytotoxic action. It was shown that preincubation of tumor cells with Fluzaparib (inhibitor of PARP1) reduced the cytotoxic activity of the derivatives 3 and 4 by more than twice. The ability of these compounds to affect DNA nativity and cause changes in nucleus morphology allows for the suggestion that the mechanism of action of the novel pyridine-thiazole derivatives might be related to inducing the genetic instability in tumor cells.
Collapse
Affiliation(s)
- Iryna Ivasechko
- Institute of Cell Biology of National Academy of Sciences of Ukraine, 14/16 Drahomanov Str., 79005 Lviv, Ukraine
| | - Ihor Yushyn
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, 79010 Lviv, Ukraine
| | - Piotr Roszczenko
- Department of Biotechnology, Faculty of Pharmacy, Medical University of Bialystok, 15-089 Bialystok, Poland
| | - Julia Senkiv
- Institute of Cell Biology of National Academy of Sciences of Ukraine, 14/16 Drahomanov Str., 79005 Lviv, Ukraine
| | - Nataliya Finiuk
- Institute of Cell Biology of National Academy of Sciences of Ukraine, 14/16 Drahomanov Str., 79005 Lviv, Ukraine
| | - Danylo Lesyk
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, 79010 Lviv, Ukraine
| | - Serhii Holota
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, 79010 Lviv, Ukraine
| | - Robert Czarnomysy
- Department of Synthesis and Technology of Drugs, Faculty of Pharmacy, Medical University of Bialystok, 15-089 Bialystok, Poland
| | - Olga Klyuchivska
- Institute of Cell Biology of National Academy of Sciences of Ukraine, 14/16 Drahomanov Str., 79005 Lviv, Ukraine
| | - Dmytro Khyluk
- Department of Organic Chemistry, Medical University of Lublin, Aleje Racławickie 1, 20-059 Lublin, Poland
| | - Nataliya Kashchak
- Institute of Cell Biology of National Academy of Sciences of Ukraine, 14/16 Drahomanov Str., 79005 Lviv, Ukraine
| | - Andrzej Gzella
- Department of Organic Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland
| | - Krzysztof Bielawski
- Department of Synthesis and Technology of Drugs, Faculty of Pharmacy, Medical University of Bialystok, 15-089 Bialystok, Poland
| | - Anna Bielawska
- Department of Biotechnology, Faculty of Pharmacy, Medical University of Bialystok, 15-089 Bialystok, Poland
| | - Rostyslav Stoika
- Institute of Cell Biology of National Academy of Sciences of Ukraine, 14/16 Drahomanov Str., 79005 Lviv, Ukraine
| | - Roman Lesyk
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, 79010 Lviv, Ukraine
- Correspondence: ; Tel.: +380-677038010
| |
Collapse
|
14
|
Novel hybrid pyrrolidinedione-thiazolidinones as potential anticancer agents: Synthesis and biological evaluation. Eur J Med Chem 2022; 238:114422. [DOI: 10.1016/j.ejmech.2022.114422] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/21/2022] [Accepted: 04/27/2022] [Indexed: 01/20/2023]
|
15
|
Nagesh KM, Prashanth T, Khamees HA, Khanum SA. Synthesis, analgesic, anti-inflammatory, COX/5-LOX inhibition, ulcerogenic evaluation, and docking study of benzimidazole bearing indole and benzophenone analogs. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132741] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
16
|
Ethyl 5-Formyl-1-(pyridin-3-yl)-1H-1,2,3-triazole-4-carboxylate: Synthesis, Crystal Structure, Hirshfeld Surface Analysis, and DFT Calculation. MOLBANK 2022. [DOI: 10.3390/m1340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
For the first time, 5-formyl-1-(pyridin-3-yl)-1H-1,2,3-triazole-4-carboxylate was synthesized via a two-step scheme. The molecular structure of the compound was determined by a single-crystal X-ray diffraction analysis. The Hirshfeld surface analysis was used to study various intermolecular interactions. The crystalline structure is marked by the presence of three types of π-interactions (n→π*, lp···π, and π···π) between the -C(H)=O group and triazole rings. The compound is a versatile polyfunctional building block for construction of annulated 1,2,3-triazoles.
Collapse
|