1
|
Yang HD, Hou BL, Yang YG, Tang ZS, Xu HB. Diterpenoids from Acanthopanacis Cortex and their anti-inflammatory activity studies. Fitoterapia 2024; 176:106021. [PMID: 38762074 DOI: 10.1016/j.fitote.2024.106021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/17/2024] [Accepted: 05/15/2024] [Indexed: 05/20/2024]
Abstract
Acanthopanacis Cortex (A.-C) with a long history of more than1000 years, has been used to treat rheumatism effectively. Nineteen diterpenoids have been isolated from A.-C, including six new compounds (1-6). Among them, compounds 7, 9-11, 13, and 17 were discovered from A.-C for the first time. The structures of 1-6 were determined by analyzing their NMR data and comparing their experimental and calculated electronic circular dichroism spectra. Moreover, the single-crystal X-ray diffraction data of 1, 2, 8, and 14 were provided. The anti-inflammatory activity of 1-5 and 7-18 on neutrophil elastase, cyclooxygenase-1 (COX-1), and cyclooxygenase-2 (COX-2) has been studied in vitro, and the results showed that 15 had almost no inhibitory effects on COX-1 at 200 μM but a significant activity against COX-2 with an IC50 of 0.73 ± 0.006 μΜ. It indicated that compound 15 can provide valuable information for the design of selective COX-2 inhibitors.
Collapse
Affiliation(s)
- Hao-Dong Yang
- Co-construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xianyang 712083, PR China
| | - Bao-Long Hou
- Co-construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xianyang 712083, PR China
| | - Yuan-Gui Yang
- Co-construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xianyang 712083, PR China
| | - Zhi-Shu Tang
- Co-construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xianyang 712083, PR China; China Academy of Chinese Medical Sciences, Beijing 100700, PR China
| | - Hong-Bo Xu
- Co-construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xianyang 712083, PR China
| |
Collapse
|
2
|
Bao S, Yi M, Xiang B, Chen P. Antitumor mechanisms and future clinical applications of the natural product triptolide. Cancer Cell Int 2024; 24:150. [PMID: 38678240 PMCID: PMC11055311 DOI: 10.1186/s12935-024-03336-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 04/18/2024] [Indexed: 04/29/2024] Open
Abstract
Triptolide (TPL) is a compound sourced from Tripterygium wilfordii Hook. F., a traditional Chinese medicinal herb recognized for its impressive anti-inflammatory, anti-angiogenic, immunosuppressive, and antitumor qualities. Notwithstanding its favorable attributes, the precise mechanism through which TPL influences tumor cells remains enigmatic. Its toxicity and limited water solubility significantly impede the clinical application of TPL. We offer a comprehensive overview of recent research endeavors aimed at unraveling the antitumor mechanism of TPL in this review. Additionally, we briefly discuss current strategies to effectively manage the challenges associated with TPL in future clinical applications. By compiling this information, we aim to enhance the understanding of the underlying mechanisms involved in TPL and identify potential avenues for further advancement in antitumor therapy.
Collapse
Affiliation(s)
- Shiwei Bao
- NHC Key Laboratory of Carcinogenesis, Hunan Provincial Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China
- FuRong Laboratory, Changsha, 410078, Hunan, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Mei Yi
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Bo Xiang
- NHC Key Laboratory of Carcinogenesis, Hunan Provincial Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China.
- FuRong Laboratory, Changsha, 410078, Hunan, China.
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.
| | - Pan Chen
- NHC Key Laboratory of Carcinogenesis, Hunan Provincial Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.
| |
Collapse
|
3
|
Mao Y, Wei D, Fu F, Wang H, Sun Z, Huang Z, Wang Y, Zhang G, Zhang X, Jiang B, Chen H. Development of a MMAE-based antibody-drug conjugate targeting B7-H3 for glioblastoma. Eur J Med Chem 2023; 257:115489. [PMID: 37235999 DOI: 10.1016/j.ejmech.2023.115489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/11/2023] [Accepted: 05/13/2023] [Indexed: 05/28/2023]
Abstract
B7-H3 (immunoregulatory protein B7-homologue 3) is overexpressed in many cancer cells with limited expression in normal tissues, considered to be a promising target for tumor therapeutics. Clinical trials of antibody-drug conjugates (ADCs) against different targets for glioblastoma have been investigated and showed potent efficacies. In this study, we developed a homogeneous ADC 401-4 with a drug-to-antibody ratio (DAR) of 4, which was prepared by conjugation of Monomethyl auristatin E (MMAE) to a humanized anti-B7-H3 mAb 401, through a divinylsulfonamide-mediated disulfide re-bridging approach. In vitro studies, 401-4 displayed specific killing against B7-H3-expressing tumors and was more effective in cells with higher levels of B7-H3 for different glioblastoma cells. 401-4 was furthered labeled with Cy5.5 to yield a fluorescent conjugate 401-4-Cy5.5. The in vivo imaging studies showed that the conjugate accumulated in tumor regions and exhibited the ability to target-specific delivery. In addition, significant antitumor activities for 401-4 was observed against U87-derived tumor xenografts in a dose dependent manner.
