1
|
Han X, Li D, Zhu Y, Schneider-Futschik EK. Recommended Tool Compounds for Modifying the Cystic Fibrosis Transmembrane Conductance Regulator Channel Variants. ACS Pharmacol Transl Sci 2024; 7:933-950. [PMID: 38633590 PMCID: PMC11019735 DOI: 10.1021/acsptsci.3c00362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 04/19/2024]
Abstract
Cystic fibrosis (CF) is a genetic disorder arising from variations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, leading to multiple organ system defects. CFTR tool compounds are molecules that can modify the activity of the CFTR channel. Especially, patients that are currently not able to benefit from approved CFTR modulators, such as patients with rare CFTR variants, benefit from further research in discovering novel tools to modulate CFTR. This Review explores the development and classification of CFTR tool compounds, including CFTR blockers (CFTRinh-172, GlyH-101), potentiators (VRT-532, Genistein), correctors (VRT-325, Corr-4a), and other approved and unapproved modulators, with detailed descriptions and discussions for each compound. The challenges and future directions in targeting rare variants and optimizing drug delivery, and the potential synergistic effects in combination therapies are outlined. CFTR modulation holds promise not only for CF treatment but also for generating CF models that contribute to CF research and potentially treating other diseases such as secretory diarrhea. Therefore, continued research on CFTR tool compounds is critical.
Collapse
Affiliation(s)
- XiaoXuan Han
- Department of Biochemistry & Pharmacology,
School of Biomedical Sciences, Faculty of Medicine, Dentistry and
Health Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Danni Li
- Department of Biochemistry & Pharmacology,
School of Biomedical Sciences, Faculty of Medicine, Dentistry and
Health Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Yimin Zhu
- Department of Biochemistry & Pharmacology,
School of Biomedical Sciences, Faculty of Medicine, Dentistry and
Health Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Elena K. Schneider-Futschik
- Department of Biochemistry & Pharmacology,
School of Biomedical Sciences, Faculty of Medicine, Dentistry and
Health Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
2
|
Zaigham ZH, Ullah S, Pelletier J, Sévigny J, Iqbal J, Hassan A. Synthesis and biological evaluation of sulfamoyl benzamide derivatives as selective inhibitors for h-NTPDases. RSC Adv 2023; 13:20909-20915. [PMID: 37441049 PMCID: PMC10335114 DOI: 10.1039/d3ra03874b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023] Open
Abstract
The aim of this research work is the synthesis of sulfamoyl-benzamides as a selective inhibitor for h-NTPDases. Sulfonamides are synthesized in aqueous medium from chlorosulfonylbenzoic acid while carboxamides are synthesized using carbodiimide coupling decorated with different biologically relevant substituents such as n-butyl, cyclopropyl, benzylamine, morpholine, and substituted anilines. In addition, sulfonamide-carboxamide derivatives were synthesized having the same substituents on either side. These compounds were screened against h-NTPDase activity, a main family of ectonucleotidases. Among the eight discovered isoforms of the h-NTPDases, four isoforms, h-NTPDase1, -2, -3, and -8, are involved in various physiological and pathological functions, for instance thrombosis, diabetes, inflammation, and cancer. The compound N-(4-bromophenyl)-4-chloro-3-(morpholine-4-carbonyl)benzenesulfonamide (3i) was found to be the most potent inhibitor of h-NTPDase1 with an IC50 value of 2.88 ± 0.13 μM. Similarly, the compounds N-(4-methoxyphenyl)-3-(morpholinosulfonyl)benzamide (3f), 5-(N-benzylsulfamoyl)-2-chloro-N-(4-methoxyphenyl)benzamide (3j) and 2-chloro-N-cyclopropyl-5-(N-cyclopropylsulfamoyl)benzamide (4d) reduced the activity of the h-NTPDases2 with IC50 in sub-micromolar concentrations. Against the h-NTPDase3, 3i was the potent compound with an IC50 concentration of 0.72 ± 0.11 μM. The h-NTPDase8 was selectively blocked by the most potent inhibitor 2-chloro-5-(N-cyclopropylsulfamoyl)benzoic acid (2d) with (IC50 = 0.28 ± 0.07 μM). Moreover, the molecular docking studies of the potent inhibitors showed significant interactions with the amino acids of the respective h-NTPDase homology model proteins.
