1
|
The Therapeutic Potential of 2-{[4-(2-methoxyphenyl)piperazin-1-yl]alkyl}-1H-benzo[d]imidazoles as Ligands for Alpha1-Adrenergic Receptor - Comparative In Silico and In Vitro Study. Appl Biochem Biotechnol 2022; 194:3749-3764. [PMID: 35507251 DOI: 10.1007/s12010-022-03922-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2022] [Indexed: 11/02/2022]
Abstract
Adrenergic receptors are among the most studied G protein-coupled receptors. Activation or blockade of these receptors is a major therapeutic approach for the treatment of numerous disorders such as cardiac hypertrophy, congestive heart failure, hypertension, angina pectoris, cardiac arrhythmias, depression, benign prostate hyperplasia, anaphylaxis, asthma, and hyperthyroidism. Among all nine cloned adrenoceptor subtypes and the subsequent development of animal models, a significant target for various neurological conditions treatment is alpha1-adrenergic receptors. 2-{[4-(2-Methoxyphenyl)piperazin-1-yl]alkyl}-1H-benzo[d]imidazoles, their 5 substituted derivatives, and structurally similar, arylpiperazine based alpha1-adrenergic receptors antagonists (trazodone, naftopidil, and urapidil) have been subjects of comparative analysis. Most of the novel compounds showed alpha1-adrenergic affinity in the range from 22 nM to 250 nM. The in silico docking and molecular dynamics simulations, binding data together with absorption, distribution, metabolism, and excretion (ADME) calculations identified the promising lead compounds. The results brought out the conclusions which allowed us to propose a rationale for the activity of these molecules and to highlight six compounds (2-5, 8, and 12) that exhibited an acceptable pharmacokinetic profile to the advanced investigation as the potential alpha1-adrenergic receptor antagonists.
Collapse
|
2
|
Microwave synthesis, biological evaluation and docking studies of 2-substituted methyl 1-(4-fluorophenyl)-1H-benzimidazole-5-carboxylates. Med Chem Res 2017. [DOI: 10.1007/s00044-016-1763-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
3
|
Penjišević JZ, Šukalović VV, Andrić DB, Roglić GM, Šoškić V, Kostić-Rajačić SV. Synthesis, Biological, and Computational Evaluation of Substituted 1-(2-Methoxyphenyl)-4-(1-phenethylpiperidin-4-yl)piperazines and 1-(2-Methoxyphenyl)-4-[(1-phenethylpiperidin-4-yl)methyl]piperazines as Dopaminergic Ligands. Arch Pharm (Weinheim) 2016; 349:614-26. [PMID: 27335270 DOI: 10.1002/ardp.201600081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Revised: 06/03/2016] [Accepted: 06/06/2016] [Indexed: 11/05/2022]
Abstract
Sixteen new 1-(2-methoxyphenyl)-4-(1-phenethylpiperidin-4-yl)piperazines and 1-(2-methoxyphenyl)-4-[(1-phenethylpiperidin-4-yl)methyl]piperazines were synthesized to be used as probes for mapping the dopamine D2 receptor (D2 DAR) arylpiperazine binding site. All compounds were evaluated for their affinity toward D2 DAR in an in vitro competitive displacement assay. The most active one was 1-(2-methoxyphenyl)-4-{[1-(3-nitrophenethyl)piperidin-4-yl]methyl}piperazine (25) with an affinity of Ki = 54 nM. Docking analysis was conducted on all herein described compounds, whereas molecular dynamic simulation was performed on ligand 25 to establish its mode of interaction with D2 DAR. Two possible docking orientations are proposed; the one with a salt bridge between the piperidine moiety and Asp114 of D2 DAR is more stable.