Collapse
Affiliation(s)
- Yurong Mao
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Ding Wei
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Fengqing Fu
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, NO.178 Ganjiang Road, Suzhou, 215000, China; State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China
| | - Huihui Wang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Ziyu Sun
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Ziyi Huang
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, NO.178 Ganjiang Road, Suzhou, 215000, China
| | - Yan Wang
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China; Department of Clinical Pharmacology, The First Affiliated Hospital of Soochow University, NO.899 Pinghai Road, Suzhou, 215006, China
| | - Guangbo Zhang
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, NO.178 Ganjiang Road, Suzhou, 215000, China
| | - Xueguang Zhang
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, NO.178 Ganjiang Road, Suzhou, 215000, China; State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China; Suzhou Bright Scistar Antibody Biotech. Co., Ltd, Block 7, NO.17 ChangPing Road, Suzhou, 215152, China.
| | - Biao Jiang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China; Shanghai Clinical Research and Trial Center, Shanghai, 201210, China.
| | - Hongli Chen
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China; Shanghai Clinical Research and Trial Center, Shanghai, 201210, China.
| |
Collapse
|
4
|
Wei D, Jiang Y, Mao Y, Xu Z, Chen J, Gao X, Li J, Jiang B, Chen H. Phenyldivinylsulfonamides for the construction of antibody-drug conjugates with controlled four payloads. Bioorg Chem 2023; 134:106463. [PMID: 36924655 DOI: 10.1016/j.bioorg.2023.106463] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/27/2023] [Accepted: 03/07/2023] [Indexed: 03/17/2023]
Abstract
Phenyldivinylsulfonamides emerged from a series of divinylsulfonamides, demonstrating their ability to effectively re-bridge disulfide bonds. This kind of linkers was attached to monomethyl auristatin E (MMAE) and further conjugated with a model antibody, trastuzumab. After optimization, the linker 20 can deliver stable and highly homogenous DAR (Drug-to-Antibody Ratio) four antibody-drug conjugates (ADCs). The method was also applicable for other IgG1 antibodies to obtain ADCs with controlled four payloads. Moreover, the MMAE-bearing ADC is potent, selective and efficacious against target cell lines.
Collapse
Affiliation(s)
- Ding Wei
- Green Chemical Engineering Technology Research Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China; Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai, 201210, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing 100049, China.
| | - Yuecheng Jiang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai, 201210, China; School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai 201210, China.
| | - Yurong Mao
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai, 201210, China.
| | - Zili Xu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai, 201210, China; School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai 201210, China.
| | - Jiakang Chen
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai, 201210, China.
| | - Xiuxia Gao
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai, 201210, China.
| | - Jiusheng Li
- Green Chemical Engineering Technology Research Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China.
| | - Biao Jiang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai, 201210, China.
| | - Hongli Chen
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai, 201210, China.
| |
Collapse
|
5
|
Wei D, Mao Y, Wang H, Qu S, Chen J, Li J, Jiang B, Chen H. A mild phenoxysilyl linker for self-immolative release of antibody-drug conjugates. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.108091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
6
|
Grossenbacher P, Essers MC, Moser J, Singer SA, Häusler S, Stieger B, Rougier JS, Lochner M. Bioorthogonal site-selective conjugation of fluorescent dyes to antibodies: method and potential applications. RSC Adv 2022; 12:28306-28317. [PMID: 36320493 PMCID: PMC9533196 DOI: 10.1039/d2ra05580e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 09/27/2022] [Indexed: 11/17/2022] Open
Abstract
Antibodies are immensely useful tools for biochemical research and have found application in numerous protein detection and purification methods. Moreover, monoclonal antibodies are increasingly utilised as therapeutics or, conjugated to active pharmaceutical ingredients, in targeted chemotherapy. Several reagents and protocols are reported to synthesise fluorescent antibodies for protein target detection and immunofluorescence applications. However, most of these protocols lead to non-selective conjugation, over-labelling or in the worst case antigen binding site modification. Here, we have used the antibody disulphide cleavage and re-bridging strategy to introduce bright fluorescent dyes without loss of the antibody function. The resulting fluorescent IgG1 type antibodies were shown to be effective imaging tools in western blot and direct immunofluorescence experiments.
Collapse
Affiliation(s)
- Philipp Grossenbacher
- Institute of Biochemistry and Molecular Medicine, University of BernBühlstrasse 283012 BernSwitzerland
| | - Maria C. Essers
- Institute of Biochemistry and Molecular Medicine, University of BernBühlstrasse 283012 BernSwitzerland
| | - Joël Moser
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of BernFreiestrasse 33012 BernSwitzerland
| | - Simon A. Singer
- Institute of Biochemistry and Molecular Medicine, University of BernBühlstrasse 283012 BernSwitzerland
| | - Stephanie Häusler
- Department of Clinical Pharmacology and Toxicology, University Hospital Zürich, University of ZürichRämistrasse 1008091 ZürichSwitzerland
| | - Bruno Stieger
- Department of Clinical Pharmacology and Toxicology, University Hospital Zürich, University of ZürichRämistrasse 1008091 ZürichSwitzerland
| | - Jean-Sébastien Rougier
- Institute of Biochemistry and Molecular Medicine, University of BernBühlstrasse 283012 BernSwitzerland
| | - Martin Lochner
- Institute of Biochemistry and Molecular Medicine, University of BernBühlstrasse 283012 BernSwitzerland
| |
Collapse
|