Collapse
Affiliation(s)
| | - Saif Ullah
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus Abbottabad Pakistan
| | - Julie Pelletier
- Centre de recherche du CHU de Québec-Université Laval Québec City QC Canada
| | - Jean Sévigny
- Centre de recherche du CHU de Québec-Université Laval Québec City QC Canada
- Département de Microbiologie-Infectiologie et d'Immunologie, Faculté de Médecine, Université Laval Québec City QC Canada
| | - Jamshed Iqbal
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus Abbottabad Pakistan
| | - Abbas Hassan
- Department of Chemistry, Quaid-i-Azam University Islamabad 45320 Pakistan
| |
Collapse
|
3
|
Vega Alanis BA, Wimmer L, Ernst M, Schnürch M, Mihovilovic MD. Novel pyrazolothienopyridinones as potential GABA A receptor modulators. MONATSHEFTE FUR CHEMIE 2023; 154:1427-1439. [PMID: 38020488 PMCID: PMC10667146 DOI: 10.1007/s00706-023-03063-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/21/2023] [Indexed: 12/01/2023]
Abstract
The synthesis of novel pyrazolothienopyridinone derivatives as potential GABAA receptor modulators was performed and is herein described. A crucial step of the synthesis involving handling unstable aminothiophenes was managed via two different synthetic strategies delivering a set of 8 target compounds. Graphical abstract Supplementary Information The online version contains supplementary material available at 10.1007/s00706-023-03063-6.
Collapse
Affiliation(s)
| | - Laurin Wimmer
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/163, 1060 Vienna, Austria
| | - Margot Ernst
- Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090 Vienna, Austria
| | - Michael Schnürch
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/163, 1060 Vienna, Austria
| | - Marko D. Mihovilovic
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/163, 1060 Vienna, Austria
| |
Collapse
|
4
|
Abstract
Cystic fibrosis (CF) is a hereditary, multisystemic disease caused by different mutations in the CFTR gene encoding CF transmembrane conductance regulator. CF is mainly characterized by pulmonary dysfunction as a result of deterioration in the mucociliary clearance and anion transport of airways. Mortality is mostly caused by bronchiectasis, bronchiole obstruction, and progressive respiratory dysfunction in the early years of life. Over the last decade, new therapeutic strategies rather than symptomatic treatment have been proposed, such as the small molecule approach, ion channel therapy, and pulmonary gene therapy. Due to considerable progress in the treatment options, CF has become an adult disease rather than a pediatric disease in recent years. Pulmonary gene therapy has gained special attention due to its mutation type independent aspect, therefore being applicable to all CF patients. On the other hand, the major obstacle for CF treatment is to predict the drug response of patients due to genetic complexity and heterogeneity. The advancement of 3D culture systems has made it possible to extrapolate the disease modeling and individual drug response in vitro by producing mini adult organs called "organoids" obtained from rectal cell biopsies. In this review, we summarize the advances in the novel therapeutic approaches, clinical interventions, and precision medicine concept for CF.
Collapse
|
5
|
Kunde SP, Kanade KG, Karale BK, Akolkar HN, Arbuj SS, Randhavane PV, Shinde ST, Shaikh MH, Kulkarni AK. Nanostructured N doped TiO 2 efficient stable catalyst for Kabachnik-Fields reaction under microwave irradiation. RSC Adv 2020; 10:26997-27005. [PMID: 35515785 PMCID: PMC9055502 DOI: 10.1039/d0ra04533k] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 07/07/2020] [Indexed: 01/20/2023] Open
Abstract
