1
|
Duan X, Xing Z, Qiao L, Qin S, Zhao X, Gong Y, Li X. The role of histone post-translational modifications in cancer and cancer immunity: functions, mechanisms and therapeutic implications. Front Immunol 2024; 15:1495221. [PMID: 39620228 PMCID: PMC11604627 DOI: 10.3389/fimmu.2024.1495221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 10/18/2024] [Indexed: 12/11/2024] Open
Abstract
Histones play crucial roles in both promoting and repressing gene expression, primarily regulated through post-translational modifications (PTMs) at specific amino acid residues. Histone PTMs, including methylation, acetylation, ubiquitination, phosphorylation, lactylation, butyrylation, and propionylation, act as important epigenetic markers. These modifications influence not only chromatin compaction but also gene expression. Their importance extends to the treatment and prevention of various human diseases, particularly cancer, due to their involvement in key cellular processes. Abnormal histone modifications and the enzymes responsible for these alterations often serve as critical drivers in tumor cell proliferation, invasion, apoptosis, and stemness. This review introduces key histone PTMs and the enzymes responsible for these modifications, examining their impact on tumorigenesis and cancer progression. Furthermore, it explores therapeutic strategies targeting histone PTMs and offers recommendations for identifying new potential therapeutic targets.
Collapse
Affiliation(s)
- Xiaohong Duan
- School of Disaster and Emergency Medicine, Faculty of Medicine, Tianjin University, Tianjin, China
- Institute of Disaster and Emergency Medicine, Faculty of Medicine, Tianjin University, Tianjin, China
- Medical School, Faculty of Medicine, Tianjin University, Tianjin, China
| | - Zhiyao Xing
- Tianjin University and Health-Biotech United Group Joint Laboratory of Innovative Drug Development and Translational Medicine, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, China
- Department of Respiratory Medicine, Jinnan Hospital, Tianjin University, Tianjin, China
- Department of Respiratory Medicine, Tianjin Jinnan Hospital, Tianjin, China
| | - Lu Qiao
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Shan Qin
- Tianjin University and Health-Biotech United Group Joint Laboratory of Innovative Drug Development and Translational Medicine, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, China
| | - Xuejing Zhao
- Tianjin University and Health-Biotech United Group Joint Laboratory of Innovative Drug Development and Translational Medicine, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, China
| | - Yanhua Gong
- School of Disaster and Emergency Medicine, Faculty of Medicine, Tianjin University, Tianjin, China
- Institute of Disaster and Emergency Medicine, Faculty of Medicine, Tianjin University, Tianjin, China
- Medical School, Faculty of Medicine, Tianjin University, Tianjin, China
| | - Xueren Li
- Department of Respiratory Medicine, Jinnan Hospital, Tianjin University, Tianjin, China
- Department of Respiratory Medicine, Tianjin Jinnan Hospital, Tianjin, China
| |
Collapse
|
2
|
Lu Y, Wang Y, Zhang L, Ma Z, Yu K, Shu Y, Zou X, Yang J, Liu X, Wang C, Du Y, Li Q. KAT7 enhances the proliferation and metastasis of head and neck squamous carcinoma by promoting the acetylation level of LDHA. Cancer Lett 2024; 590:216869. [PMID: 38593918 DOI: 10.1016/j.canlet.2024.216869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 04/11/2024]
Abstract
Lysine acetyltransferase 7 (KAT7), a histone acetyltransferase, has recently been identified as an oncoprotein and has been implicated in the development of various malignancies. However, its specific role in head and neck squamous carcinoma (HNSCC) has not been fully elucidated. Our study revealed that high expression of KAT7 in HNSCC patients is associated with poor survival prognosis and silencing KAT7 inhibits the Warburg effect, leading to reduced proliferation, invasion, and metastatic potential of HNSCC. Further investigation uncovered a link between the high expression of KAT7 in HNSCC and tumor-specific glycolytic metabolism. Notably, KAT7 positively regulates Lactate dehydrogenase A (LDHA), a key enzyme in metabolism, to promote lactate production and create a conducive environment for tumor proliferation and metastasis. Additionally, KAT7 enhances LDHA activity and upregulates LDHA protein expression by acetylating the lysine 118 site of LDHA. Treatment with WM3835, a KAT7 inhibitor, effectively suppressed the growth of subcutaneously implanted HNSCC cells in mice. In conclusion, our findings suggest that KAT7 exerts pro-cancer effects in HNSCC by acetylating LDHA and may serve as a potential therapeutic target. Inhibiting KAT7 or LDHA expression holds promise as a therapeutic strategy to suppress the growth and progression of HNSCC.
