1
|
Nerush MO, Shevyrin VA, Golushko NI, Moskalenko AM, Rosemberg DB, De Abreu MS, Yang LE, Galstyan DS, Lim LW, Demin KA, Kalueff AV. Classics in Chemical Neuroscience: Deliriant Antihistaminic Drugs. ACS Chem Neurosci 2024; 15:3848-3862. [PMID: 39404616 DOI: 10.1021/acschemneuro.4c00505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024] Open
Abstract
Antihistaminic drugs are widely used clinically and have long been primarily known for their use to treat severe allergic conditions caused by histamine release. Antihistaminic drugs also exert central nervous system (CNS) effects, acting as anxiolytics, hypnotics, and neuroleptics. However, these drugs also have multiple serious neuropharmacological side-effects, inducing delirium, hyperarousal, disorganized behavior, and hallucinations. Due to their robust CNS effects, antihistamines are also increasingly abused, with occasional overdoses and life-threatening toxicity. Here, we discuss chemical and neuropharmacological aspects of antihistaminic drugs in both human and animal (experimental) models and outline their current societal and mental health importance as neuroactive substances.
Collapse
Affiliation(s)
- Maria O Nerush
- Institute of Translational Biomedicine (ITBM), St. Petersburg State University, St. Petersburg 199034, Russia
- Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg 197341, Russia
| | | | - Nikita I Golushko
- Institute of Translational Biomedicine (ITBM), St. Petersburg State University, St. Petersburg 199034, Russia
| | | | - Denis B Rosemberg
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, Santa Maria 97105-900, Brazil
| | - Murilo S De Abreu
- Graduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre 90050-170, Brazil
- Western Caspian University, Baku 1001, Azerbaijan
| | - Long-En Yang
- Department of Biological Sciences, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou 215000, P. R. China
- Suzhou Key Laboratory of Neurobiology and Cell Signaling, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou 215000, P. R. China
| | - David S Galstyan
- Institute of Translational Biomedicine (ITBM), St. Petersburg State University, St. Petersburg 199034, Russia
- Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg 197341, Russia
| | - Lee Wei Lim
- Department of Biological Sciences, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou 215000, P. R. China
- Suzhou Key Laboratory of Neurobiology and Cell Signaling, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou 215000, P. R. China
| | - Konstantin A Demin
- Institute of Translational Biomedicine (ITBM), St. Petersburg State University, St. Petersburg 199034, Russia
- Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg 197341, Russia
| | - Allan V Kalueff
- Institute of Translational Biomedicine (ITBM), St. Petersburg State University, St. Petersburg 199034, Russia
- Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg 197341, Russia
- Department of Biological Sciences, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou 215000, P. R. China
- Suzhou Key Laboratory of Neurobiology and Cell Signaling, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou 215000, P. R. China
| |
Collapse
|
2
|
Gurov AV, Muzhichkova AV, Yushkina MA. [Pathogenetic approach in the treatment of inflammatory diseases of the nose and paranasal sinuses]. Vestn Otorinolaringol 2023; 88:91-96. [PMID: 37970776 DOI: 10.17116/otorino20238805191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
In recent years, inflammatory diseases of the nose and paranasal sinuses have been on the rise. In addition to infectious diseases, in the modern world a large percentage of the population suffers from allergic diseases. The approach to therapy and the choice of a drug should take into account the pathogenesis of the inflammatory reaction in the nasal cavity and paranasal sinuses. By exerting its effect, the drug should reduce hyperemia and swelling of the nasal mucosa, reduce the level of mucus secretion, improve the drainage of the paranasal sinuses, i.e. possess vasoconstrictive and anti-allergic properties. As such a drug, you can use the combined intranasal spray Frinozol, which basically contains cetirizine and phenylephrine. The use of Frinozol in the complex treatment of inflammation of the mucous membrane of the nasal cavity and paranasal sinuses contributes to the rapid and pronounced weakening of the symptoms of the disease, and is also the key to successful therapy.
