1
|
Wei TH, Wang ZX, Lu MY, Xu YJ, Yang J, Ni XF, Cheng Y, Zhang MY, Liu JC, Li QQ, Cai J, Chen ZJ, Kang JB, Li N, Dai WC, Ding N, Yu YC, Leng XJ, Xue X, Wang XL, Sun SL, Yang Y, Li NG, Shi ZH. Discovery of SILA-123 as a Highly Potent FLT3 Inhibitor for the Treatment of Acute Myeloid Leukemia with Various FLT3 Mutations. J Med Chem 2024; 67:21752-21780. [PMID: 39258312 DOI: 10.1021/acs.jmedchem.4c00529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
The FLT3-ITD (internal tandem duplication) mutant has been a promising target for acute myeloid leukemia (AML) drug discovery but is now facing the challenge of resistance due to point mutations. Herein, we have discovered a type II FLT3 inhibitor, SILA-123. This inhibitor has shown highly potent inhibitory effects against FLT3-WT (IC50 = 2.1 nM) and FLT3-ITD (IC50 = 1.0 nM), tumor cells with the FLT3-ITD mutant such as MOLM-13 (IC50 = 0.98 nM) and MV4-11 (IC50 = 0.19 nM), as well as BaF3 cells associated with the FLT3-ITD mutant and point mutations like BaF3-FLT3-ITD-G697R (IC50 = 3.0 nM). Moreover, SILA-123 exhibited promising kinome selectivity against 310 kinases (S score (10) = 0.06). In in vivo studies, SILA-123 significantly suppressed the tumor growth in MV4-11 (50 mg/kg/d, TGI = 87.3%) and BaF3-FLT3-ITD-G697R (50 mg/kg/d, TGI = 60.0%) cell-inoculated allograft models. Our data suggested that SILA-123 might be a promising drug candidate for FLT3-ITD-positive AML.
Collapse
Affiliation(s)
- Tian-Hua Wei
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Zi-Xuan Wang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Meng-Yi Lu
- Department of Biostatistics, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu 211166, China
| | - Yu-Jing Xu
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Jin Yang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Xing-Feng Ni
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Yang Cheng
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Meng-Yuan Zhang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Jia-Chuan Liu
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Qing-Qing Li
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Jiao Cai
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Zi-Jun Chen
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Ji-Bo Kang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Nan Li
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Wei-Chen Dai
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Ning Ding
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Yan-Cheng Yu
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Xue-Jiao Leng
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Xin Xue
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Xiao-Long Wang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Shan-Liang Sun
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Ye Yang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Nian-Guang Li
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Zhi-Hao Shi
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, China
| |
Collapse
|
2
|
Majirská M, Pilátová MB, Kudličková Z, Vojtek M, Diniz C. Targeting hematological malignancies with isoxazole derivatives. Drug Discov Today 2024; 29:104059. [PMID: 38871112 DOI: 10.1016/j.drudis.2024.104059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/18/2024] [Accepted: 06/06/2024] [Indexed: 06/15/2024]
Abstract
Compounds with a heterocyclic isoxazole ring are well known for their diverse biologic activities encompassing antimicrobial, antipsychotic, immunosuppressive, antidiabetic and anticancer effects. Recent studies on hematological malignancies have also shown that some of the isoxazole-derived compounds feature encouraging cancer selectivity, low toxicity to normal cells and ability to overcome cancer drug resistance of conventional treatments. These characteristics are particularly promising because patients with hematological malignancies face poor clinical outcomes caused by cancer drug resistance or relapse of the disease. This review summarizes the knowledge on isoxazole-derived compounds toward hematological malignancies and provides clues on their mechanism(s) of action (apoptosis, cell cycle arrest, ROS production) and putative pharmacological targets (c-Myc, BET, ATR, FLT3, HSP90, CARM1, tubulin, PD-1/PD-L1, HDACs) wherever known.