Herein, we report nitrogen-doped TiO2 (N-TiO2) solid-acid nanocatalysts with heterogeneous structure employed for the solvent-free synthesis of α-aminophosphonates through Kabachnik–Fields reaction. N-TiO2 were synthesized by direct amination using triethylamine as a source of nitrogen at low temperature and optimized by varying the volume ratios of TiCl4, methanol, water, and triethylamine, under identical conditions. An X-ray diffraction (XRD) study showed the formation of a rutile phase and the crystalline size is 10 nm. The nanostructural features of N-TiO2 were examined by HR-TEM analysis, which showed they had rod-like morphology with a diameter of ∼7 to 10 nm. Diffuse reflectance spectra show the extended absorbance in the visible region with a narrowing in the band gap of 2.85 eV, and the high resolution XPS spectrum of the N 1s region confirmed successful doping of N in the TiO2 lattice. More significantly, we found that as-synthesized N-TiO2 showed significantly higher catalytic activity than commercially available TiO2 for the synthesis of a novel series of α-amino phosphonates via Kabachnik–Fields reaction under microwave irradiation conditions. The improved catalytic activity is due to the presence of strong and Bronsted acid sites on a porous nanorod surface. This work signifies N-TiO2 is an efficient stable catalyst for the synthesis of α-aminophosphonate derivatives. Herein, we report nitrogen-doped TiO2 (N-TiO2) solid-acid nanocatalysts with heterogeneous structure employed for the solvent-free synthesis of α-aminophosphonates through Kabachnik–Fields reaction.![]()
Collapse
Affiliation(s)
- Sachin P Kunde
- PG and Research Centre, Radhabai Kale Mahila Mahavidyalaya Ahmednagar 414 001 India .,PG and Research Centre, Mahatma Phule Arts, Science and Commerce College Panvel 410 206 India
| | - Kaluram G Kanade
- PG and Research Centre, Radhabai Kale Mahila Mahavidyalaya Ahmednagar 414 001 India .,PG and Research Centre, Yashavantrao Chavan Institute of Science Satara 415 001 India
| | - Bhausaheb K Karale
- PG and Research Centre, Radhabai Kale Mahila Mahavidyalaya Ahmednagar 414 001 India
| | - Hemant N Akolkar
- PG and Research Centre, Radhabai Kale Mahila Mahavidyalaya Ahmednagar 414 001 India
| | - Sudhir S Arbuj
- Centre for Materials for Electronics Technology (C-MET), Department of Electronics and Information Technology (DeitY), Government of India Panchavati, Off Pashan Road Pune-411 008 India
| | | | - Santosh T Shinde
- PG and Research Centre, Radhabai Kale Mahila Mahavidyalaya Ahmednagar 414 001 India
| | - Mubarak H Shaikh
- PG and Research Centre, Radhabai Kale Mahila Mahavidyalaya Ahmednagar 414 001 India
| | - Aniruddha K Kulkarni
- Dr. John Barnabas School for Biological Studies, Department of Chemistry, Ahmednagar College Ahmednagar-414 001 India
| |
Collapse
|
6
|
Lountos GT, Zhao XZ, Kiselev E, Tropea JE, Needle D, Pommier Y, Burke TR, Waugh DS. Identification of a ligand binding hot spot and structural motifs replicating aspects of tyrosyl-DNA phosphodiesterase I (TDP1) phosphoryl recognition by crystallographic fragment cocktail screening. Nucleic Acids Res 2019; 47:10134-10150. [PMID: 31199869 DOI: 10.1093/nar/gkz515] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 05/20/2019] [Accepted: 06/11/2019] [Indexed: 02/02/2023] Open
Abstract
Tyrosyl DNA-phosphodiesterase I (TDP1) repairs type IB topoisomerase (TOP1) cleavage complexes generated by TOP1 inhibitors commonly used as anticancer agents. TDP1 also removes DNA 3' end blocking lesions generated by chain-terminating nucleosides and alkylating agents, and base oxidation both in the nuclear and mitochondrial genomes. Combination therapy with TDP1 inhibitors is proposed to synergize with topoisomerase targeting drugs to enhance selectivity against cancer cells exhibiting deficiencies in parallel DNA repair pathways. A crystallographic fragment screening campaign against the catalytic domain of TDP1 was conducted to identify new lead compounds. Crystal structures revealed two fragments that bind to the TDP1 active site and exhibit inhibitory activity against TDP1. These fragments occupy a similar position in the TDP1 active site as seen in prior crystal structures of TDP1 with bound vanadate, a transition state mimic. Using structural insights into fragment binding, several fragment derivatives have been prepared and evaluated in biochemical assays. These results demonstrate that fragment-based methods can be a highly feasible approach toward the discovery of small-molecule chemical scaffolds to target TDP1, and for the first time, we provide co-crystal structures of small molecule inhibitors bound to TDP1, which could serve for the rational development of medicinal TDP1 inhibitors.