Collapse
Affiliation(s)
- A V Gurov
- Sverzhevsky Research Clinical Institute of Otorhinolaryngology, Moscow, Russia
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - A V Muzhichkova
- Sverzhevsky Research Clinical Institute of Otorhinolaryngology, Moscow, Russia
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - M A Yushkina
- Sverzhevsky Research Clinical Institute of Otorhinolaryngology, Moscow, Russia
- Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
3
|
Fan W, Verrier C, Queneau Y, Popowycz F. 5-Hydroxymethylfurfural (HMF) in Organic Synthesis: A Review of its Recent Applications Towards Fine Chemicals. Curr Org Synth 2019; 16:583-614. [DOI: 10.2174/1570179416666190412164738] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 02/11/2019] [Accepted: 03/11/2019] [Indexed: 12/25/2022]
Abstract
Background:
5-Hydroxymethylfurfural (5-HMF) is a biomass-derived
platform chemical, which can be produced from carbohydrates. In the past decades, 5-
HMF has received tremendous attention because of its wide applications in the
production of various value-added chemicals, materials and biofuels. The manufacture
and the catalytic conversion of 5-HMF to simple industrially-important bulk chemicals
have been well reviewed. However, employing 5-HMF as a building block in organic
synthesis has never been summarized exclusively, despite the rapid development in this
area.
Objective:
The aim of this review is to bring a fresh perspective on the use of 5-HMF in
organic synthesis, to the exclusion of already well documented conversion of 5-HMF
towards relatively simple molecules such as 2,5-furandicarboxylic acid, 2,5-dimethylfuran and so on notably
used as monomers or biofuels.
Conclusion:
As it has been shown throughout this review, 5-HMF has been the object of numerous studies on
its use in fine chemical synthesis. Thanks to the presence of different functional groups on this platform
chemical, it proved to be an excellent starting material for the preparation of various fine chemicals. The use of
this C-6 synthon in novel synthetic routes is appealing, as it allows the incorporation of renewable carbonsources
into the final targets.
Collapse
Affiliation(s)
- Weigang Fan
- Universite de Lyon, ICBMS, UMR 5246, CNRS, Universite Lyon 1, INSA Lyon, CPE Lyon, Batiment Edgar Lederer, F-69622 Villeurbanne Cedex, France
| | - Charlie Verrier
- Universite de Lyon, ICBMS, UMR 5246, CNRS, Universite Lyon 1, INSA Lyon, CPE Lyon, Batiment Edgar Lederer, F-69622 Villeurbanne Cedex, France
| | - Yves Queneau
- Universite de Lyon, ICBMS, UMR 5246, CNRS, Universite Lyon 1, INSA Lyon, CPE Lyon, Batiment Edgar Lederer, F-69622 Villeurbanne Cedex, France
| | - Florence Popowycz
- Universite de Lyon, ICBMS, UMR 5246, CNRS, Universite Lyon 1, INSA Lyon, CPE Lyon, Batiment Edgar Lederer, F-69622 Villeurbanne Cedex, France
| |
Collapse
|
4
|
Motokucho S, Morikawa H, Nakatani H, Noordover BA. Efficient and environmental-friendly dehydration of fructose to 5-hydroxymethyl-2-furfural in water under high pressure of CO2. Tetrahedron Lett 2016. [DOI: 10.1016/j.tetlet.2016.09.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
5
|
Panula P, Chazot PL, Cowart M, Gutzmer R, Leurs R, Liu WLS, Stark H, Thurmond RL, Haas HL. International Union of Basic and Clinical Pharmacology. XCVIII. Histamine Receptors. Pharmacol Rev 2016; 67:601-55. [PMID: 26084539 DOI: 10.1124/pr.114.010249] [Citation(s) in RCA: 390] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Histamine is a developmentally highly conserved autacoid found in most vertebrate tissues. Its physiological functions are mediated by four 7-transmembrane G protein-coupled receptors (H1R, H2R, H3R, H4R) that are all targets of pharmacological intervention. The receptors display molecular heterogeneity and constitutive activity. H1R antagonists are long known antiallergic and sedating drugs, whereas the H2R was identified in the 1970s and led to the development of H2R-antagonists that revolutionized stomach ulcer treatment. The crystal structure of ligand-bound H1R has rendered it possible to design new ligands with novel properties. The H3R is an autoreceptor and heteroreceptor providing negative feedback on histaminergic and inhibition on other neurons. A block of these actions promotes waking. The H4R occurs on immuncompetent cells and the development of anti-inflammatory drugs is anticipated.