Collapse
Affiliation(s)
- Ying Lu
- School of Stomatology, Southern Medical University, Guang Zhou, 510515, China; Department of Stomatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100071, China
| | - Yong Wang
- Department of Nuclear Medicine, The Fifth Medical Centre of Chinese PLA General Hospital, Beijing, 100071, China
| | - Leilei Zhang
- Department of Stomatology, 920th Hospital of the Joint Logistics Support Force, PLA, Kunming, 650032, China
| | - Zhaofeng Ma
- Department of Stomatology, Beijing Shunyi District Hospital, Beijing, 101300, China
| | - Kaitao Yu
- Department of Stomatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100071, China
| | - Yao Shu
- Department of Stomatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100071, China
| | - Xuan Zou
- Department of Stomatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100071, China
| | - Jinjin Yang
- Department of Stomatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100071, China
| | - Xin Liu
- Department of Stomatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100071, China
| | - Chenglong Wang
- Department of Stomatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100071, China.
| | - Yimeng Du
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing, 100071, China.
| | - Qihong Li
- School of Stomatology, Southern Medical University, Guang Zhou, 510515, China; Department of Stomatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100071, China.
| |
Collapse
|
3
|
Cheng-Sánchez I, Gosselé KA, Palaferri L, Kirillova MS, Nevado C. Discovery and Characterization of Active CBP/EP300 Degraders Targeting the HAT Domain. ACS Med Chem Lett 2024; 15:355-361. [PMID: 38505842 PMCID: PMC10945562 DOI: 10.1021/acsmedchemlett.3c00490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/12/2024] [Accepted: 01/13/2024] [Indexed: 03/21/2024] Open
Abstract
Proteolysis Targeting Chimeras (PROTACs) are bifunctional molecules that simultaneously bind an E3 ligase and a protein of interest, inducing degradation of the latter via the ubiquitin-proteasome system. Here we present the development of degraders targeting CREB-binding protein (CBP) and E1A-associated protein (EP300)-two homologous multidomain enzymes crucial for enhancer-mediated transcription. Our PROTAC campaign focused on CPI-1612, a reported inhibitor of the histone acetyltransferase (HAT) domain of these two proteins. A novel asymmetric synthesis of this ligand was devised, while PROTAC-SAR was explored by measuring degradation, target engagement, and ternary complex formation in cellulo. Our study demonstrates that engagement of Cereblon (CRBN) and a sufficiently long linker between the E3 and CBP/EP300 binders (≥21 atoms) are required for PROTAC-mediated degradation using CPI-1612 resulting in a new active PROTAC dCE-1. Lessons learned from this campaign, particularly the importance of cell-based assays to understand the reasons underlying PROTAC performance, are likely applicable to other targets to assist the development of degraders.