Collapse
Affiliation(s)
- George T Lountos
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Xue Zhi Zhao
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Evgeny Kiselev
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Joseph E Tropea
- Macromolecular Crystallography Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Danielle Needle
- Macromolecular Crystallography Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Yves Pommier
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Terrence R Burke
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - David S Waugh
- Macromolecular Crystallography Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| |
Collapse
|
7
|
Cabrini G. Innovative Therapies for Cystic Fibrosis: The Road from Treatment to Cure. Mol Diagn Ther 2019; 23:263-279. [PMID: 30478715 DOI: 10.1007/s40291-018-0372-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cystic fibrosis (CF), a life-threatening multiorgan genetic disease, is facing a new era of research and development using innovative gene-directed personalized therapies. The priority organ to cure is the lung, which suffers recurrent and chronic bacterial infection and inflammation since infancy, representing the main cause of morbidity and precocious mortality of these individuals. After the disappointing failure of gene-replacement approaches using gene therapy vectors, no single drug is presently available to repair all the CF gene defects. The impressive number of different CF gene mutations is now tackled with different chemical and biotechnological tools tailored to the specific molecular derangements, thanks to the extensive knowledge acquired over many years on the mechanisms of CF cell and organ pathology. This review provides an overview and recalls both the successes and limitations of the different experimental approaches, such as high-throughput screening on chemical libraries to discover CF gene correctors and potentiators, dual-acting compounds, read-through molecules, splicing defect repairing tools, cystic fibrosis transmembrane conductance regulator (CFTR) "amplifiers," CFTR interactome modulators and the first gene editing attempts.
Collapse
Affiliation(s)
- Giulio Cabrini
- Laboratory of Molecular Pathology, University Hospital, Verona, Italy. .,Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy.
| |
Collapse
|
8
|
Abdou MM, Seferoğlu Z, Fathy M, Akitsu T, Koketsu M, Kellow R, Amigues E. Synthesis and chemical transformations of 3-acetyl-4-hydroxyquinolin-2(1H)-one and its N-substituted derivatives: bird’s eye view. RESEARCH ON CHEMICAL INTERMEDIATES 2018. [DOI: 10.1007/s11164-018-3652-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
9
|
Dechecchi MC, Tamanini A, Cabrini G. Molecular basis of cystic fibrosis: from bench to bedside. ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:334. [PMID: 30306073 PMCID: PMC6174194 DOI: 10.21037/atm.2018.06.48] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 06/26/2018] [Indexed: 12/21/2022]
Abstract
Cystic fibrosis (CF), is an autosomal recessive disease affecting different organs. The lung disease, characterized by recurrent and chronic bacterial infection and inflammation since infancy, is the main cause of morbidity and precocious mortality of these individuals. The innovative therapies directed to repair the defective CF gene should account for the presence of more than 200 disease-causing mutations of the CF transmembrane conductance regulator (CFTR) gene. The review will recall the different experimental approaches in discovering CFTR protein targeted molecules, such as the high throughput screening on chemical libraries to discover correctors and potentiators of CFTR protein, dual-acting compounds, read-through molecules, splicing defects repairing tools, CFTR "amplifiers".
Collapse
Affiliation(s)
- Maria Cristina Dechecchi
- Laboratory of Analysis, Section of Molecular Pathology, University Hospital of Verona, Verona, Italy
| | - Anna Tamanini
- Laboratory of Analysis, Section of Molecular Pathology, University Hospital of Verona, Verona, Italy
| | - Giulio Cabrini
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| |
Collapse
|
10
|
|
11
|
Yang H, Ma T. F508del-cystic fibrosis transmembrane regulator correctors for treatment of cystic fibrosis: a patent review. Expert Opin Ther Pat 2015; 25:991-1002. [PMID: 25971311 DOI: 10.1517/13543776.2015.1045878] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
INTRODUCTION Cystic fibrosis (CF) is an autosomal recessive genetic disease caused by malfunction of CF transmembrane regulator (CFTR). The deletion of a phenylalanine at residue 508 (F508del) is the most common mutation that causes cellular processing, chloride channel gating and protein stability defects in CFTR. Pharmacological modulators of F508del-CFTR, aimed at correcting the cellular processing defect (correctors) and the gating defect (potentiators) in CFTR protein, are regarded as promising therapeutic agents for CF disease. Endeavors in searching F508del-CFTR modulators have shown encouraging results, with several small-molecule compounds having entered clinical trials or even represented clinical options. AREAS COVERED This review covers the discovery of F508del-CFTR correctors described in both patents (2005 - present) and scientific literatures. EXPERT OPINION Cyclopropane carboxamide derivatives of CFTR correctors continue to dominate in this area, among which lumacaftor (a NBD1-MSD1/2 interface stabilizer) is the most promising compound and is now under the priority review by US FDA. However, the abrogation effect of ivacaftor (potentiator) on lumacaftor suggests the requirement of discovering new correctors and potentiators that can cooperate well. Integration screening for simultaneously identifying combinations of correctors (particularly NBD1 stabilizer) and potentiators should provide an alternative strategy. A recently reported natural product fraction library may be useful for the integration screening.