Collapse
Affiliation(s)
- Pertti Panula
- Department of Anatomy, and Neuroscience Center, University of Helsinki, Finland (P.P.); School of Biological and Biomedical Sciences, University of Durham, United Kingdom (P.L.C.); AbbVie, Inc. North Chicago, Illinois (M.C.); Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany (R.G.); Department of Medicinal Chemistry, Amsterdam Institute of Molecules, Medicines and Systems, VU University Amsterdam, The Netherlands (R.L.); Ziarco Pharma Limited, Canterbury, United Kingdom (W.L.S.L.); Institute of Pharmaceutical and Medical Chemistry and Institute of Neurophysiology, Medical Faculty, Westfalische-Wilhelms-University, Muenster, Germany (H.L.H.); Heinrich-Heine-University Duesseldorf, Germany (H.S.); and Janssen Research & Development, LLC, San Diego, California (R.L.T.)
| | - Paul L Chazot
- Department of Anatomy, and Neuroscience Center, University of Helsinki, Finland (P.P.); School of Biological and Biomedical Sciences, University of Durham, United Kingdom (P.L.C.); AbbVie, Inc. North Chicago, Illinois (M.C.); Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany (R.G.); Department of Medicinal Chemistry, Amsterdam Institute of Molecules, Medicines and Systems, VU University Amsterdam, The Netherlands (R.L.); Ziarco Pharma Limited, Canterbury, United Kingdom (W.L.S.L.); Institute of Pharmaceutical and Medical Chemistry and Institute of Neurophysiology, Medical Faculty, Westfalische-Wilhelms-University, Muenster, Germany (H.L.H.); Heinrich-Heine-University Duesseldorf, Germany (H.S.); and Janssen Research & Development, LLC, San Diego, California (R.L.T.)
| | - Marlon Cowart
- Department of Anatomy, and Neuroscience Center, University of Helsinki, Finland (P.P.); School of Biological and Biomedical Sciences, University of Durham, United Kingdom (P.L.C.); AbbVie, Inc. North Chicago, Illinois (M.C.); Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany (R.G.); Department of Medicinal Chemistry, Amsterdam Institute of Molecules, Medicines and Systems, VU University Amsterdam, The Netherlands (R.L.); Ziarco Pharma Limited, Canterbury, United Kingdom (W.L.S.L.); Institute of Pharmaceutical and Medical Chemistry and Institute of Neurophysiology, Medical Faculty, Westfalische-Wilhelms-University, Muenster, Germany (H.L.H.); Heinrich-Heine-University Duesseldorf, Germany (H.S.); and Janssen Research & Development, LLC, San Diego, California (R.L.T.)
| | - Ralf Gutzmer
- Department of Anatomy, and Neuroscience Center, University of Helsinki, Finland (P.P.); School of Biological and Biomedical Sciences, University of Durham, United Kingdom (P.L.C.); AbbVie, Inc. North Chicago, Illinois (M.C.); Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany (R.G.); Department of Medicinal Chemistry, Amsterdam Institute of Molecules, Medicines and Systems, VU University Amsterdam, The Netherlands (R.L.); Ziarco Pharma Limited, Canterbury, United Kingdom (W.L.S.L.); Institute of Pharmaceutical and Medical Chemistry and Institute of Neurophysiology, Medical Faculty, Westfalische-Wilhelms-University, Muenster, Germany (H.L.H.); Heinrich-Heine-University Duesseldorf, Germany (H.S.); and Janssen Research & Development, LLC, San Diego, California (R.L.T.)
| | - Rob Leurs
- Department of Anatomy, and Neuroscience Center, University of Helsinki, Finland (P.P.); School of Biological and Biomedical Sciences, University of Durham, United Kingdom (P.L.C.); AbbVie, Inc. North Chicago, Illinois (M.C.); Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany (R.G.); Department of Medicinal Chemistry, Amsterdam Institute of Molecules, Medicines and Systems, VU University Amsterdam, The Netherlands (R.L.); Ziarco Pharma Limited, Canterbury, United Kingdom (W.L.S.L.); Institute of Pharmaceutical and Medical Chemistry and Institute of Neurophysiology, Medical Faculty, Westfalische-Wilhelms-University, Muenster, Germany (H.L.H.); Heinrich-Heine-University Duesseldorf, Germany (H.S.); and Janssen Research & Development, LLC, San Diego, California (R.L.T.)
| | - Wai L S Liu
- Department of Anatomy, and Neuroscience Center, University of Helsinki, Finland (P.P.); School of Biological and Biomedical Sciences, University of Durham, United Kingdom (P.L.C.); AbbVie, Inc. North Chicago, Illinois (M.C.); Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany (R.G.); Department of Medicinal Chemistry, Amsterdam Institute of Molecules, Medicines and Systems, VU University Amsterdam, The Netherlands (R.L.); Ziarco Pharma Limited, Canterbury, United Kingdom (W.L.S.L.); Institute of Pharmaceutical and Medical Chemistry and Institute of Neurophysiology, Medical Faculty, Westfalische-Wilhelms-University, Muenster, Germany (H.L.H.); Heinrich-Heine-University Duesseldorf, Germany (H.S.); and Janssen Research & Development, LLC, San Diego, California (R.L.T.)