Collapse
Affiliation(s)
| | | | - Deana B Andrić
- Faculty of Chemistry, University of Belgrade, Belgrade, Serbia
| | - Goran M Roglić
- Faculty of Chemistry, University of Belgrade, Belgrade, Serbia
| | | | | |
Collapse
|
4
|
Piperazine scaffold: A remarkable tool in generation of diverse pharmacological agents. Eur J Med Chem 2015; 102:487-529. [PMID: 26310894 DOI: 10.1016/j.ejmech.2015.07.026] [Citation(s) in RCA: 142] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 07/13/2015] [Accepted: 07/15/2015] [Indexed: 12/21/2022]
Abstract
Piperazine is one of the most sought heterocyclics for the development of new drug candidates. This ring can be traced in a number of well established, commercially available drugs. Wide array of pharmacological activities exhibited by piperazine derivatives have made them indispensable anchors for the development of novel therapeutic agents. The review herein highlights the therapeutic significance of piperazine derivatives. Various therapeutically active piperazine derivatives developed by several chemists are reported here.
Collapse
|
5
|
Sencanski M, Sukalovic V, Shakib K, Soskic V, Dosen-Micovic L, Kostic-Rajacic S. Molecular modeling of 5HT2A receptor - arylpiperazine ligands interactions. Chem Biol Drug Des 2015; 83:462-71. [PMID: 24772489 DOI: 10.1111/cbdd.12261] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In this paper, we report the molecular modeling of the 5HT2A receptor and the molecular docking of arylpiperazine-like ligands. The focus of the research was on explaining the effects the ligand structure has on the binding properties of the 5HT2A receptor and on the key interactions between the ligands and the receptor-binding site. To see what the receptor–ligand interactions were, various substituents were introduced in one part of the ligand, keeping the rest unchanged. In this way, using a docking analysis on the proposed 5HT2A receptor model, we identified key receptor–ligand interactions and determined their properties. Those properties were correlated with experimentally determined binding affinities in order to determine the structure to activity relationship of the examined compounds.
Collapse
|
6
|
Bajaj K, Sakhuja R. Benzotriazole: Much More Than Just Synthetic Heterocyclic Chemistry. TOPICS IN HETEROCYCLIC CHEMISTRY 2015. [DOI: 10.1007/7081_2015_198] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
7
|
Ye N, Neumeyer JL, Baldessarini RJ, Zhen X, Zhang A. Update 1 of: Recent Progress in Development of Dopamine Receptor Subtype-Selective Agents: Potential Therapeutics for Neurological and Psychiatric Disorders. Chem Rev 2013; 113:PR123-78. [DOI: 10.1021/cr300113a] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Na Ye
- CAS Key Laboratory of Receptor Research, and Synthetic Organic & Medicinal Chemistry Laboratory (SOMCL), Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, China 201203
| | - John L. Neumeyer
- Medicinal Chemistry Laboratory,
McLean Hospital, Harvard Medical School, Massachusetts 02478, United States
| | | | - Xuechu Zhen
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China 215123
| | - Ao Zhang
- CAS Key Laboratory of Receptor Research, and Synthetic Organic & Medicinal Chemistry Laboratory (SOMCL), Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, China 201203
| |
Collapse
|
8
|
Kowalski P, Mitka K, Jaśkowska J, Duszyńska B, Bojarski AJ. New arylpiperazines with flexible versus partly constrained linker as serotonin 5-HT(1A)/5-HT(7) receptor ligands. Arch Pharm (Weinheim) 2013; 346:339-48. [PMID: 23609855 DOI: 10.1002/ardp.201300011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 01/08/2013] [Accepted: 03/18/2013] [Indexed: 11/09/2022]
Abstract
A series of new long-chain arylpiperazine (LCAP) derivatives with flexible and partly constrained alkyl linker were synthesized and investigated in vitro as potential serotonin 5-HT(1A) and 5-HT(7) receptor ligands. The compounds were prepared by a two-step procedure using naphthalimide and 2H-1,3-benzoxazine-2,4(3H)-dione as imides, and 1-(2-methoxyphenyl)piperazine (o-OMe-PhP) and 1,2,3,4-tetrahydroisoquinoline (THIQ) as amine pharmacophores. Modifications of the spacer structure included introduction of flexible penta- and hexamethylene chains as well as partly constrained m- and p-xylyl moieties. In general, the new compounds were more active at the 5-HT(1A) than at the 5-HT(7) receptor, and the o-OMe-PhP derivatives displayed higher affinities than their respective THIQ analogs. The spacer modifications had little effect on the observed in vitro activities. Within the o-OMe-PhP series, except for a small binding reduction for ligands containing the m-xylyl moiety, there was no substantial change in the compounds' potency at both receptors, while for the THIQ derivatives a clear structure-activity relationship was visible only for the interaction of the compounds with the 5-HT(7) receptor, which strongly favored flexible analogs.