Collapse
Affiliation(s)
- Hong Yang
- a 1 School of Life Sciences, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University , Dalian 116029, P.R. China +86 411 85827085 ; +86 411 85827068 ;
| | | |
Collapse
|
12
|
Li X, Wang Z, Feng Y, Song T, Su P, Chen C, Chai G, Yang Y, Zhang Z. Two-face, two-turn α-helix mimetics based on a cross-acridine scaffold: analogues of the Bim BH3 domain. Chembiochem 2014; 15:1280-5. [PMID: 24838655 DOI: 10.1002/cbic.201402040] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Indexed: 11/09/2022]
Abstract
The design of a cross-acridine scaffold mimicking the i, i+3, i+5, and i+7 residues distributed over a two-face, two-turn α-helix is described. Docking studies and 2D (1)H, (15)N HSQC NMR spectroscopy provide compelling evidence that compound 3 d accurately reproduces the arrangement of four hotspots in the Bim BH3 peptide to permit binding to the Mcl-1 and Bcl-2 proteins (Ki 0.079 and 0.056 μM, respectively). Furthermore, the hotspot mutation could also be mimicked by individual or multiple deletions of side chains on the scaffold.
Collapse
Affiliation(s)
- Xiangqian Li
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, 2 Linggong Road, Dalian 116012 (P.R. China)
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
4-Oxo-1,4-dihydro-quinoline-3-carboxamides as BACE-1 inhibitors: Synthesis, biological evaluation and docking studies. Eur J Med Chem 2014; 79:413-21. [DOI: 10.1016/j.ejmech.2014.04.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 04/07/2014] [Accepted: 04/07/2014] [Indexed: 11/18/2022]
|
14
|
Hadida S, Van Goor F, Dinehart K, Looker AR, Mueller P, Grootenhuis PD. Case History. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 2014. [DOI: 10.1016/b978-0-12-800167-7.00024-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
15
|
Wine JJ, Char JE, Chen J, Cho HJ, Dunn C, Frisbee E, Joo NS, Milla C, Modlin SE, Park IH, Thomas EAC, Tran KV, Verma R, Wolfe MH. In vivo readout of CFTR function: ratiometric measurement of CFTR-dependent secretion by individual, identifiable human sweat glands. PLoS One 2013; 8:e77114. [PMID: 24204751 PMCID: PMC3811985 DOI: 10.1371/journal.pone.0077114] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 08/29/2013] [Indexed: 12/14/2022] Open
Abstract
To assess CFTR function in vivo, we developed a bioassay that monitors and compares CFTR-dependent and CFTR-independent sweat secretion in parallel for multiple (~50) individual, identified glands in each subject. Sweating was stimulated by intradermally injected agonists and quantified by optically measuring spherical sweat bubbles in an oil-layer that contained dispersed, water soluble dye particles that partitioned into the sweat bubbles, making them highly visible. CFTR-independent secretion (M-sweat) was stimulated with methacholine, which binds to muscarinic receptors and elevates cytosolic calcium. CFTR-dependent secretion (C-sweat) was stimulated with a β-adrenergic cocktail that elevates cytosolic cAMP while blocking muscarinic receptors. A C-sweat/M-sweat ratio was determined on a gland-by-gland basis to compensate for differences unrelated to CFTR function, such as gland size. The average ratio provides an approximately linear readout of CFTR function: the heterozygote ratio is ~0.5 the control ratio and for CF subjects the ratio is zero. During assay development, we measured C/M ratios in 6 healthy controls, 4 CF heterozygotes, 18 CF subjects and 4 subjects with 'CFTR-related' conditions. The assay discriminated all groups clearly. It also revealed consistent differences in the C/M ratio among subjects within groups. We hypothesize that these differences reflect, at least in part, levels of CFTR expression, which are known to vary widely. When C-sweat rates become very low the C/M ratio also tended to decrease; we hypothesize that this nonlinearity reflects ductal fluid absorption. We also discovered that M-sweating potentiates the subsequent C-sweat response. We then used potentiation as a surrogate for drugs that can increase CFTR-dependent secretion. This bioassay provides an additional method for assessing CFTR function in vivo, and is well suited for within-subject tests of systemic, CFTR-directed therapeutics.