| | - Holger Stark
- Department of Anatomy, and Neuroscience Center, University of Helsinki, Finland (P.P.); School of Biological and Biomedical Sciences, University of Durham, United Kingdom (P.L.C.); AbbVie, Inc. North Chicago, Illinois (M.C.); Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany (R.G.); Department of Medicinal Chemistry, Amsterdam Institute of Molecules, Medicines and Systems, VU University Amsterdam, The Netherlands (R.L.); Ziarco Pharma Limited, Canterbury, United Kingdom (W.L.S.L.); Institute of Pharmaceutical and Medical Chemistry and Institute of Neurophysiology, Medical Faculty, Westfalische-Wilhelms-University, Muenster, Germany (H.L.H.); Heinrich-Heine-University Duesseldorf, Germany (H.S.); and Janssen Research & Development, LLC, San Diego, California (R.L.T.)
| | - Robin L Thurmond
- Department of Anatomy, and Neuroscience Center, University of Helsinki, Finland (P.P.); School of Biological and Biomedical Sciences, University of Durham, United Kingdom (P.L.C.); AbbVie, Inc. North Chicago, Illinois (M.C.); Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany (R.G.); Department of Medicinal Chemistry, Amsterdam Institute of Molecules, Medicines and Systems, VU University Amsterdam, The Netherlands (R.L.); Ziarco Pharma Limited, Canterbury, United Kingdom (W.L.S.L.); Institute of Pharmaceutical and Medical Chemistry and Institute of Neurophysiology, Medical Faculty, Westfalische-Wilhelms-University, Muenster, Germany (H.L.H.); Heinrich-Heine-University Duesseldorf, Germany (H.S.); and Janssen Research & Development, LLC, San Diego, California (R.L.T.)
| | - Helmut L Haas
- Department of Anatomy, and Neuroscience Center, University of Helsinki, Finland (P.P.); School of Biological and Biomedical Sciences, University of Durham, United Kingdom (P.L.C.); AbbVie, Inc. North Chicago, Illinois (M.C.); Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany (R.G.); Department of Medicinal Chemistry, Amsterdam Institute of Molecules, Medicines and Systems, VU University Amsterdam, The Netherlands (R.L.); Ziarco Pharma Limited, Canterbury, United Kingdom (W.L.S.L.); Institute of Pharmaceutical and Medical Chemistry and Institute of Neurophysiology, Medical Faculty, Westfalische-Wilhelms-University, Muenster, Germany (H.L.H.); Heinrich-Heine-University Duesseldorf, Germany (H.S.); and Janssen Research & Development, LLC, San Diego, California (R.L.T.)
| |
Collapse
|
6
|
Schmidt NG, Simon RC, Kroutil W. Biocatalytic Asymmetric Synthesis of Optically Pure Aromatic Propargylic Amines Employing ω-Transaminases. Adv Synth Catal 2015. [DOI: 10.1002/adsc.201500086] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
7
|
van Putten RJ, van der Waal JC, de Jong E, Rasrendra CB, Heeres HJ, de Vries JG. Hydroxymethylfurfural, A Versatile Platform Chemical Made from Renewable Resources. Chem Rev 2013; 113:1499-597. [DOI: 10.1021/cr300182k] [Citation(s) in RCA: 2009] [Impact Index Per Article: 167.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Robert-Jan van Putten
- Avantium Chemicals, Zekeringstraat 29, 1014 BV Amsterdam, the Netherlands
- Department of Chemical Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands
| | | | - Ed de Jong
- Avantium Chemicals, Zekeringstraat 29, 1014 BV Amsterdam, the Netherlands
| | - Carolus B. Rasrendra
- Department of Chemical Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands
- Department of Chemical Engineering, Institut Teknologi Bandung, Ganesha 10, Bandung 40132, Indonesia
| | - Hero J. Heeres
- Department of Chemical Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands
| | - Johannes G. de Vries
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands
- DSM Innovative Synthesis BV, P.O. Box 18, 6160 MD Geleen, the Netherlands
| |
Collapse
|
8
|
Kim SH, Rieke RD. 5-Substituted-2-furaldehydes: A Synthetic Protocol Utilizing an Organozinc Route. J Org Chem 2012; 78:1984-93. [DOI: 10.1021/jo301836x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Seung-Hoi Kim
- Department of Chemistry, Dankook University, 29 Anseo, Cheonan 330-714, Korea
| | - Reuben D. Rieke
- Rieke Metals, Inc., 1001 Kingbird Rd., Lincoln, Nebraska 68521, United States
| |
Collapse
|
9
|