Collapse
Affiliation(s)
- Iván Cheng-Sánchez
- Department
of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Katherine A. Gosselé
- Department
of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
- Department
of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Leonardo Palaferri
- Department
of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Mariia S. Kirillova
- Department
of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Cristina Nevado
- Department
of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| |
Collapse
|
4
|
Dou R, Han L, Yang C, Fang Y, Zheng J, Liang C, Song J, Wei C, Huang G, Zhong P, Liu K, Peng Q, Peng C, Xiong B, Wang S. Upregulation of LINC00501 by H3K27 acetylation facilitates gastric cancer metastasis through activating epithelial-mesenchymal transition and angiogenesis. Clin Transl Med 2023; 13:e1432. [PMID: 37867401 PMCID: PMC10591115 DOI: 10.1002/ctm2.1432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 09/11/2023] [Accepted: 09/30/2023] [Indexed: 10/24/2023] Open
Abstract
BACKGROUND The molecular mechanism of the significant role of long noncoding RNAs (lncRNAs) in the progression and metastasis of gastric cancer (GC) remains largely elusive. Our objective is to detect overexpressed lncRNA in GC and investigate its role in promoting epithelial-mesenchymal transition and tumour microenvironment remodel. METHODS LncRNA differential expression profile in GC was analysed using RNA microarrays. The level of LINC00501 was evaluated in both GC patient tissues and GC cell lines by quantitative reverse transcription PCR and large-scale (n = 304) tissue microarray. To explore the biological role and regulatory driver of LINC00501 in GC, various experimental techniques including Chromatin isolation by RNA purification (ChIRP), RNA immunoprecipitation (RIP), chromatin immunoprecipitation (ChIP) assay, dual luciferase assays were performed. RESULTS Clinically, it was observed that LINC00501 level was abnormal overexpression in GC tissue and was associated with GC progression and distant metastasis. Gain and loss molecular biological experiments suggested that LINC00501, promoted EMT process and angiogenesis of GC. Mechanically, the enrichment of H3K27 acetylation in LINC00501 promoter region contributed to the increase of LINC00501 in GC. LINC00501 transactivated transcription of SLUG, by recruiting hnRNPR to its promoter. The growth of GC was inhibited both in vitro and in vivo by suppressing the level of LINC00501 using pharmacological intervention from the histone acetyltransferase (HAT) inhibitor -C646. CONCLUSIONS This study suggests that LINC00501 promotes GC progression via hnRNPR/SLUG pathway, which indicates a promising biomarker and target for GC.
Collapse
Affiliation(s)
- Rongzhang Dou
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, Hubei, China
- Hubei Cancer Clinical Study Center, Wuhan, Hubei, China
| | - Lei Han
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, Hubei, China
- Hubei Cancer Clinical Study Center, Wuhan, Hubei, China
| | - Chaogang Yang
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, Hubei, China
- Hubei Cancer Clinical Study Center, Wuhan, Hubei, China
| | - Yan Fang
- Department of Obstetrics and Gynecology, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong, China
| | - Jinsen Zheng
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, Hubei, China
- Hubei Cancer Clinical Study Center, Wuhan, Hubei, China
| | - Chenxi Liang
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, Hubei, China
- Hubei Cancer Clinical Study Center, Wuhan, Hubei, China
| | - Jialin Song
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, Hubei, China
- Hubei Cancer Clinical Study Center, Wuhan, Hubei, China
| | - Chen Wei
- Department of Internal Medicine, Affiliated Tumor Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Guoquan Huang
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, Hubei, China
- Hubei Cancer Clinical Study Center, Wuhan, Hubei, China
| | - Panyi Zhong
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, Hubei, China
- Hubei Cancer Clinical Study Center, Wuhan, Hubei, China
| | - Keshu Liu
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, Hubei, China
- Hubei Cancer Clinical Study Center, Wuhan, Hubei, China
| | - Qian Peng
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Chunwei Peng
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, Hubei, China
- Hubei Cancer Clinical Study Center, Wuhan, Hubei, China
| | - Bin Xiong
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, Hubei, China
- Hubei Cancer Clinical Study Center, Wuhan, Hubei, China
| | - Shuyi Wang
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, Hubei, China
- Hubei Cancer Clinical Study Center, Wuhan, Hubei, China
| |
Collapse
|
5
|
Li Y, Liu J, Ma X, Bai X. Maresin-1 inhibits high glucose induced ferroptosis in ARPE-19 cells by activating the Nrf2/HO-1/GPX4 pathway. BMC Ophthalmol 2023; 23:368. [PMID: 37674121 PMCID: PMC10481498 DOI: 10.1186/s12886-023-03115-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 08/22/2023] [Indexed: 09/08/2023] Open