Collapse
Affiliation(s)
- Jeffrey J. Wine
- Cystic Fibrosis Research Laboratory, Stanford University, Stanford, California, United States of America
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Psychology, Stanford University, Stanford, California, United States of America
| | - Jessica E. Char
- Cystic Fibrosis Research Laboratory, Stanford University, Stanford, California, United States of America
| | - Jonathan Chen
- Cystic Fibrosis Research Laboratory, Stanford University, Stanford, California, United States of America
| | - Hyung-ju Cho
- Cystic Fibrosis Research Laboratory, Stanford University, Stanford, California, United States of America
| | - Colleen Dunn
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Eric Frisbee
- Cystic Fibrosis Research Laboratory, Stanford University, Stanford, California, United States of America
| | - Nam Soo Joo
- Cystic Fibrosis Research Laboratory, Stanford University, Stanford, California, United States of America
| | - Carlos Milla
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Sara E. Modlin
- Cystic Fibrosis Research Laboratory, Stanford University, Stanford, California, United States of America
| | - Il-Ho Park
- Cystic Fibrosis Research Laboratory, Stanford University, Stanford, California, United States of America
| | - Ewart A. C. Thomas
- Department of Psychology, Stanford University, Stanford, California, United States of America
| | - Kim V. Tran
- Cystic Fibrosis Research Laboratory, Stanford University, Stanford, California, United States of America
| | - Rohan Verma
- Cystic Fibrosis Research Laboratory, Stanford University, Stanford, California, United States of America
| | - Marlene H. Wolfe
- Cystic Fibrosis Research Laboratory, Stanford University, Stanford, California, United States of America
| |
Collapse
|
16
|
Merk D, Schubert-Zsilavecz M. Repairing mutated proteins – development of small molecules targeting defects in the cystic fibrosis transmembrane conductance regulator. Expert Opin Drug Discov 2013; 8:691-708. [DOI: 10.1517/17460441.2013.788495] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
17
|
Abstract
With knowledge of the molecular behaviour of the cystic fibrosis transmembrane conductance regulator (CFTR), its physiological role and dysfunction in cystic fibrosis (CF), therapeutic strategies are now being developed that target the root cause of CF rather than disease symptoms. Here, we review progress towards the development of rational new therapies for CF. We highlight the discovery of small molecules that rescue the cell surface expression and defective channel gating of CF mutants, termed CFTR correctors and CFTR potentiators, respectively. We draw attention to alternative approaches to restore epithelial ion transport to CF epithelia, including inhibitors of the epithelial Na(+) channel (ENaC) and activators of the Ca(2+)-activated Cl(-) channel TMEM16A. The expertise required to translate small molecules identified in the laboratory to drugs for CF patients depends on our ability to coordinate drug development at an international level and our ability to provide pertinent biological information using suitable disease models.
Collapse
|
18
|
Bunce RA, Nammalwar B. 4(1H)-Quinolinones by a Tandem Reduction-Addition-Elimination Reaction. ORG PREP PROCED INT 2010. [DOI: 10.1080/00304948.2010.526512] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
19
|
Lin S, Sui J, Cotard S, Fung B, Andersen J, Zhu P, El Messadi N, Lehar J, Lee M, Staunton J. Identification of synergistic combinations of F508del cystic fibrosis transmembrane conductance regulator (CFTR) modulators. Assay Drug Dev Technol 2010; 8:669-84. [PMID: 21050065 DOI: 10.1089/adt.2010.0313] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Cystic fibrosis (CF) is an inherited, life-threatening disease caused by mutations in the gene encoding cystic fibrosis transmembrane conductance regulator (CFTR), an ABC transporter-class protein and ion channel that transports ions across epithelial cell membranes. The most common mutation leads to the deletion of a single phenylalanine, and the resulting protein, F508del-CFTR, shows reduced trafficking to the membrane and defective channel gating. The ideal therapeutic approach would address both of these defects and restore channel function at the same time. We describe here the application of a combination high-throughput screening to search for synergistic modulators of F508del-CFTR. With the adapted Fischer rat thyroid-yellow fluorescent protein halide flux assay to the combination high-throughput screening platform, we identified many interesting single agents as CFTR modulators from a library of approved drugs and mechanistic probe compounds, and combinations that synergistically modulate F508del-CFTR channel function in Fischer rat thyroid cells, demonstrating the potential for combination therapeutics to address the defects that cause CF.