Boatman PD, Lauring B, Schrader TO, Kasem M, Johnson BR, Skinner P, Jung JK, Xu J, Cherrier MC, Webb PJ, Semple G, Sage CR, Knudsen J, Chen R, Luo WL, Caro L, Cote J, Lai E, Wagner J, Taggart AK, Carballo-Jane E, Hammond M, Colletti SL, Tata JR, Connolly DT, Waters MG, Richman JG. (1aR,5aR)1a,3,5,5a-Tetrahydro-1H-2,3-diaza-cyclopropa[a]pentalene-4-carboxylic acid (MK-1903): a potent GPR109a agonist that lowers free fatty acids in humans. J Med Chem 2012; 55:3644-66. [PMID: 22435740 DOI: 10.1021/jm2010964] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
G-protein coupled receptor (GPCR) GPR109a is a molecular target for nicotinic acid and is expressed in adipocytes, spleen, and immune cells. Nicotinic acid has long been used for the treatment of dyslipidemia due to its capacity to positively affect serum lipids to a greater extent than other currently marketed drugs. We report a series of tricyclic pyrazole carboxylic acids that are potent and selective agonists of GPR109a. Compound R,R-19a (MK-1903) was advanced through preclinical studies, was well tolerated, and presented no apparent safety concerns. Compound R,R-19a was advanced into a phase 1 clinical trial and produced a robust decrease in plasma free fatty acids. On the basis of these results, R,R-19a was evaluated in a phase 2 study in humans. Because R,R-19a produced only a weak effect on serum lipids as compared with niacin, we conclude that the beneficial effects of niacin are most likely the result of an undefined GPR109a independent pathway.
Collapse
Affiliation(s)
- P Douglas Boatman
- Department of Medicinal Chemistry, Arena Pharmaceuticals, 6166 Nancy Ridge Drive, San Diego, California 92121, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Zhu M, Li L, Tong JY, Zhang H. An effective method for the preparation of chlorolactones. CHINESE CHEM LETT 2011. [DOI: 10.1016/j.cclet.2010.11.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
A convenient synthesis of 5-aryl- and 5-heteroaryl-2-furaldehydes by the cross-coupling reaction of organozincs. Tetrahedron Lett 2010. [DOI: 10.1016/j.tetlet.2010.03.035] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
12
|
Ronad P, Dharbamalla S, Hunshal R, Maddi V. Synthesis of Novel Substituted 7-(Benzylideneamino)-4-Methyl-2H-Chromen-2-one Derivatives as Anti-inflammatory and Analgesic Agents. Arch Pharm (Weinheim) 2008; 341:696-700. [PMID: 18973171 DOI: 10.1002/ardp.200800057] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Pradeepkumar Ronad
- Department of Pharmaceutical Chemistry, NGSM Institute of Pharmaceutical Sciences, Nanthoor, Mangalore, Karnataka, India.
| | | | | | | |
Collapse
|
13
|
Bosiak MJ, Krzemiński MP, Jaisankar P, Zaidlewicz M. Asymmetric synthesis of N-1-(heteroaryl)ethyl-N-hydroxyureas. ACTA ACUST UNITED AC 2008. [DOI: 10.1016/j.tetasy.2008.03.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
14
|
|
15
|
Werz O, Steinhilber D. Therapeutic options for 5-lipoxygenase inhibitors. Pharmacol Ther 2006; 112:701-18. [PMID: 16837050 DOI: 10.1016/j.pharmthera.2006.05.009] [Citation(s) in RCA: 197] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2006] [Accepted: 05/26/2006] [Indexed: 12/27/2022]
Abstract
5-Lipoxygenase (5-LO) catalyzes the conversion of arachidonic acid (AA) into leukotriene (LT) A(4) and 5-hydroperoxyeicosatetraenoic acid. LTA(4) can then be converted into LTB(4) by LTA(4) hydrolase or into LTC(4) by LTC(4) synthase and the LTC(4) synthase isoenzymes MGST2 and MGST3. LTB(4) is a potent chemoattractant for neutrophils, eosinophils and monocytes leading to adherence of phagocytes to vessel walls, neutrophil degranulation and release of superoxide anions. LTC(4) and its metabolite, LTD(4), are potent bronchoconstrictors that increase vascular permeability and stimulate mucus secretion from airways. Recent data also suggest that LT have an immunomodulatory role. Due to these properties, the increased biosynthesis of LT in asthma, and based upon clinical data obtained with CysLT(1) receptor antagonists in asthma patients, there is a consensus that CysLT play a prominent role in asthma. In this review, we summarize the knowledge on possible functions of the 5-LO pathway in various diseases like asthma, cancer and cardiovascular events and review the corresponding potential therapeutic roles of 5-LO inhibitors.