Collapse
Affiliation(s)
- Piotr Kowalski
- Cracow University of Technology, Institute of Organic Chemistry and Technology, Kraków, Poland.
| | | | | | | | | |
Collapse
|
9
|
Milošević NP, Dimova VB, Perišić-Janjić NU. RP TLC data in correlation studies with in silico pharmacokinetic properties of benzimidazole and benztriazole derivatives. Eur J Pharm Sci 2013; 49:10-7. [DOI: 10.1016/j.ejps.2013.01.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 12/20/2012] [Accepted: 01/30/2013] [Indexed: 11/26/2022]
|
10
|
Jain ZJ, Kankate RS, Chaudhari BN, Kakad RD. Action of benzimidazolo-piperazinyl derivatives on dopamine receptors. Med Chem Res 2013. [DOI: 10.1007/s00044-012-0055-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Zhang M, Guo XW, Zheng SC, Zhao XM. Enantioselective iridium-catalyzed allylation of sodium benzotriazolide: an efficient way to chiral allylbenzotriazoles. Tetrahedron Lett 2012. [DOI: 10.1016/j.tetlet.2012.10.064] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
12
|
Synthesis, computational studies, and preliminary pharmacological evaluation of new arylpiperazines as potential antipsychotics. Med Chem Res 2012. [DOI: 10.1007/s00044-011-9630-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
13
|
Ignjatović Đ, Vojnović Milutinović D, Nikolić-Kokić A, Slavić M, Andrić D, Tomić M, Kostić-Rajačić S. The mechanisms responsible for neuroprotective capacity of arylpiperazine dopaminergic ligands against cell death induced by sodium nitroprusside. Eur J Pharmacol 2012; 683:93-100. [DOI: 10.1016/j.ejphar.2012.03.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Revised: 02/27/2012] [Accepted: 03/04/2012] [Indexed: 11/29/2022]
|
14
|
Synthesis, computational studies and preliminary pharmacological evaluation of 2–[4-(aryl substituted) piperazin-1-yl] N, N-diphenylacetamides as potential antipsychotics. Eur J Med Chem 2011; 46:4753-9. [DOI: 10.1016/j.ejmech.2011.07.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Revised: 07/15/2011] [Accepted: 07/16/2011] [Indexed: 11/19/2022]
|
15
|
Liu W, Zhang D, Zheng S, Yue Y, Liu D, Zhao X. Enantioselective Palladium-Catalyzed Allylic Substitution of Sodium Benzotriazolide. European J Org Chem 2011. [DOI: 10.1002/ejoc.201100879] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
16
|
Tomić M, Vasković D, Tovilović G, Andrić D, Penjišević J, Kostić-Rajačić S. Pharmacological Evaluation of Halogenated and Non-halogenated Arylpiperazin-1-yl-ethyl-benzimidazoles as D2 and 5-HT2A Receptor Ligands. Arch Pharm (Weinheim) 2011; 344:287-91. [DOI: 10.1002/ardp.200900168] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Accepted: 11/20/2009] [Indexed: 11/06/2022]
|
17
|
Trifković J, Andrić F, Ristivojević P, Andrić D, Tešić ŽL, Milojković-Opsenica DM. Structure-retention relationship study of arylpiperazines by linear multivariate modeling. J Sep Sci 2010; 33:2619-28. [DOI: 10.1002/jssc.201000200] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
18
|
Synthesis and Pharmacological Studies for New Benzotriazole and Dibenzodiazepine Derivatives as Antipsychotic Agents. B KOREAN CHEM SOC 2009. [DOI: 10.5012/bkcs.2009.30.7.1445] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
19
|
Tomić M, Ignjatović D, Tovilović G, Andrić D, Roglić G, Kostić-Rajacić S. Two new phenylpiperazines with atypical antipsychotic potential. Bioorg Med Chem Lett 2007; 17:5749-53. [PMID: 17870534 DOI: 10.1016/j.bmcl.2007.08.066] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2007] [Revised: 08/22/2007] [Accepted: 08/28/2007] [Indexed: 10/22/2022]
Abstract
Two new series of substituted arylpiperazines with heterocyclic 3-propoxy-benzimidazole or 3-propoxy-benzimidazole-2-thione groups were synthesized and their in vitro binding affinities for the D(2), 5-HT(1A), 5-HT(2A), and alpha(1)-adrenergic receptors determined. Among them, only two compounds with phenyl aryl-constituent (8a and 9a) showed 5-HT(2A)/D(2) pK(i) binding ratios proposed for atypical neuroleptics. As to their behavioral screening on rodents, both compounds exhibited a non-cataleptic action in rats and antagonized D-amphetamine-induced hyperlocomotion in mice, suggesting their possible atypical antipsychotic potency.