Collapse
Affiliation(s)
- Stephen Lin
- Zalicus, Inc., Cambridge, Massachusetts, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Luo ZG, Zeng CC, Yang LF, He HQ, Wang CX, Hu LM. Synthesis of 6-sulfamoyl-4-oxoquinoline-3-carboxylic acid derivatives as integrase antagonists with anti-HIV activity. CHINESE CHEM LETT 2009. [DOI: 10.1016/j.cclet.2009.03.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
21
|
Al-Nakkash L, Springsteel MF, Kurth MJ, Nantz MH. Activation of CFTR by UCCF-029 and genistein. Bioorg Med Chem Lett 2008; 18:3874-7. [PMID: 18595696 DOI: 10.1016/j.bmcl.2008.06.051] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2008] [Revised: 06/05/2008] [Accepted: 06/16/2008] [Indexed: 10/21/2022]
Abstract
The mechanism of action of a novel CFTR activator UC(CF)-029 on NIH3T3 cells stably expressing DeltaF508-CFTR was investigated and its effects compared to those of genistein, a known CFTR activator. This study shows that UC(CF)-029 and genistein have differing efficacies. The efficacy of UC(CF)-029 in the presence of forskolin (10microM) is approximately 50% that of genistein; however, the EC(50)'s for both drugs are comparable; 3.5microM for UC(CF)-029 and 4.4muM for genistein. Using NIH3T3 cells stably transfected with K1250A-CFTR we find that CFTR channel open time is unaffected by UC(CF)-029 or genistein, supporting the hypothesis that these compounds stabilize the open state by inhibiting ATP hydrolysis at NBD2. Our data suggest that the ability of UC(CF)-029 to augment DeltaF508-CFTR channel activity necessitates further interest.
Collapse
Affiliation(s)
- Layla Al-Nakkash
- Department of Physiology, Midwestern University, 19555 N 59th Avenue, Glendale, AZ 85308, USA.
| | | | | | | |
Collapse
|
22
|
|
23
|
Enhanced cell-surface stability of rescued DeltaF508 cystic fibrosis transmembrane conductance regulator (CFTR) by pharmacological chaperones. Biochem J 2008; 410:555-64. [PMID: 18052931 DOI: 10.1042/bj20071420] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Misfolded proteins destined for the cell surface are recognized and degraded by the ERAD [ER (endoplasmic reticulum) associated degradation] pathway. TS (temperature-sensitive) mutants at the permissive temperature escape ERAD and reach the cell surface. In this present paper, we examined a TS mutant of the CFTR [CF (cystic fibrosis) transmembrane conductance regulator], CFTR DeltaF508, and analysed its cell-surface trafficking after rescue [rDeltaF508 (rescued DeltaF508) CFTR]. We show that rDeltaF508 CFTR endocytosis is 6-fold more rapid (approximately 30% per 2.5 min) than WT (wild-type, approximately 5% per 2.5 min) CFTR at 37 degrees C in polarized airway epithelial cells (CFBE41o-). We also investigated rDeltaF508 CFTR endocytosis under two further conditions: in culture at the permissive temperature (27 degrees C) and following treatment with pharmacological chaperones. At low temperature, rDeltaF508 CFTR endocytosis slowed to WT rates (20% per 10 min), indicating that the cell-surface trafficking defect of rDeltaF508 CFTR is TS. Furthermore, rDeltaF508 CFTR is stabilized at the lower temperature; its half-life increases from <2 h at 37 degrees C to >8 h at 27 degrees C. Pharmacological chaperone treatment at 37 degrees C corrected the rDeltaF508 CFTR internalization defect, slowing endocytosis from approximately 30% per 2.5 min to approximately 5% per 2.5 min, and doubled DeltaF508 surface half-life from 2 to 4 h. These effects are DeltaF508 CFTR-specific, as pharmacological chaperones did not affect WT CFTR or transferrin receptor internalization rates. The results indicate that small molecular correctors may reproduce the effect of incubation at the permissive temperature, not only by rescuing DeltaF508 CFTR from ERAD, but also by enhancing its cell-surface stability.