Collapse
Affiliation(s)
- Monika Majirská
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Slovakia
| | - Martina Bago Pilátová
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Slovakia.
| | - Zuzana Kudličková
- NMR Laboratory, Institute of Chemistry, Faculty of Science, Pavol Jozef Šafárik University in Košice, Slovakia
| | - Martin Vojtek
- LAQV/REQUIMTE, Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal.
| | - Carmen Diniz
- LAQV/REQUIMTE, Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| |
Collapse
|
3
|
Wei TH, Zhou Y, Yang J, Zhang MY, Wang JJ, Tong ZJ, Wu JZ, Wang YB, Sha JK, Chen M, Ding N, Yu YC, Dai WC, Leng XJ, Xue X, Sun SL, Wang XL, Li NG, Shi ZH. Design and synthesis 1H-Pyrrolo[2,3-b]pyridine derivatives as FLT3 inhibitors for the treatment of Acute myeloid Leukemia. Bioorg Med Chem 2024; 100:117631. [PMID: 38330848 DOI: 10.1016/j.bmc.2024.117631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/10/2024]
Abstract
Acute myeloid leukemia (AML) is the most common type of blood cancer and has been strongly correlated with the overexpression of Fms-like tyrosine kinase 3 (FLT3), a member of the class III receptor tyrosine kinase family. With the emergence of FLT3 internal tandem duplication alteration (ITD) and tyrosine kinase domain (TKD) mutations, the development of FLT3 small molecule inhibitors has become an effective medicinal chemistry strategy for AML. Herein, we have designed and synthesized two series of 1H-pyrrolo[2,3-b]pyridine derivatives CM1-CM24, as FLT3 inhibitors based on F14, which we previously reported, that can target the hydrophobic FLT3 back pocket. Among these derivates, CM5 showed significant inhibition of FLT3 and FLT3-ITD, with inhibitory percentages of 57.72 % and 53.77 % respectively at the concentration of 1 μΜ. Furthermore, CM5 demonstrated potent inhibition against FLT3-dependent human AML cell lines MOLM-13 and MV4-11 (both harboring FLT3-ITD mutant), with IC50 values of 0.75 μM and 0.64 μM respectively. In our cellular mechanistic studies, CM5 also effectively induces apoptosis by arresting cell cycle progression in the G0/G1 phase. In addition, the amide and urea linker function were discussed in detail based on computational simulations studies. CM5 will serve as a novel lead compound for further structural modification and development of FLT3 inhibitors specifically targeting AML with FLT3-ITD mutations.
Collapse
Affiliation(s)
- Tian-Hua Wei
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Yun Zhou
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Jin Yang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Meng-Yuan Zhang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Jing-Jing Wang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Zhen-Jiang Tong
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Jia-Zhen Wu
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Yi-Bo Wang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Jiu-Kai Sha
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Min Chen
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Ning Ding
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Yan-Cheng Yu
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Wei-Chen Dai
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China; Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, China
| | - Xue-Jiao Leng
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Xin Xue
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Shan-Liang Sun
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China.
| | - Xiao-Long Wang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China.
| | - Nian-Guang Li
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China.
| | - Zhi-Hao Shi
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, China.
| |
Collapse
|
4
|
Sun SL, Wu JZ, Wang JJ, Zhou H, Zhang CQ, Tong ZJ, Wang YB, Sha JK, Wang QX, Liu JC, Zheng XR, Li QQ, Zhang MY, Yang J, Wei TH, Wang ZX, Yu YC, Ding N, Leng XJ, Xue X, Li HM, Dai WC, Yin XY, Yang Y, Duan JA, Li NG, Shi ZH. Preclinical characterization of danatinib as a novel FLT3 inhibitor with excellent efficacy against resistant acute myeloid leukemia. Biomed Pharmacother 2023; 169:115905. [PMID: 38000356 DOI: 10.1016/j.biopha.2023.115905] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/01/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023] Open
Abstract
The therapeutic benefits of available FLT3 inhibitors for AML are limited by drug resistance, which is related to mutations, as well toxicity caused by off-target effects. In this study, we introduce a new small molecule FLT3 inhibitor called danatinib, which was designed to overcome the limitations of currently approved agents. Danatinib demonstrated greater potency and selectivity, resulting in cytotoxic activity specific to FLT3-ITD and/or FLT3-TKD mutated models. It also showed a superior kinome inhibition profile compared to several currently approved FLT3 inhibitors. In diverse FLT3-TKD models, danatinib exhibited substantially improved activity at clinically relevant doses, outperforming approved FLT3 inhibitors. In vivo safety evaluations performed on the granulopoiesis of transgenic myeloperoxidase (MPO) zebrafish and mice models proved danatinib to have an acceptable safety profile. Danatinib holds promise as a new and improved FLT3 inhibitor for the treatment of AML, offering long-lasting remissions and improved overall survival rates.