Abstract
BACKGROUND Maresin-1 plays an important role in diabetic illnesses and ferroptosis is associated with pathogenic processes of diabetic retinopathy (DR). The goal of this study is to explore the influence of maresin-1 on ferroptosis and its molecular mechanism in DR. METHODS ARPE-19 cells were exposed to high glucose (HG) condition for developing a cellular model of DR. The CCK-8 assay and flow cytometry were used to assess ARPE-19 cell proliferation and apoptosis, respectively. Furthermore, the GSH content, MDA content, ROS level, and Fe2+ level were measured by using a colorimetric GSH test kit, a Lipid Peroxidation MDA Assay Kit, a DCFH-DA assay and the phirozine technique, respectively. Immunofluorescence labelling was used to detect protein levels of ACSL4 and PTGS2. Messenger RNA and protein expression of HO-1, GPX4 and Nrf2 was evaluated through western blotting and quantitative real time-polymerase chain reaction (qRT-PCR). To establish a diabetic mouse model, mice were intraperitoneally injected 150 mg/kg streptozotocin. The MDA content, ROS level and the iron level were detected by using corresponding commercial kits. RESULTS Maresin-1 promoted cell proliferation while reducing the apoptotic process in HG-induced ARPE-19 cells. Maresin-1 significantly reduced ferroptosis induced by HG in ARPE-19 cells, as demonstrated as a result of decreased MDA content, ROS level, Fe2+ level, PTGS2 expression, ACSL4 expression and increased GSH content. With respect to mechanisms, maresin-1 treatment up-regulated the mRNA expression and protein expression of HO-1, GPX4 and Nrf2 in HG-induced ARPE-19 cells. Nrf2 inhibitor reversed the inhibitory effects of maresin-1 on ferroptosis in HG-induced ARPE-19 cells. In vivo experiments, we found that Maresin-1 evidently repressed ferroptosis a mouse model of DR, as evidenced by the decreased MDA content, ROS level and iron level in retinal tissues of mice. CONCLUSION Maresin-1 protects ARPE cells from HG-induced ferroptosis via activating the Nrf2/HO-1/GPX4 pathway, suggesting that maresin-1 prevents DR development.
Collapse
Affiliation(s)
- Yufei Li
- Ophthalmology Department, Zhongshan Hospital Affiliated to Xiamen University, No.201-209 Hubinnan Road, Siming District, 361004, Xiamen, China
| | - Jieyu Liu
- Endocrinology Department, Beijing Electric Power Hospital, 100073, Beijing, China
| | - Xibo Ma
- Otorhinolaryngology Department, Jilin Province People's Hospital, 130000, Changchun, China
| | - Xue Bai
- Ophthalmology Department, Zhongshan Hospital Affiliated to Xiamen University, No.201-209 Hubinnan Road, Siming District, 361004, Xiamen, China.
| |
Collapse
|
6
|
Liu J. P300 increases CSNK2A1 expression which accelerates colorectal cancer progression through activation of the PI3K-AKT-mTOR axis. Exp Cell Res 2023:113694. [PMID: 37391010 DOI: 10.1016/j.yexcr.2023.113694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 06/07/2023] [Accepted: 06/22/2023] [Indexed: 07/02/2023]
Abstract
Casein kinase 2 alpha 1 (CSNK2A1) is a known oncogene, but its role in the progression of colorectal cancer (CRC) remain undefined. Here, we investigated the effects of CSNK2A1 during CRC development. In the current study, CSNK2A1 expression in the colorectal cancer cell lines (HCT116, SW480, HT29, SW620 and Lovo) vs. normal colorectal cell line (CCD841 CoN) were compared via RT-qPCR and western blotting. The role of CSNK2A1 on CRC growth and metastases were investigated through Transwell assay. Immunofluorescence analysis was used to investigate the expression of EMT-related proteins. The association between P300/H3K27ac and CSNK2A1 were analyzed using UCSC bioinformatics and Chromatin-immunoprecipitation (Ch-IP) assays. Results revealed that both the mRNA and protein levels of CSNK2A1 in HCT116, SW480, HT29, SW620 and Lovo cells were upregulated. Additionally, P300-mediated H3K27ac activation at the CSNK2A1 promoter was found to drive the increase in CSNK2A1 expression. Transwell assay showed that CSNK2A1 overexpression increased the migration and invasion of HCT116 and SW480 cells, which decreased following CSNK2A1 silencing. CSNK2A1 was also found to facilitate EMT in HCT116 cells, evidenced by the increases of N-cadherin, Snail and Vimentin expression, and loss of E-cadherin. Importantly, the levels of p-AKT-S473/AKT, p-AKT-T308/AKT, and p-mTOR/mTOR in cells overexpressing CSNK2A1 were high, but significantly decreased following CSNK2A silencing. The PI3K inhibitor BAY-806946 could reverse the increase in p-AKT-S473/AKT, p-AKT-T308/AKT, p-mTOR/mTOR induced by CSNK2A1 overexpression and suppress CRC cell migration and invasion. In conclusion, we report a positive feedback mechanism through which P300 enhances CSNK2A1 expression and accelerates CRC progression through the activation of the PI3K-AKT-mTOR axis.