Collapse
|
24
|
Low temperature induces the delivery of mature and immature CFTR to the plasma membrane. Biochem Biophys Res Commun 2007; 366:1025-9. [PMID: 18096515 DOI: 10.1016/j.bbrc.2007.12.065] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2007] [Accepted: 12/07/2007] [Indexed: 11/23/2022]
Abstract
Deletion of phenylalanine 508 (DeltaF508) is the most prevalent disease-causing mutation resulting in retention of the immature CFTR in the endoplasmic reticulum. The most common strategy to induce the delivery of DeltaF508-CFTR to the surface of cells is by reducing the incubation temperature ( approximately 28 degrees C). Cell surface biotinylation of HEK293T cells grown at 37 degrees C for 48h, confirmed the presence of mature wild-type CFTR, but not DeltaF508-CFTR at the cell surface. On the other hand, cells incubated at 28 degrees C for 16h showed both mature and immature DeltaF508-CFTR at their surface. The trafficking of immature DeltaF508-CFTR, but not mature DeltaF508-CFTR, to the cell surface occurred at low temperature even upon addition of BFA, suggesting the involvement of a Golgi-independent pathway. These results suggest that low temperature induces the appearance of a mix population of mature and immature CFTR molecules at the plasma membrane through distinct pathways.
Collapse
|
25
|
Amaral MD, Kunzelmann K. Molecular targeting of CFTR as a therapeutic approach to cystic fibrosis. Trends Pharmacol Sci 2007; 28:334-41. [PMID: 17573123 DOI: 10.1016/j.tips.2007.05.004] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2007] [Revised: 04/17/2007] [Accepted: 05/29/2007] [Indexed: 12/19/2022]
Abstract
One of the major challenges facing the pharmaceutical field is the identification of novel, 'druggable' targets common to distinct diseases that, despite their clinical diversity, share the same basic molecular defect(s) - thus, being termed 'horizontal diseases'. Membrane proteins constitute one of the largest families in the human genome and, given their major roles in cells and organisms, they are relevant to common human disorders such as cardiovascular disease and cancer, but also to rare genetic conditions such as cystic fibrosis (CF). Here, we review therapeutic approaches to correcting the basic defect in CF, which is caused mainly by the intracellular retention of a misfolded protein, and focus on various recent drug-discovery strategies for this important and paradigmatic disease. These strategies have possible applications in many membrane protein disorders, including other channelopathies. The mechanisms of action of potent and specific compounds, representing promising drug leads for CF pharmacotherapy, are explained and discussed.
Collapse
Affiliation(s)
- Margarida D Amaral
- Department of Chemistry and Biochemistry, Faculty of Sciences, University of Lisboa, 1749-016 Lisboa, Portugal.
| | | |
Collapse
|
26
|
Sontag MK, Corey M, Hokanson JE, Marshall JA, Sommer SS, Zerbe GO, Accurso FJ. Genetic and physiologic correlates of longitudinal immunoreactive trypsinogen decline in infants with cystic fibrosis identified through newborn screening. J Pediatr 2006; 149:650-657. [PMID: 17095337 DOI: 10.1016/j.jpeds.2006.07.026] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2005] [Revised: 05/23/2006] [Accepted: 07/12/2006] [Indexed: 10/23/2022]
Abstract
OBJECTIVES To characterize the time course and physiologic significance of decline in serum immunoreactive trypsinogen (IRT) levels in infants with cystic fibrosis (CF) by mode of diagnosis and genotype, and to examine IRT heritability. STUDY DESIGN We studied longitudinal IRT measurements in 317 children with CF. We developed statistical models to describe IRT decline. Pancreatic disease severity (Mild or Severe) was assigned using CF genotype and was confirmed in 47 infants through fat malabsorption studies. RESULTS Infants with severe disease exhibited IRT decline with non-detectable levels typically seen by 5 years of age. Infants with mild disease exhibited a decline in the first 2 years, asymptomatically approaching a level greater than published norms. IRT and fecal fat were inversely correlated. IRT values in infants with meconium ileus (MI) were significantly lower than newborn-screened infants at birth. The high proportion of shared variation in predicted IRT values among sibling pairs with severe disease suggests that IRT is heritable. CONCLUSIONS IRT declines characteristically in infants with CF. Lower IRT values in newborns with MI suggest increased pancreatic injury. Furthermore, IRT is heritable among patients with severe disease suggesting genetic modifiers of early CF pancreatic injury. This study demonstrates heritability of a statistically modeled quantitative phenotype.
Collapse
Affiliation(s)
- Marci K Sontag
- Department of Preventive Medicine and Biometrics, University of Colorado Health Sciences Center, Denver, Colorado, USA.
| | | | | | | | | | | | | |
Collapse
|