Collapse
Affiliation(s)
- Shan-Liang Sun
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China; Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Jia-Zhen Wu
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Jing-Jing Wang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Hai Zhou
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Chen-Qian Zhang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China; School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China
| | - Zhen-Jiang Tong
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Yi-Bo Wang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Jiu-Kai Sha
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Qing-Xin Wang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Jia-Chuan Liu
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Xin-Rui Zheng
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China; School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China
| | - Qing-Qing Li
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Meng-Yuan Zhang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Jin Yang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Tian-Hua Wei
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Zi-Xuan Wang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Yan-Cheng Yu
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Ning Ding
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Xue-Jiao Leng
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Xin Xue
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - He-Min Li
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Wei-Chen Dai
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Xiao-Ying Yin
- School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Ye Yang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China.
| | - Jin-Ao Duan
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China.
| | - Nian-Guang Li
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China.
| | - Zhi-Hao Shi
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, China.
| |
Collapse
|
5
|
Wang QX, Wang YB, Sha JK, Zhou H, Liu JC, Wu JZ, Tong ZJ, Cai J, Chen ZJ, Zhang CQ, Zheng XR, Wang JJ, Wang XL, Xue X, Yu YC, Ding N, Leng XJ, Dai WC, Sun SL, Chang L, Li NG, Shi ZH. Discovery of 4-(4-aminophenyl)-6-phenylisoxazolo[3,4-b]pyridine-3-amine derivatives as novel FLT3 covalent inhibitors for the intervention of acute myeloid leukemia. Drug Dev Res 2023; 84:296-311. [PMID: 36644989 DOI: 10.1002/ddr.22032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/15/2022] [Accepted: 12/31/2022] [Indexed: 01/17/2023]
Abstract
Small molecule covalent drugs have proved to be desirable therapies especially on drug resistance related to point mutations. Secondary mutations of FLT3 have become the main mechanism of FLT3 inhibitors resistance which further causes the failure of treatment. Herein, a series of 4-(4-aminophenyl)-6-phenylisoxazolo[3,4-b]pyridine-3-amine covalent derivatives were synthesized and optimized to overcome the common secondary resistance mutations of FLT3. Among these derivatives, compound F15 displayed potent inhibition activities against FLT3 (IC50 = 123 nM) and FLT3-internal tandem duplication (ITD) by 80% and 26.06%, respectively, at the concentration of 1 μM. Besides, F15 exhibited potent activity against FLT3-dependent human acute myeloid leukemia (AML) cell lines MOLM-13 (IC50 = 253 nM) and MV4-11 (IC50 = 91 nM), as well as BaF3 cells with variety of secondary mutations. Furthermore, cellular mechanism assays indicated that F15 inhibited phosphorylation of FLT3 and its downstream signaling factors. Notably, F15 could be considered for further development as potential drug candidate to treat AML.
Collapse
Affiliation(s)
- Qing-Xin Wang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yi-Bo Wang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Jiu-Kai Sha
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Hai Zhou
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Jia-Chuan Liu
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Jia-Zhen Wu
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Zhen-Jiang Tong
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Jiao Cai
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Zi-Jun Chen
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Chen-Qian Zhang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Xin-Rui Zheng
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Jing-Jing Wang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Xiao-Long Wang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Xin Xue
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yan-Cheng Yu
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Ning Ding
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Xue-Jiao Leng
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Wei-Chen Dai
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Shan-Liang Sun
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Liang Chang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Nian-Guang Li
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Zhi-Hao Shi
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, Nanjing, Jiangsu, China
| |
Collapse
|
6
|
Design and synthesis of selective FLT3 inhibitors via exploration of back pocket II. Future Med Chem 2023; 15:57-71. [PMID: 36651264 DOI: 10.4155/fmc-2022-0231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Aim: The clinical benefits of FLT3 inhibitors against acute myeloid leukemia (AML) have been limited by selectivity and resistance mutations. Thus, to identify FLT3 inhibitors possessing high selectivity and potency is of necessity. Methods & results: The authors used computational methods to systematically compare pocket similarity with 269 kinases. Subsequently, based on these investigations and beginning with in-house compound 10, they synthesized a series of 6-methyl-isoxazol[3,4-b]pyridine-3-amino derivatives and identified that compound 45 (IC50: 103 nM) displayed gratifying potency in human AML cell lines with FLT3-internal tandem duplications mutation as well as FLT3-internal tandem duplications-tyrosine kinase domain-transformed BaF3 cells. Conclusion: The integrated biological activity results indicated that compound 45 deserves further development for therapeutic remedies for AML.
Collapse
|