Collapse
Affiliation(s)
- Mirko Tomić
- Department of Biochemistry, Institute for Biological Research, Bul. Despota Stefana 142, 11060 Belgrade, Serbia.
| | | | | | | | | | | |
Collapse
|
20
|
Zhang A, Neumeyer JL, Baldessarini RJ. Recent progress in development of dopamine receptor subtype-selective agents: potential therapeutics for neurological and psychiatric disorders. Chem Rev 2007; 107:274-302. [PMID: 17212477 DOI: 10.1021/cr050263h] [Citation(s) in RCA: 267] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Ao Zhang
- Bioorganic and Medicinal Chemistry Laboratory, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
| | | | | |
Collapse
|
21
|
Djaković-Sekulić T, Sârbu C, Perišić-Janjić N. A comparative study of the lipophilicity of benzimidazole and benztriazole derivatives by RPTLC. JPC-J PLANAR CHROMAT 2005. [DOI: 10.1556/jpc.18.2005.6.6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
22
|
Sukalović V, Andrić D, Roglić G, Kostić-Rajacić S, Schrattenholz A, Soskić V. Synthesis, dopamine D2 receptor binding studies and docking analysis of 5-[3-(4-arylpiperazin-1-yl)propyl]-1H-benzimidazole, 5-[2-(4-arylpiperazin-1-yl)ethoxy]-1H-benzimidazole and their analogs. Eur J Med Chem 2005; 40:481-93. [PMID: 15893022 DOI: 10.1016/j.ejmech.2004.10.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2004] [Revised: 10/18/2004] [Accepted: 10/21/2004] [Indexed: 11/24/2022]
Abstract
5-[3-(4-Arylpiperazin-1-yl)propyl]-1H-benzimidazoles and 5-[2-(4-arylpiperazin-1-yl)ethoxy]-1H-benzimidazoles were synthesized and their affinity for the D1, D2 and 5-HT1A receptors examined. They expressed a rather high affinity for the D2 dopamine receptor. The main features of ligand-D2 receptor interactions revealed by docking analyses were: salt bridge between piperazine ring protonated N1 and Asp 86, hydrogen bonds of ligand bezimidazole part with Ser 141, Ser 122 and His 189, edge-to-face interactions of arylpiperazine aromatic ring with Phe 178, Tyr 216 and Trp 182 and hydrogen bond between ethereal oxygen in ethylenoxy ligands and hydrogen of Phe 185 or Trp 115. The most active 5-[2-[4-(2-methoxyphenyl)-piperazin-1-yl]ethoxy]-1,3-dihydro-2H-benzimidazole-2-thione (27) has a maximal number of attractive interactions. A satisfactory correlation between docking of the compounds into the D2 receptor and competition binding results was observed.
Collapse
Affiliation(s)
- V Sukalović
- Institute for Chemistry, Technology and Metallurgy, Center for Chemistry, Njegoseva 12, 11000 Belgrade, Serbia and Montenegro
| | | | | | | | | | | |
Collapse
|