Collapse
Affiliation(s)
- Jilong Liu
- Tumor Surgical Department, Beijing Chuiyangliu Hospital, No.2, Chuiyangliu South Street, Chaoyang District, Beijing, 100022, China.
| |
Collapse
|
7
|
Whedon SD, Cole PA. KATs off: Biomedical insights from lysine acetyltransferase inhibitors. Curr Opin Chem Biol 2023; 72:102255. [PMID: 36584580 PMCID: PMC9870960 DOI: 10.1016/j.cbpa.2022.102255] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/27/2022] [Accepted: 11/28/2022] [Indexed: 12/29/2022]
Abstract
Lysine acetyltransferase (KAT) enzymes including the p300, MYST, and GCN5 families play major roles in modulating the structure of chromatin and regulating transcription. Because of their dysregulation in various disease states including cancer, efforts to develop inhibitors of KATs have steadily gained momentum. Here we provide an overview of recent progress on the development of high quality chemical probes of the p300 and MYST family of KATs and how they are emerging as useful tools for basic and translational investigation.
Collapse
Affiliation(s)
- Samuel D Whedon
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Philip A Cole
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
8
|
Chen G, Zhu X, Li J, Zhang Y, Wang X, Zhang R, Qin X, Chen X, Wang J, Liao W, Wu Z, Lu L, Wu W, Yu H, Ma L. Celastrol inhibits lung cancer growth by triggering histone acetylation and acting synergically with HDAC inhibitors. Pharmacol Res 2022; 185:106487. [DOI: 10.1016/j.phrs.2022.106487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/26/2022] [Accepted: 10/02/2022] [Indexed: 10/31/2022]
|
9
|
Basha NJ, Basavarajaiah SM. An insight into therapeutic efficacy of heterocycles as histone modifying enzyme inhibitors that targets cancer epigenetic pathways. Chem Biol Drug Des 2022; 100:682-698. [PMID: 36059065 DOI: 10.1111/cbdd.14135] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/17/2022] [Accepted: 08/21/2022] [Indexed: 01/10/2023]
Abstract
Histone modifying enzymes are the key regulators involved in the post-translational modification of histone and non-histone. These enzymes are responsible for the epigenetic control of cellular functions. However, deregulation of the activity of these enzymes results in uncontrolled disorders such as cancer and inflammatory and neurological diseases. The study includes histone acetyltransferases, deacetylases, methyl transferases, demethylases, DNA methyl transferases, and their potent inhibitors which are in a clinical trial and used as medicinal drugs. The present review covers the heterocycles as target-specific inhibitors of histone-modifying enzyme, more specifically histone acetyltransferases. This review also confers more recent reports on heterocycles as potential HAT inhibitors covered from 2016-2022 and future perspectives of these heterocycles in epigenetic therapy.
Collapse
Affiliation(s)
- N Jeelan Basha
- Department of Chemistry, Indian Academy Degree College-Autonomous, Bengaluru, Karnataka, India
| | - S M Basavarajaiah
- P.G. Department of Chemistry, Vijaya College, Bengaluru, Karnataka, India
| |
Collapse
|