Collapse
Affiliation(s)
- Oliver Werz
- Pharmaceutical Institute, University of Tübingen, Auf der Morgenstelle 8, D-72076 Tübingen, Germany
| | | |
Collapse
|
16
|
Grimm EL, Brideau C, Chauret N, Chan CC, Delorme D, Ducharme Y, Ethier D, Falgueyret JP, Friesen RW, Guay J, Hamel P, Riendeau D, Soucy-Breau C, Tagari P, Girard Y. Substituted coumarins as potent 5-lipoxygenase inhibitors. Bioorg Med Chem Lett 2006; 16:2528-31. [PMID: 16464579 DOI: 10.1016/j.bmcl.2006.01.085] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2005] [Revised: 01/19/2006] [Accepted: 01/19/2006] [Indexed: 11/19/2022]
Abstract
Leukotriene biosynthesis inhibitors have potential as therapeutic agents for asthma and inflammatory diseases. A novel series of substituted coumarin derivatives has been synthesized and the structure-activity relationship was evaluated with respect to their ability to inhibit the formation of leukotrienes via the human 5-lipoxygenase enzyme.
Collapse
Affiliation(s)
- Erich L Grimm
- Merck Frosst Centre for Therapeutic Research, 16711 Trans Canada Hwy, Kirkland, Que., Canada H9H 3L1.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Pommery N, Massingham R, Hénichart JP. 5-Lipoxygenase inhibitors – patent and literature activity during 2001 – 2004. Expert Opin Ther Pat 2005. [DOI: 10.1517/13543776.16.1.13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
18
|
Werz O, Steinhilber D. Pharmacological intervention with 5-lipoxygenase: new insights and novel compounds. Expert Opin Ther Pat 2005. [DOI: 10.1517/13543776.15.5.505] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
19
|
Lewis TA, Bayless L, DiPesa AJ, Eckman JB, Gillard M, Libertine L, Scannell RT, Wypij DM, Young MA. 5-Lipoxygenase inhibition by N-hydroxycarbamates in dual-function compounds. Bioorg Med Chem Lett 2005; 15:1083-5. [PMID: 15686917 DOI: 10.1016/j.bmcl.2004.12.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2004] [Revised: 12/06/2004] [Accepted: 12/09/2004] [Indexed: 11/24/2022]
Abstract
A series of N-hydroxycarbamates containing a histaminergic H(1) receptor antagonist pharmacophore was synthesized. In vitro assays determined the compounds had both histaminergic binding and 5-lipoxygenase inhibiting activities comparable to the corresponding N-hydroxyurea analog. Animal models demonstrated antihistaminergic and the 5-lipopxygenase inhibitory activity, with the N-hydroxyurea analog having a better overall profile.
Collapse
|
20
|
Lewis TA, Young MA, Arrington MP, Bayless L, Cai X, Collart P, Eckman JB, Ellis JL, Ene DG, Libertine L, Nicolas JM, Scannell RT, Wels BF, Wenberg K, Wypij DM. Cetirizine and loratadine-based antihistamines with 5-lipoxygenase inhibitory activity. Bioorg Med Chem Lett 2004; 14:5591-4. [PMID: 15482930 DOI: 10.1016/j.bmcl.2004.08.060] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2004] [Revised: 08/25/2004] [Accepted: 08/26/2004] [Indexed: 10/26/2022]
Abstract
A series of compounds possessing both H(1) histamine receptor antagonist and 5-lipoxygenase (5-LO) inhibitory activities was synthesized. The H(1)-binding scaffolds of cetirizine, efletirizine, and loratadine were linked to a lipophilic N-hydroxyurea, the 5-LO inhibiting moiety of zileuton. Both activities were observed in vivo, as was increased CYP3A4 inhibition compared to their respective single-function drugs. Selected analogs in the series were shown to be orally active in guinea pig models.
Collapse
|